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Abstract
Generating coherent conversation is an impor-
tant and challenging long text generation task,
as it has various applications such as daily enter-
tainment, education, or building conversational
AI to facilitate human-computer interaction.
However, current generation models often fail
to effectively utilize rich linguistic and world
knowledge to generate conversations just like
humans. In this work, we introduce a novel con-
versation generation framework to effectively
incorporate human knowledge and conversa-
tion structures with both controllability and in-
terpretability for better conversation generation.
Specifically, we first generate the prototype con-
versations from short descriptions. We then
gradually and strategically incorporate differ-
ent levels of conversation structures including
the action triples, dialogue acts, and discourse
relations via diffusion models to directly edit
the prototype conversations. We demonstrate
the effectiveness of our framework through ex-
periments on two datasets by comparing our
method with the state-of-the-art baseline mod-
els1.

1 Introduction

Generating long-form and coherent text is an im-
portant step in many natural language generation
(NLG) applications (Guan et al., 2022). While
recent research has shown impressive progress in
generating short texts, it is still challenging for gen-
eration models to write coherent long text which
requires comprehensively incorporating linguistic
and world knowledge (Charniak, 1972). Our work
takes a closer look at long conversation generation
(Gunasekara et al., 2021), one of the most challeng-
ing long text generation tasks. The task is to gen-
erate an entire coherent conversation from a given
short description, i.e., a summary, of it. Conversa-
tion generation has various applications from daily

1The code is available at https://github.com/
SALT-NLP/Conversation_Generation_Diffusion

entertainment, and story generation, to customer
services. However, real human/human conversa-
tion logs are scarce; crowdsourcing conversational
data is time-consuming, costly, and hard to ensure
data quality (Gunasekara et al., 2021). Thus, better
conversation generation models would allow us to
generate massive natural conversational data more
automatically and efficiently, which further helps
build better conversational AI systems.

Even though there are a growing number of stud-
ies that focused on long text generation such as
story generation (Guan et al., 2022; Yang et al.,
2022; Fan et al., 2018; Li et al., 2022a) using large
pre-trained models (Fan et al., 2018; Yang et al.,
2022), event planning (Guan et al., 2022; Fan et al.,
2018; Li et al., 2022a) and recursive revision (Yang
et al., 2022), directly applying them to generate
long conversation may not work well due to the
inherent different structures between stories and
conversations. For instance, previous long text
generation usually focused on generating stories
that talk about one single topic with five sentences
to one paragraph. They are shorter compared to
conversations, which usually cover multiple topics
between different speakers (over ten turns) (Feng
et al., 2020). Furthermore, there are diverse dis-
course relations between different speakers (Chen
and Yang, 2021b), making it even more challenging
to generate long and coherent conversations.

While there is a line of work about dialogue
generation, they are mainly concentrated on gener-
ating the next utterance autoregressively based on
the given context (Ji et al., 2021; Liu et al., 2020;
Saha et al., 2022; Zhang et al., 2020; Ramakrish-
nan et al., 2022) with sequence-to-sequence mod-
els. Such methods usually neglect the conversa-
tion structures(Adewumi et al., 2022), and thus
might easily lose focus to produce long and coher-
ent conversations after several rounds of generation
(Gunasekara et al., 2021). Moreover, the formerly
generated utterances could not be further edited to
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Figure 1: Overall process of our framework. The sequence-to-sequence models would first generate a prototype
conversation. Then we first corrupt the conversation through masking actions, masking utterances, shuffling
utterances in the forward process, and utilize the diffusion process to gradually enrich the prototype conversation
with different levels of structured conversation information.

adapt the later generated utterances. It is also un-
clear whether and how these sequence-to-sequence
models are “gradually planning” to produce the
long conversations. Therefore, how to design con-
trollable methods tailored to the structures in con-
versations for generating long and coherent conver-
sations becomes especially important.

To this end, our work introduces a Controllable
Conversation Generation Framework with Diffu-
sion Models (Diffuse-CG, shown in Figure 1) to
incorporate different conversational structures in a
non-autoregressive manner, inspired by recent ad-
vances in deep generative models (Li et al., 2022b;
Gong et al., 2022; He et al., 2022). Specifically,
we first generate a prototype conversation using
pre-trained sequence-to-sequence model based on
the input description. Then we leverage the dif-
fusion models to gradually enrich the prototype
conversation with conversation structures. The dif-
fusion process allows a more flexible conversation
generation by not limiting a fixed left-to-right gen-
eration order; it also allows the model to gradually
incorporate different levels of conversation struc-
tures to control the granularities, including the use
of action triples to add more specific topics and
events (Gee, 2014; Chen and Yang, 2021b), dia-
logue acts to make the utterances more like human
(Allen and Core, 1997; Sacks et al., 1978; Chen
and Yang, 2021a), and discourse relations to gen-
erate longer conversations with better coherency
(Kirschner et al., 2012; Stone et al., 2013; Asher
et al., 2016a). To make the diffusion process more
adapted to conversation generation and more stable,
we further improve the general diffusion model (Li
et al., 2022b) with linguistic-informed noise where

we perturb the prototype conversation in the for-
ward process with noise including soft-masking
action words, soft-masking utterances, and shuf-
fling discourse relations, rather than pure Gaussian
noise (Li et al., 2022b). Experiments on two con-
versation datasets, SAMSum (Gliwa et al., 2019)
and DialogSum (Chen et al., 2021)by visualizing
the intermediate-generated conversations, we show
that Diffuse-CG achieves better interpretability for
understanding how the model is structuring and
generating long-form conversations.

2 Related Work

Long Text Generation Long-form text gener-
ation has been a longstanding challenge in nat-
ural language generation where models need to
generate long, coherent and open-ended narratives
(Guan et al., 2022; Yang et al., 2022; Fan et al.,
2018; Li et al., 2022a; Guan et al., 2021). Recent
studies have shown impressive success in generat-
ing more coherent stories through adopting hier-
archical model structures (Li et al., 2015), lever-
aging large pre-trained models (Fan et al., 2018;
Yang et al., 2022), planing first and then gener-
ating framework (Shao et al., 2019; Tan et al.,
2020; Goldfarb-Tarrant et al., 2020; Li et al., 2022a)
and incorporating external knowledge (Guan et al.,
2022; Fan et al., 2018; Xu et al., 2020). However,
previous studies mainly focus on generating single-
speaker stories and neglect one important form of
long text—conversations. Such methods cannot be
directly applied to generate multi-speaker conver-
sations because of the complex linguistic structures
in conversations such as back-and-forth interac-
tions (Feng et al., 2020; Chen and Yang, 2021b).

