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Abstract

Despite becoming a prevailing paradigm for
organizing knowledge, most knowledge graphs
(KGs) suffer from the low-resource issue due
to the deficiency of data sources. The enrich-
ment of KGs by automatic knowledge graph
completion is impeded by the intrinsic long-tail
property of KGs. In spite of their prosperity,
existing few-shot learning-based models have
difficulty alleviating the impact of the long-
tail issue on low-resource KGs because of the
lack of training tasks. To tackle the challeng-
ing long-tail issue on low-resource KG com-
pletion, in this paper, we propose a novel few-
shot low-resource knowledge graph completion
framework, which is composed of three com-
ponents, i.e., few-shot learner, task generator,
and task selector. The key idea is to generate
and then select the beneficial few-shot tasks
that complement the current tasks and enable
the optimization of the few-shot learner using
the selected few-shot tasks. Extensive experi-
ments conducted on several real-world knowl-
edge graphs validate the effectiveness of our
proposed method.

1 Introduction

Recent years have witnessed a rapidly increas-
ing amount of research attention and industry de-
mand on knowledge graphs (KGs), which organize
knowledge in the form of triples and have been
playing a crucial role in many knowledge-intensive
applications, such as question answering (Zhang
et al., 2018), recommendation systems (Guo et al.,
2020), and dialogue systems (Yang et al., 2020).

Despite the fact that several large-scale KGs,
such as NELL (Mitchell et al., 2018) and Freebase
(Bollacker et al., 2008), have been well-developed
for organizing general knowledge, most of the ex-
isting KGs are built for domain-specific knowledge
using domain-specific data sources. These KGs
inevitably suffer from the low-resource issue, i.e.,

*Equal contribution.

the incompleteness in terms of entities, relations,
and triples that exist in the real world but are absent
in KGs, caused by the deficiency of data sources, es-
pecially those in non-global languages. For exam-
ple, the number of articles in Norwegian Wikipedia
is 10 times less than that in English Wikipedia1. A
KG built using Norwegian Wikipedia would have
a severer incompleteness issue compared with the
KG extracted from English Wikipedia.

Although automatic KG completion (KGC)
(Zhang et al., 2020c; Kazemi and Poole, 2018; Bor-
des et al., 2013; Tang et al., 2022) has empowered
the discovery of more triples to enrich KGs, it is
far from perfect to enrich low-resource KGs due
to the difficulty in the discovery that stems from
the relations associated with missing triples and
varies with the change of relation frequency. Since
most KGs generally follow long-tail distribution
(Xiong et al., 2018; Zhang et al., 2020a; Nguyen
et al., 2018), where a large fraction of relations
have only a few triples, the existence of rare rela-
tions on low-resource KGs leads to dramatic per-
formance degradation on the discovery of missing
triples and impede the development of an effective
completion model. A line of efforts (Xiong et al.,
2018; Zhang et al., 2020a; Chen et al., 2019; Lv
et al., 2019) attempt to improve the capability of
inference on rare relations by formulating the KG
completion problem into a few-shot learning frame-
work and exploiting inference models for frequent
relations to facilitate inference on rare relations.
Such kind of methods require abundant training
tasks to ease the effect of memorization and im-
prove the generalization (Rajendran et al., 2020).
However, low-resource KGs do not always have
adequate training tasks for mimicking the few-shot
learning scenarios of rare relations. For example,
the Greek KG (Chen et al., 2020) used in exper-
iments only contains 21 training tasks, as many
relations are unknown or cannot offer triples for

1https://en.wikipedia.org/wiki/List_of_Wikipedias
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training task construction. Therefore, the few-shot
KG completion models tend to overfit on the scarce
tasks and engender unsatisfactory results.

Motivated by the above-discussed limitation on
low-resource KGs, we propose to generate new
few-shot tasks to augment current tasks for eas-
ing the impact of memorization and improving
the generalization. Although straightforward, the
materialization of this idea is non-trivial due to two
crucial challenges. The first challenge (C1) is to de-
sign an effective strategy to generate new few-shot
tasks. A few-shot task is formed as a set of pairs
corresponding to the same relation, each of which
includes two entities, i.e., head entity and tail entity.
On the one hand, the discrete nature of tasks to
generate hinders the harness of prevailing genera-
tive models. On the other hand, the generation of
few-shot tasks with novel relations is arduous due
to the lack of related data samples. If possible to
generate, the second challenge (C2) is to ensure the
authenticity of generated few-shot tasks. The gener-
ated tasks ineluctably consist of noisy tasks which
cannot represent the designated relation and would
be detrimental to few-shot learning. Thus, how to
select beneficial tasks is an essential problem.