7239



Our work fills this gap by utilizing conversation
structures to generate coherent conversations.

Dialogue Response Generation Numerous stud-
ies have been conducted on generating short re-
sponses conditioned on previous context (Ji et al.,
2021; Liu et al., 2020; Saha et al., 2022; Zhang
et al., 2020; Ramakrishnan et al., 2022) such as
adding user’s persona (Wolf et al., 2019), para-
phrasing template responses (Lippe et al., 2020)
and using example guidance (Gupta et al., 2021;
Cai et al., 2020). While achieving state-of-the-art
performances, they suffer from generating the en-
tire conversation because they can only generate
one utterance at a time and easily lose focus when
generating multiple rounds of utterances or the en-
tire conversation (Gunasekara et al., 2021). This is
largely due to the fact that former errors cannot be
corrected when generating utterance by utterance
autoregressively, and the lack of awareness towards
rich conversation structures like long-distance re-
lations in conversations (Stone et al., 2013; Asher
et al., 2016a). To this end, we design a controllable
and interpretable conversation generation frame-
work that makes use of rich structures to generate
the entire conversation in a non-autoregressive way.

Diffusion Model Diffusion models (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2021) are recently-introduced state-of-the-art
non-autoregressive generative models and have
shown substantial success for visual modalities
(Ramesh et al., 2022; Rombach et al., 2022). They
are generally more interpretable and controllable
as they gradually denoise random vectors to
desired output via multiple intermediate steps (He
et al., 2022; Austin et al., 2021). However, it is still
difficult to apply diffusion models to textual data,
because the input space in text is discrete and text
is generally more complex in structures. Although
there are a few exceptions to model language
generation with diffusion process (Li et al., 2022b;
Gong et al., 2022; He et al., 2022; Austin et al.,
2021; Hoogeboom et al., 2021) where continuous
and discrete space is bridged through embedding
and rounding (Li et al., 2022b; Gong et al., 2022;
Dieleman et al., 2022), such approaches often
utilize Gaussian noise in the forward process,
which usually fails to leverage the linguistic
structure in text to noise the input textual data and
makes the diffusion models unstable and costly
(He et al., 2022). Building upon these prior works,

we utilize diffusion models for interpretable and
controllable conversation generation and design
a novel linguistic-informed noise for adapting
diffusion models to generate textual conversations.

3 Background: Diffusion Models

Diffusion models are the recent state-of-the-art
deep generative models via iterative denoising the
latent variables (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song et al., 2021). Basically, corrup-
tion (usually Gaussian noise) is added to the input
data distribution gradually during a forward pro-
cess. Then a diffusion model is trained through
learning to recover the corrupted distribution to
the original input data distribution step by step.
A small amount of information that is perturbed
during the corresponding forward process is recon-
structed in every diffusion step.

There is usually a forward noising process and
a diffusion denoising process in a diffusion model.
For a given sampled input data, x0 ∼ q(x0), a
Markov chain of latent variables {x1, · · ·, xT }
are generated in the forward noising process
(q (xt | xt−1)) by progressively adding a small
amount of Gaussian noise to perturb the input data:

q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)

where {βt ∈ (0, 1)}Tt=1 is a noise schedule con-
trolling the amount of added noise in every step.
Through the forward process, xT becomes an
isotropic Gaussian distribution. Note that there
are no trainable parameters in the forward process.

Then a reversed diffusion process, which is
learned by a parameterized model (p(xt−1|xt)), is
learned to denoise xT to the original data x0:

pθ (xt−1 | xt, t) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)) ,

where µθ(.) and Σθ(.) are the learned models.
The diffusion model is trained to maximize the

marginal likelihood of log pθ(x0). And Ho et al. ex-
pand and reweight the objectives to obtain a mean-
squared error (L2) loss:

Ld (x0) =
T∑

t=1

E
q(xt|x0)

∥µθ (xt, t)− µ̂ (xt, x0)∥2

where µ̂ is the mean of the posterior q(xt−1|x0, xt),
and µθ is the predicted mean of pθ(xt−1|xt), which
is predicted by the parameterized neural models.
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4 Our Approach

This section introduces our controllable conver-
sation generation model to generate natural and
coherent conversations, as shown in Figure 1. Basi-
cally, we first utilize a sequence-to-sequence model
to generate a prototype version of the conversation
based on the given short description (Section 4.1).
We then gradually incorporate the conversation
structure guidance to edit the prototype conversa-
tion in order from lower levels to higher levels (ac-
tion triples, dialogue acts, and discourse relations)
through diffusion models (Section 4.2).

4.1 Prototype Conversation Generation

We first train a sequence-to-sequence model
f(F (.)) to generate the prototype conversation
Cp based on the given conversation summary s,
Cp = f(F (s)), where F (.) is an encoder-decoder
network and f(.) is a feed-forward network to
map the hidden representations to actual words.
We initialize f(F (.)) with a pre-trained encoder-
decoder model, i.e., BART-base (Lewis et al.,
2020). f(F (.)) is learned using the ground truth
summary-conversation pairs, (s, Cg) through mini-
mizing the cross entropy L = −∑

logP (Cg|s).
Once the prototype conversation generation

model is learned, we utilize F (.) to generate the
hidden representations X0 = {w0, ..., wl} of the
prototype conversation C with l words: X0 =
{w0, ..., wl} = F (s). Note that X0 ∈ Rl×d is
a matrix used as the initiate latent variable in Sec-
tion 4.2, where l is the number of words in the
conversation and d is the dimension of the hidden
representation.

4.2 Editing with Diffusion Models

With the hidden representation, X0, of the proto-
type conversation, we then introduce our diffusion
model that gradually edits the prototype conversa-
tion to form the desired long conversation. Specif-
ically, we first add linguistic noise to X0 to get
the noisy intermediate latent variables X1:T in the
forward process (Section 4.2.2), and then gradually
denoise XT to X̂0 with different levels of conversa-
tion structure information in the diffusion process
(Section 4.2.3). Last, we generate the long conver-
sation Cl with the denoised X̂0: Cl = f(X̂0).

4.2.1 Structures in Conversations
This part introduces the three types of widely-used
structures with different granularity in conversa-

tions utilized in our work2: the action triples, dia-
logue acts, and discourse relations. The action
triples are the “WHO-DOING-WHAT” triplets
(e.g., “Sam-Asking for-Betty’s number”) in conver-
sations that express specific socially situated iden-
tities and activities (Chen and Yang, 2021b). The
dialogue acts describe the functions and roles of
every utterance in one conversation. For example,
natural conversations might often have interruption
utterances with dialogue acts like acknowledgment,
backchannel, response acknowledgment and etc.
(Allen and Core, 1997; Sacks et al., 1978). Dis-
course relations describe the relations between dif-
ferent utterances in one conversation (Asher et al.,
2016b). For example, two utterances may be re-
lated to each other with the Question Answer Pair.

4.2.2 Forward Process
We first add noise to prototype conversation X0 =
{w0, ..., wl} to generate the noisy intermediate la-
tent variables X1:T in the forward process: Xt+1 =
q(Xt). To make the diffusion process more stable
and efficient, the added noise needs to corrupt the
prototype conversation and gives the later diffusion
process appropriate flexibility to generate conversa-
tions, while avoiding removing all the prior knowl-
edge in X0. Thus we design and apply different
types of linguistic-informed noises to perturb the
structured information in conversation. Here we in-
troduce three types of noise strategies based on the
conversation structures into the forward process:

Soft-Masking Action Words For soft-masking
action words, we only add noise to the action words
wi in the prototype conversation in order to perturb
the action information. These action words are the
words that appear in the action triples extracted
from the prototype conversation using OpenIE 3

(Angeli et al., 2015; Chen and Yang, 2021b). At
step t, we add a small amount of Gaussian noise to
the action words wi in the prototype conversation:

qa(wi,t+1|wi,t) = N(wi,t+1;
√
(1− βt)wi,t, βtI)

(1)

where βt is the amount of noise added at step t.

Soft-Masking Utterances For soft-masking ut-
terances, we only add noise to all the words wi in

2Here we choose three types of widely used structures
but future work can extend this to incorporate other types of
conversation structures.

3https://github.com/philipperemy/
Stanford-OpenIE-Python
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one utterance u in the prototype conversation so
that the dialogue acts of the utterance are perturbed.
The utterance to mask is consistent for all the steps
for one prototype conversation, while we randomly
reselect the utterance to mask in different epochs.
At step t, we add a small amount of Gaussian noise
to all the words wi in the utterance u:

qu(wi,t+1|wi,t) = N(wi,t+1;
√
(1− βt)wi,t, βtI)

(2)

Shuffling Discourse Relations We further ran-
domly switch the positions of two random utter-
ances ui and uj in the conversation to perturb the
discourse relations in the prototype conversation.
At step t, we randomly shuffle X0:

qr(Xt+1|Xt) = Shuffle(Xt) (3)

In practice, we apply these three types of noises
at the same time at every diffusion step t to model
q(Xt+1|Xt). Note that the forward process does
not contain any trainable parameters.

4.2.3 Diffusion Process
After corrupting the hidden representations of the
prototype conversation X0 to latent variables X1:T ,
we then gradually denoise XT to X̂0 through diffu-
sion steps, X̂t−1 = p(X̂t|θ), where θ is the learned
parameter to model the state transition. In practice,
the transition is modeled by transformers. After
every diffusion step t ∈ (0, T ], we minimize the
cross entropy between the predicted conversation
from X̂t−1 and the ground truth conversation Cg:

Lt = CE(f(X̂t−1), Cg; θ), t ∈ (0, T ] (4)

To generate desired conversation in a more
controlled way, we incorporate three levels of
conversation-structured information introduced in
Section 4.2.1 to control the generation and we de-
scribe each of them in detail below.

Action Triples By incorporating action triples
information, the conversation could include more
details with diverse desired actions/events from the
token-level. During training, we first extract such
action triples A = {a0, ..., am} from the ground
truth conversation Cg using OpenIE, where ai is
a “(WHO, DOING, WHAT)” triple. We then rep-
resent every triple ai ∈ A with the average of the
output embeddings from the above F (.). In order
to encourage the generated conversation to describe
the given actions triples, after every diffusion step

X̂t−1 = p(X̂t|θ), t ∈ (ta, T ], we also minimize
the sum of cosine distances between the average
of every token’s representation in X̂t−1 and every
action triple’s representation:

La
t =

∑

i

||avg(X̂t−1), F (ai)||cos, t ∈ (ta, T ]

(5)

Dialogue Acts Editing the generated conversa-
tion with the desired dialogue acts information
could encourage the generated conversation to
be more diverse and more like human from the
utterance-level (Allen and Core, 1997; Sacks et al.,
1978). During training, we first extract the dialogue
acts D = {d0, ..., dm} in every ground truth con-
versation Cg with a learned linear dialogue acts
classifier 4, where di is a one-hot vector that indi-
cates the dialogue act for i-th utterance. We sum
them up to represent the dialogue acts distribution
in the ground truth conversation, d̂ =

∑
i di.

In order to encourage the generated conversa-
tion to include utterances with the given dialogue
acts, we force the generated conversation to have
the same dialogue acts distribution with the ground
truth conversation. Specifically, after every diffu-
sion step, X̂t−1 = p(X̂t|θ), t ∈ (td, ta], we first
predict the dialogue acts Dt−1 = {dt−1

0 , ..., dt−1
n }

for every utterance in X̂t−1 with the learned classi-
fier, where dt−1

i is the predicted vector that includes
the probabilities of the i-th utterance is classified
as different dialogue acts. We sum the predictions
d̂t−1 =

∑
i d

t−1
i , where the j-th element in d̂t−1

denotes the total number j-type utterance in the
conversation. We then minimize the L2 distance
between the ground-truth distribution and the pre-
dicted distribution from the generated conversation:

Ld
t = ||d̂, d̂t−1||2, t ∈ (td, ta] (6)

Discourse Relations Controlling the generated
conversation with the discourse relation informa-
tion would encourage the utterances in it to be more
related, leading to a more coherent conversation
from a conversation level. During training, we first
pre-train a discourse parsing model on a human-
annotated multiparty dialogue corpus (Asher et al.,
2016b) following (Shi and Huang, 2018). 5. Via

4We use the hidden representations from the above F (.)
as inputs and we achieve the accuracy with 81.6% on Switch-
board corpus, which is comparable to the state-of-the-art re-
sults (Raheja and Tetreault, 2019).

5We treat the hidden representations from F (.) as the input.
We achieve 0.781 F1 score on link predictions and 0.575 F1
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Dataset # Turns |Conv| |Sum|

SAMSum 10.8 129.6 23.4

DialogSum 9.8 131.0 23.6

Table 1: Data statistics of SAMSum and DialogSum
including the average number of turns and words in the
conversations and summaries.

this parser, we extract the discourse relation matrix
M ∈ Rm×m×k from the ground truth conversation,
where m is the number of utterances and k is the to-
tal number of different discourse relations. We sum
the matrix in the first two dimensions to represent
the discourse relation distribution in the ground
truth conversation: r̂ =

∑
i

∑
j Mi,j,k, where the

l-th element in r̂ means the total number of l-th
discourse relation in the conversation.

We regularize the generated conversation to have
the same discourse relation distribution with the
ground truth conversation. After every diffusion
step, X̂t−1 = p(X̂t|θ), t ∈ (0, td], we first pre-
dict the discourse relation matrix Mt−1 ∈ Rn×n×k

with the pre-trained parser. We also sum Mt in
the first two dimensions r̂t−1 =

∑
i

∑
j Mi,j,k

and minimize the L2 distance between it and the
ground-truth distribution:

Lr
t = ||r̂, r̂t−1||2, t ∈ (0, td] (7)

Objectives In practice, we sequentially use all
three conversation structures, from lower levels to
higher levels, i.e., action triples → dialogue acts →
discourse relations. The order is selected through
an ablation study (in Section 5.4). During training,
we minimize the loss:

L =

T∑

t=1

Lt +

T∑

t=ta

La
t +

ta∑

t=td

Ld
t +

td∑

t=1

Lr
t (8)

5 Experiments

5.1 Datasets and Baselines

We perform experiments on two widely-used
datasets, SAMSum (Gliwa et al., 2019) and Di-
alogSum (Chen et al., 2021), as shown in Table 1.
They are originally introduced for conversation
summarization, which contains open-domain real-
life daily conversations with human written sum-
maries. In this work, we reverse the datasets where

score on relation classifications, which are comparable to the
state-of-the-art results (Shi and Huang, 2018).

we utilize the summary as input and learn the gener-
ation model to generate the long conversation. Dur-
ing pre-processing, we add a special token (“<s>”)
to indicate the begging of every utterance. We trun-
cate the conversation into 800 tokens.

We compare our Diffuse-CG framework with
several baselines:

• BART-base (Lewis et al., 2020): We use
BART-base as our backbone model. The input
only contains the summary.

• BART-Concat: We improve pure BART by
directly concatenating controlling information
including the action triples, dialogue acts and
discourse relations to the end of the input sum-
mary.

• Diffuse-CG-Con: We use a framework simi-
lar to our Diffuse-CG while the different lev-
els of information are combined concurrently
instead of sequentially.

5.2 Experimental Setting
We initialize the prototype conversation genera-
tion model with BART-base and learn the model
for 20 epochs with 3e-5 learning rate, and 0.15
warm-up ratio. The batch size is 4. For the Diffuse-
CG, we utilize a 4-layer transformer whose hid-
den dimension is 512 to model p(.|θ). We set the
diffusion steps to be T = 500 (ta = 300 and
td = 100, which means that we use 300 steps
for action triples, 100 steps for dialogue acts, and
100 steps for discourse relations). We follow (Li
et al., 2022b) to use an sqrt schedule in the forward
process. The learning rate is set to be 3e-4 with
a 0.1 warm-up ratio. The batch size is 4 and we
train Diffuse-CG for 200k iterations. During in-
ference, the beam size is set to 4. We perform all
the experiments on 4 NVIDIA V100 GPUs. For
diffuse-CG, the training takes around 4.8 hours,
and the inference speed is 1.4second per dialogue
generation.

5.3 Results
Automatic Evaluation We first evaluated all the
models with:

• ROUGE scores (Lin and Och, 2004) measure
the n-gram overlap between the generated con-
versation and the ground-truth conversation.

• Action coverage rate, Dialogue acts coverage
rate, discourse Relation coverage measure the
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Model Control R-1 R-2 R-L A Cov. D Cov. R Cov. LM score Length

BART - 33.15 12.35 23.60 18.9 37.5 11.3 71.23 53.28

BART-Concat a + d + r 35.32 13.38 24.75 31.5 55.5 14.9 68.14 81.36
Diffuse-CG-Con a + d + r 38.32 17.15 26.55 33.1 72.4 23.8 69.16 83.12

Diffuse-CG †

a 38.12 18.45 27.38 38.2 56.3 15.1 67.76 82.42
d 36.82 12.11 25.92 24.7 76.6 16.4 70.28 73.29
r 37.33 15.92 24.73 20.6 68.8 27.1 69.37 78.18

a → d 38.76 19.16 27.46 37.1 77.9 21.8 67.43 85.34
a → d → r 40.54 19.43 28.57 36.0 75.3 27.4 66.15 90.38

Table 2: ROUGE-1 (↑), ROUGE-2 (↑), ROUGE-L (↑) scores, Action coverage rate (↑), Dialogue acts coverage rate
(↑), discourse Relation coverage rate (↑), language model scores (↓) and the length (↑) of the generated conversation
for different models on the SAMSum Corpus test set. † means our model and the extra information is added in an
order of action triples, dialogue acts, and discourse relations.

Model Control R-1 R-2 R-L A Cov. D Cov. R Cov. LM score Length

BART - 32.15 11.43 22.42 17.5 32.7 10.1 74.23 48.46

BART-Concat a + d + r 32.32 14.23 23.55 30.2 51.2 16.8 70.44 83.14
Diffuse-CG-Con a + d + r 34.52 15.18 23.22 32.0 70.8 21.6 72.16 80.34

Diffuse-CG †
a 36.56 15.45 27.38 37.2 58.3 15.1 71.84 82.32

a → d 37.39 17.32 26.46 36.1 76.9 21.8 69.53 83.34
a → d → r 39.84 18.23 27.57 35.0 75.3 25.4 68.45 84.23

Table 3: ROUGE-1 (↑), ROUGE-2 (↑), ROUGE-L (↑) scores, Action coverage rate (↑), Dialogue acts coverage rate
(↑), discourse Relation coverage rate (↑), language model scores (↓) and the length (↑) of the generated conversation
for different models on the DialogSum Corpus test set.

Model Coh. Flu. Fac.

BART 3.44 1.58 1.66
BART-Concat 2.89 2.17 2.14

Diffuse-CG-Con 2.43 3.88 3.52
Diffuse-CG † 1.34 1.46 1.54

Table 4: The average ranking every method receives in
terms of Coherency, Fluency, Factualness from human
evaluation (lower is better). † means our method.

coverage rate of the actions triples, dialogue
acts, and discourse relations in the generated
conversation compared to the ground-truth
conversation.

• LM score measure the fluency by computing
the perplexity from a GPT-2 pre-trained on
SAMSum and DialogSum.

• Length measures the length of the generated
conversation.

As shown in Table 2 and Table 3, we find that
after adding the controlling structured information
directly to the input, BART-Concat is generating
better conversations compared to naive BART. This
shows that our introduced conversation-structured

guidance can help conversation generation by pro-
viding effective information. By applying the dif-
fusion process, Diffuse-CG-Con and Diffuse-CG
further consistently improve the performances (e.g.,
8%/28%/7% improvements in ROUGE scores),
which shows the effectiveness of our introduced
controllable conversation generation framework.
Because it makes better use of both the input sum-
mary and the controlling signals by first generating
the prototype conversation and then further enrich-
ing it with the extra information using a diffusion
process, which prevents the distraction from differ-
ent information. Among different noise and con-
trol signals, the soft-masking action words noise
and action triples diffusion worked the best, fol-
lowed by shuffling discourse relations with dis-
course diffusion and then soft-masking utterances
noise with dialogue acts diffusion. Compared to the
concurrent way, our sequential Diffuse-CG works
the best, indicating that editing the long conver-
sation with a suitable order (from token levels to
utterance levels and to conversation levels) is im-
portant. By gradually incorporating different levels
of structure, the overall performances are improv-
ing (e.g., the ROUGE scores are increasing from
38.12/18.45/27.38 to 40.54/19.43/28.57), suggest-
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Noise R-1 R-2 R-L A Cov. D Cov.e R Cov. LM score Length

Gaussian 33.14 14.24 23.45 34.3 70.4 23.3 75.13 75.46
Linguistic-informed † 40.54 19.43 28.57 36.0 75.3 27.4 66.15 90.38

Table 5: ROUGE-1 (↑), ROUGE-2 (↑), ROUGE-L (↑) scores, Action coverage rate (↑), Dialogue acts coverage rate
(↑), discourse Relation coverage rate (↑), language model scores (↓) and the length (↑) of the generated conversation
for different noise strategy in Diffuse-CG on the SAMSum Corpus test set. † means our noise strategy.

Control Orders R-1 R-2 R-L A Cov. D Cov. R Cov. LM score Length

a → d → r † 39.84 18.23 27.57 35.0 75.3 25.4 68.45 84.23
a → r → d 37.18 16.34 24.33 34.2 76.0 24.3 70.13 82.48
d → a → r 35.87 14.11 25.92 33.9 73.0 24.8 71.53 82.34
d → r → a 36.84 14.24 23.38 34.1 72.6 23.1 72.45 80.58
r → a → d 37.14 15.38 25.45 33.5 75.0 26.0 70.18 80.38
r → d → a 38.42 16.87 26.88 31.8 74.3 25.5 69.15 78.33

Table 6: ROUGE-1 (↑), ROUGE-2 (↑), ROUGE-L (↑) scores, Action coverage rate (↑), Dialogue acts coverage rate
(↑), discourse Relation coverage rate (↑), language model scores (↓) and the length (↑) of the generated conversation
for different orders in Diffuse-CG on the DialogSum Corpus test set. † means the best order.

ing that the sequential diffusion steps can edit the
prototype conversation to higher qualities step by
step, and all the introduced structures are making
contributions.

Human Evaluation We conduct a human evalu-
ation to evaluate the generated conversations quali-
tatively. We ask Amazon Mechanical Turk to rank
the quality of 100 generated conversations (ran-
domly sampled) from a given summary with 4 dif-
ferent models. Specifically, we ask them to rank
them in terms of Coherency (the generated con-
versation is logical and consistent), Fluency (the
generated conversation is reader-friendly) and Fac-
tualness (the generated conversation is not chang-
ing the fact from the given short descriptions). To
increase annotation quality, we require turkers to
have a 98% approval rate with over 10,000 ap-
proved tasks for their previous work. The pay rate
was 0.5$ per hit. The rank for every summary was
aggregated by majority voting. The Intra-Class Cor-
relation (ICC1k) was 0.511, indicating moderate
agreement (Koo and Li, 2016)). The average rank
is shown in Table 4. Our Diffuse-CG achieves the
best average rankings, indicating the effectiveness
of incorporating conversation structures.

5.4 Ablation Study

This part describes our ablation studies on how
our introduced linguistic-informed noises and the
diffusion orders affect the model performances.

Noise Strategy We first visualize the perfor-
mances of Diffuse-CG with different types of noise

strategy in Table 5. Gaussian Noise adds Gaussian
noise to all the tokens in the prototype conversation
in the forward process, following previous work
(Li et al., 2022b), while our introduced Linguistic-
informed Noise only adds Gaussian noise to action
words and random utterance as well as shuffling
the conversations. Our introduced noise shows sig-
nificantly better performances on SAMSum test set,
indicating that our introduced noise strategy which
considers the conversation structures is providing
more appropriate perturbation to the prototype con-
versation for the diffusion process. This is because
our strategy could provide flexibility to edit the
prototype conversation as well as preserve the prior
knowledge in the prototype conversation.

Diffusion Orders In terms of the impact of dif-
ferent orders to add different structured informa-
tion during the diffusion process, as shown in Ta-
ble 6, we find that the best overall performance
is achieved by the order: action triples → dia-
logue acts → discourse relations, from a lower level
(token/action level) to higher level (conversation-
level). This might be because, in this structured
order, more specific information can be introduced
at the early stages when the conversations are more
flexible to adopt a large amount of detailed informa-
tion. When the conversation has enough informa-
tion, it is then more effective to operate at a higher
level like the relations between different utterances.
This also indicates the effectiveness of structured
ordering in general, especially when there are mul-
tiple levels of controlling information.

7245



Figure 2: An example of the generated conversation from every stage in our Diffuse-CG: the prototype conversation,
the edited conversations after the action triples diffusion, the dialogue acts diffusion, and the discourse relation
diffusion. The colors indicate the edits based on the provided controlling information.

5.5 Case Study
We further visualize the intermediate outputs in the
diffusion process of our Diffuse-CG to interpret the
generation process in Figure 2. As it shows, the
prototype conversation is short and coarse. When
the action information is incorporated through the
first diffusion stage, the conversation is enriched
by more specific action information like “Amanda
text Larry”. After the dialogue act diffusion stage,
the conversation is further modified to have utter-
ance with dialogue acts like backchannel (“Urgh.
All right”). At last, with the discourse relation in-
formation being utilized, the conversation is more
interactive and coherent with more intra-utterance
relations like QA pairs. These coarse-to-fine steps
show how Diffuse-CG is editing and generating
better and longer conversations over time.

6 Conclusion

In this work, we introduce a novel controllable
conversation generation framework that utilizes dif-
ferent levels of conversation structures to generate
long and coherent conversations based on a given
short description. Specifically, we first generate
the prototype conversation and then enrich it with
structure information like action triples, dialogue
acts, and discourse relations, together with novel
linguistic-informed noises for further adapting dif-
fusion models to generate conversations. Experi-
ments on SAMSum and DialogSum show the effec-
tiveness of our framework by significantly improv-
ing over the baselines. Our proposed method also

provides interpretability of how the model is grad-
ually generating longer and better conversations.

7 Limitation

In this work, we mainly leverage control guidance
such as action triples, dialogue acts, and discourse
relations in structured forms that are extracted au-
tomatically from the corpus for training. We en-
courage future work to explore how to incorporate
control information in natural language forms (for
example, the natural language descriptions of the
action information instead of triples). We also com-
pose multiple modules (like the prototype genera-
tion, discourse classifier, etc.) to generate the final
conversation which might lead to a larger error cas-
cade if there is some early noise. So future work
might explore how to make the pipeline learned in
an end-to-end manner. What’s more, we mainly
focus on using three major conversation structures
to help the entire conversation generation, future
work might continue to explore other types of lin-
guistic and human knowledge to further improve
the conversation generation qualities.

Acknowledgements

We thank members of John Thickstun, the SALT
Lab, and reviewers for their helpful feedback. This
work was supported in part by an Amazon Faculty
Research Award and an NSF grant IIS-2247357.

7246



References

Tosin Adewumi, Foteini Liwicki, and Marcus Liwicki.
2022. State-of-the-art in open-domain conversational
ai: A survey.

James Allen and Mark Core. 1997. Draft of DAMSL:
Dialog act markup in several layers. Unpublished
manuscript.

Gabor Angeli, Melvin Jose Johnson Premkumar, and
Christopher D. Manning. 2015. Leveraging linguis-
tic structure for open domain information extraction.
In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 344–354,
Beijing, China. Association for Computational Lin-
guistics.

Nicholas Asher, Julie Hunter, Mathieu Morey, Bena-
mara Farah, and Stergos Afantenos. 2016a. Dis-
course structure and dialogue acts in multiparty dia-
logue: the stac corpus. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC’16), pages 2721–2727.

Nicholas Asher, Julie Hunter, Mathieu Morey, Bena-
mara Farah, and Stergos Afantenos. 2016b. Dis-
course structure and dialogue acts in multiparty dia-
logue: the STAC corpus. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC’16), pages 2721–2727, Por-
torož, Slovenia. European Language Resources As-
sociation (ELRA).

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel
Tarlow, and Rianne van den Berg. 2021. Structured
denoising diffusion models in discrete state-spaces.

Hengyi Cai, Hongshen Chen, Yonghao Song, Xiaofang
Zhao, and Dawei Yin. 2020. Exemplar guided neural
dialogue generation. In International Joint Confer-
ence on Artificial Intelligence.

Eugene Charniak. 1972. Toward a model of children”s
story comprehension. Technical report, USA.

Jiaao Chen and Diyi Yang. 2021a. Simple conversa-
tional data augmentation for semi-supervised abstrac-
tive dialogue summarization. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 6605–6616, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Jiaao Chen and Diyi Yang. 2021b. Structure-aware ab-
stractive conversation summarization via discourse
and action graphs. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1380–1391, Online. As-
sociation for Computational Linguistics.

Yulong Chen, Yang Liu, Liang Chen, and Yue Zhang.
2021. DialogSum: A real-life scenario dialogue sum-
marization dataset. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 5062–5074, Online. Association for Computa-
tional Linguistics.

Sander Dieleman, Laurent Sartran, Arman Roshan-
nai, Nikolay Savinov, Yaroslav Ganin, Pierre H.
Richemond, Arnaud Doucet, Robin Strudel, Chris
Dyer, Conor Durkan, Curtis Hawthorne, Rémi
Leblond, Will Grathwohl, and Jonas Adler. 2022.
Continuous diffusion for categorical data.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation.

Xiachong Feng, Xiaocheng Feng, Bing Qin, and Ting
Liu. 2020. Incorporating commonsense knowl-
edge into abstractive dialogue summarization via
heterogeneous graph networks. arXiv preprint
arXiv:2010.10044.

James Paul Gee. 2014. An introduction to discourse
analysis: Theory and method. Routledge.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Alek-
sander Wawer. 2019. SAMSum corpus: A human-
annotated dialogue dataset for abstractive summa-
rization. In Proceedings of the 2nd Workshop on
New Frontiers in Summarization, pages 70–79, Hong
Kong, China. Association for Computational Linguis-
tics.

Seraphina Goldfarb-Tarrant, Tuhin Chakrabarty, Ralph
Weischedel, and Nanyun Peng. 2020. Content plan-
ning for neural story generation with aristotelian
rescoring. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 4319–4338, Online. Association for
Computational Linguistics.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu,
and Lingpeng Kong. 2022. Diffuseq: Sequence to
sequence text generation with diffusion models.

Jian Guan, Xiaoxi Mao, Changjie Fan, Zitao Liu, Wen-
biao Ding, and Minlie Huang. 2021. Long text gener-
ation by modeling sentence-level and discourse-level
coherence.

Jian Guan, Zhenyu Yang, Rongsheng Zhang, Zhipeng
Hu, and Minlie Huang. 2022. Generating coherent
narratives by learning dynamic and discrete entity
states with a contrastive framework.

Chulaka Gunasekara, Guy Feigenblat, Benjamin Szna-
jder, Sachindra Joshi, and David Konopnicki. 2021.
Summary grounded conversation generation. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 3748–3756, Online.
Association for Computational Linguistics.

Prakhar Gupta, Jeffrey Bigham, Yulia Tsvetkov, and
Amy Pavel. 2021. Controlling dialogue generation
with semantic exemplars. In Proceedings of the 2021

7247

https://doi.org/10.48550/ARXIV.2205.00965
https://doi.org/10.48550/ARXIV.2205.00965
https://doi.org/10.3115/v1/P15-1034
https://doi.org/10.3115/v1/P15-1034
https://aclanthology.org/L16-1432
https://aclanthology.org/L16-1432
https://aclanthology.org/L16-1432
https://doi.org/10.48550/ARXIV.2107.03006
https://doi.org/10.48550/ARXIV.2107.03006
https://doi.org/10.18653/v1/2021.emnlp-main.530
https://doi.org/10.18653/v1/2021.emnlp-main.530
https://doi.org/10.18653/v1/2021.emnlp-main.530
https://doi.org/10.18653/v1/2021.naacl-main.109
https://doi.org/10.18653/v1/2021.naacl-main.109
https://doi.org/10.18653/v1/2021.naacl-main.109
https://doi.org/10.18653/v1/2021.findings-acl.449
https://doi.org/10.18653/v1/2021.findings-acl.449
https://doi.org/10.48550/ARXIV.2211.15089
https://doi.org/10.48550/ARXIV.1805.04833
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/2020.emnlp-main.351
https://doi.org/10.18653/v1/2020.emnlp-main.351
https://doi.org/10.18653/v1/2020.emnlp-main.351
https://doi.org/10.48550/ARXIV.2210.08933
https://doi.org/10.48550/ARXIV.2210.08933
https://doi.org/10.48550/ARXIV.2105.08963
https://doi.org/10.48550/ARXIV.2105.08963
https://doi.org/10.48550/ARXIV.2105.08963
https://doi.org/10.48550/ARXIV.2208.03985
https://doi.org/10.48550/ARXIV.2208.03985
https://doi.org/10.48550/ARXIV.2208.03985
https://doi.org/10.18653/v1/2021.findings-acl.329
https://doi.org/10.18653/v1/2021.naacl-main.240
https://doi.org/10.18653/v1/2021.naacl-main.240


Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 3018–3029, Online.
Association for Computational Linguistics.

Zhengfu He, Tianxiang Sun, Kuanning Wang, Xuan-
jing Huang, and Xipeng Qiu. 2022. Diffusionbert:
Improving generative masked language models with
diffusion models.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. De-
noising diffusion probabilistic models.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini,
Patrick Forré, and Max Welling. 2021. Argmax flows
and multinomial diffusion: Learning categorical dis-
tributions.

Changzhen Ji, Yating Zhang, Xiaozhong Liu, Adam Ja-
towt, Changlong Sun, Conghui Zhu, and Tiejun Zhao.
2021. A neural conversation generation model via
equivalent shared memory investigation. In Proceed-
ings of the 30th ACM International Conference on
Information &amp Knowledge Management. ACM.

Paul A Kirschner, Simon J Buckingham-Shum, and
Chad S Carr. 2012. Visualizing argumentation: Soft-
ware tools for collaborative and educational sense-
making. Springer Science & Business Media.

Terry K Koo and Mae Y Li. 2016. A guideline of
selecting and reporting intraclass correlation coeffi-
cients for reliability research. Journal of chiropractic
medicine, 15(2):155–163.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015.
A hierarchical neural autoencoder for paragraphs and
documents.

Qintong Li, Piji Li, Wei Bi, Zhaochun Ren, Yuxuan Lai,
and Lingpeng Kong. 2022a. Event transition plan-
ning for open-ended text generation. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 3412–3426, Dublin, Ireland. Association
for Computational Linguistics.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani,
Percy Liang, and Tatsunori B. Hashimoto. 2022b.
Diffusion-lm improves controllable text generation.

Chin-Yew Lin and Franz Josef Och. 2004. Auto-
matic evaluation of machine translation quality using
longest common subsequence and skip-bigram statis-
tics. In Proceedings of the 42nd Annual Meeting on
Association for Computational Linguistics, page 605.
Association for Computational Linguistics.

Phillip Lippe, Pengjie Ren, Hinda Haned, Bart Voorn,
and Maarten de Rijke. 2020. Diversifying task-
oriented dialogue response generation with prototype
guided paraphrasing.

Qian Liu, Yihong Chen, Bei Chen, Jian-Guang Lou,
Zixuan Chen, Bin Zhou, and Dongmei Zhang. 2020.
You impress me: Dialogue generation via mutual
persona perception.

Vipul Raheja and Joel Tetreault. 2019. Dialogue Act
Classification with Context-Aware Self-Attention. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 3727–3733,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Ramya Ramakrishnan, Hashan Narangodage, Mauro
Schilman, Kilian Weinberger, and Ryan McDon-
ald. 2022. Long-term control for dialogue gener-
ation: Methods and evaluation. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 738–753, Seattle,
United States. Association for Computational Lin-
guistics.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey
Chu, and Mark Chen. 2022. Hierarchical text-
conditional image generation with clip latents.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. 2022. High-
resolution image synthesis with latent diffusion mod-
els. In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 10674–
10685.

Harvey Sacks, Emanuel A Schegloff, and Gail Jefferson.
1978. A simplest systematics for the organization
of turn taking for conversation. In Studies in the
organization of conversational interaction, pages 7–
55. Elsevier.

Sougata Saha, Souvik Das, and Rohini Srihari. 2022.
Stylistic response generation by controlling personal-
ity traits and intent. In Proceedings of the 4th Work-
shop on NLP for Conversational AI, pages 197–211,
Dublin, Ireland. Association for Computational Lin-
guistics.

Zhihong Shao, Minlie Huang, Jiangtao Wen, Wenfei Xu,
and Xiaoyan Zhu. 2019. Long and diverse text gen-
eration with planning-based hierarchical variational
model. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3257–3268, Hong Kong, China. Association for Com-
putational Linguistics.

Zhouxing Shi and Minlie Huang. 2018. A deep se-
quential model for discourse parsing on multi-party
dialogues.

7248

https://doi.org/10.48550/ARXIV.2211.15029
https://doi.org/10.48550/ARXIV.2211.15029
https://doi.org/10.48550/ARXIV.2211.15029
https://doi.org/10.48550/ARXIV.2006.11239
https://doi.org/10.48550/ARXIV.2006.11239
https://doi.org/10.48550/ARXIV.2102.05379
https://doi.org/10.48550/ARXIV.2102.05379
https://doi.org/10.48550/ARXIV.2102.05379
https://doi.org/10.1145/3459637.3482407
https://doi.org/10.1145/3459637.3482407
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.48550/ARXIV.1506.01057
https://doi.org/10.48550/ARXIV.1506.01057
https://doi.org/10.18653/v1/2022.findings-acl.269
https://doi.org/10.18653/v1/2022.findings-acl.269
https://doi.org/10.48550/ARXIV.2205.14217
https://doi.org/10.48550/ARXIV.2008.03391
https://doi.org/10.48550/ARXIV.2008.03391
https://doi.org/10.48550/ARXIV.2008.03391
https://doi.org/10.48550/ARXIV.2004.05388
https://doi.org/10.48550/ARXIV.2004.05388
https://doi.org/10.18653/v1/N19-1373
https://doi.org/10.18653/v1/N19-1373
https://doi.org/10.18653/v1/2022.naacl-main.54
https://doi.org/10.18653/v1/2022.naacl-main.54
https://doi.org/10.48550/ARXIV.2204.06125
https://doi.org/10.48550/ARXIV.2204.06125
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.18653/v1/2022.nlp4convai-1.16
https://doi.org/10.18653/v1/2022.nlp4convai-1.16
https://doi.org/10.18653/v1/D19-1321
https://doi.org/10.18653/v1/D19-1321
https://doi.org/10.18653/v1/D19-1321
https://doi.org/10.48550/ARXIV.1812.00176
https://doi.org/10.48550/ARXIV.1812.00176
https://doi.org/10.48550/ARXIV.1812.00176


Jascha Sohl-Dickstein, Eric Weiss, Niru Mah-
eswaranathan, and Surya Ganguli. 2015. Deep un-
supervised learning using nonequilibrium thermody-
namics. In Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Pro-
ceedings of Machine Learning Research, pages 2256–
2265, Lille, France. PMLR.

Jiaming Song, Chenlin Meng, and Stefano Ermon. 2021.
Denoising diffusion implicit models. In International
Conference on Learning Representations.

Matthew Stone, Una Stojnic, and Ernest Lepore. 2013.
Situated utterances and discourse relations. In Pro-
ceedings of the 10th International Conference on
Computational Semantics (IWCS 2013)–Short Pa-
pers, pages 390–396.

Bowen Tan, Zichao Yang, Maruan AI-Shedivat, Eric P.
Xing, and Zhiting Hu. 2020. Progressive generation
of long text with pretrained language models.

Thomas Wolf, Victor Sanh, Julien Chaumond, and
Clement Delangue. 2019. Transfertransfo: A transfer
learning approach for neural network based conver-
sational agents.

Peng Xu, Mostofa Patwary, Mohammad Shoeybi, Raul
Puri, Pascale Fung, Anima Anandkumar, and Bryan
Catanzaro. 2020. MEGATRON-CNTRL: Control-
lable story generation with external knowledge using
large-scale language models. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2831–2845,
Online. Association for Computational Linguistics.

Kevin Yang, Yuandong Tian, Nanyun Peng, and Dan
Klein. 2022. Re3: Generating longer stories with
recursive reprompting and revision.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen,
Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing
Liu, and Bill Dolan. 2020. DIALOGPT : Large-scale
generative pre-training for conversational response
generation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 270–278, Online. As-
sociation for Computational Linguistics.

7249

https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://openreview.net/forum?id=St1giarCHLP
https://doi.org/10.48550/ARXIV.2006.15720
https://doi.org/10.48550/ARXIV.2006.15720
https://doi.org/10.48550/ARXIV.1901.08149
https://doi.org/10.48550/ARXIV.1901.08149
https://doi.org/10.48550/ARXIV.1901.08149
https://doi.org/10.18653/v1/2020.emnlp-main.226
https://doi.org/10.18653/v1/2020.emnlp-main.226
https://doi.org/10.18653/v1/2020.emnlp-main.226
https://doi.org/10.48550/ARXIV.2210.06774
https://doi.org/10.48550/ARXIV.2210.06774
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30


ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Section 6

� A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B � Did you use or create scientific artifacts?
Not applicable. Left blank.

� B1. Did you cite the creators of artifacts you used?
No response.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
No response.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C �3 Did you run computational experiments?
Section 4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 4
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�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 4

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 4

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Section 4

�3 D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Section 4

�3 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Section 4

�3 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Section 4

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.
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