In this paper, we propose a novel few-shot
low-resource KG completion framework with re-
inforced task generation, named FLow-KGC, to
promote the KG completion on rare relations in
low-resource KGs. Specifically, we formulate KG
completion into a few-shot learning framework and
train a simple yet effective few-shot learner to learn
representations for rare relations with a small sup-
port set. The learned representation can be fur-
ther used for inference. To address challenge C1,
we represent few-shot tasks in a latent continuous
space and then build a task generator in this la-
tent space, rather than generating original discrete
structure samples. Then the generated tasks can
be utilized to update the few-shot learner. To select
beneficial synthetic few-shot tasks and tackle chal-
lenge (C2), we design an adaptive task selector,
which makes decisions on keeping or discarding
generated tasks and receives feedback from the
few-shot learner and conducts optimization using
reinforcement learning. The task generator and
task selector collaboratively complete the process
of task generation. These three components, i.e.,
few-shot learner, task generator, and task selector,
constitute our proposed method FLow-KGC and
can be updated in an alternative optimization way.

Overall, our contributions in this work include:
(1) We study the crucial few-shot KG completion
on low-resource KGs and propose a novel model
called FLow-KGC to mitigate the impact of the
long-tail problem on completion tasks.
(2) We design a task generator to create synthetic
few-shot tasks and a task selector to achieve adap-
tive beneficial task selection, in order to improve
the generalization of the few-shot learner.
(3) We perform extensive experiments on several
real-world low-resource KGs. The experimental re-
sults show the superior performance of FLow-KGC
over the state-of-the-art with significant improve-
ment in few-shot low-resource KG completion.

2 Related Work

2.1 Knowledge Graph Completion

Early efforts address KGC by designing algorithms
based on rule learning (Galárraga et al., 2015) to
discover logical rules from KGs for facilitating in-
ductive link prediction. Nowadays, the prevailing
learning paradigm for KG completion tasks (Zhang
et al., 2020c) is to learn the distributed representa-
tion of entities and relations in KGs. These meth-
ods roughly fall into three categories (Bonner et al.,
2021): 1) Tensor decomposition methods, such
as SimplE (Kazemi and Poole, 2018), RESCAL
(Nickel et al., 2012), and ComplEx (Trouillon et al.,
2017). 2) Geometric methods, such as TransE (Bor-
des et al., 2013), RotatE (Sun et al., 2018b), and
CrossE (Zhang et al., 2019). 3) Deep learning meth-
ods (Nguyen et al., 2018; Dettmers et al., 2018;
Vashishth et al., 2020). However, these methods
fail to handle the long-tail problem of KG com-
pletion and suffer from performance degradation
of prediction on rare relations. A recent approach
(Zhang et al., 2020b) attempts to alleviate this is-
sue, but it requires a relatively large set of triples
for rare relations and is incapable of handling the
few-shot scenario. Recently, a few works (Chen
et al., 2020; Zhou et al., 2021) design strategies
to assist the KG completion by leveraging com-
plementary knowledge from other related KGs in
different languages (Chen et al., 2020; Conneau
et al., 2020; Zhou et al., 2021). Although effective,
they only rely on cross-lingual links (Chen et al.,
2017; Sun et al., 2018a; Pei et al., 2019a; Cao et al.,
2019; Pei et al., 2019b, 2020) and cannot handle
new relations or rare relations with few triples.

7253



2.2 Few-shot Knowledge Graph Completion

With the goal to overcome the shortcoming of
canonical KG completion methods (Kazemi and
Poole, 2018; Bordes et al., 2013; Nguyen et al.,
2018) on inferring the missing triples associated
with rare relations, several few-shot KG completion
(FSKGC) algorithms have been developed for im-
proving completion performance on rare relations.
Recent attempts (Xiong et al., 2018; Zhang et al.,
2020a; Chen et al., 2019; Lv et al., 2019) on few-
shot KG completion formulate the problem into a
few-shot learning framework and propose metric-
based approaches (Xiong et al., 2018; Zhang et al.,
2020a; Sheng et al., 2020; Niu et al., 2021) and
meta-learning-based approaches (Chen et al., 2019;
Lv et al., 2019). Yet these few-shot KG completion
models require plenty of training tasks to train a
few-shot learner and cannot generalize well to rare
relations in low-resource KGs due to the deficiency
of relations and corresponding tasks.

3 Problem Formulation

A knowledge graph G can be denoted as G =
(E ,R, T P), where E refers to the set of entities
andR denotes the set of relations, and T P is rep-
resented as a set of triples {(h, r, t)} ⊆ E ×R×E ,
each of which includes a head entity h, a relation r,
and a tail entity t. The KG completion problem is
to infer the most plausible missing triples from the
candidate set {(h, r, t)|t ∈ E ∧ (h, r, t) /∈ T P} for
each incomplete triple (h, r, ?) (or inferring from
{(h, r, t)|h ∈ E ∧ (h, r, t) /∈ T P} for (?, r, t)).

In our few-shot low-resource KGC problem, the
majority of relations have a few training triples.
Formally, for a rare relation ri, there are a sup-
port set Si = {(h, t)|(h, ri, t) ∈ T P} including
only |S| training triples. The task is to pre-
dict the tail entity for a query triple (h, ri, ?),
i.e., ranking all tail entity candidates such that
the true tail entity t is ranked higher than other
candidates in Ch,ri , which is defined as Ch,ri =
{tc|tc ∈ E ∧ (h, ri, tc) /∈ T P}. Following the no-
tations in meta-learning, a few-shot task with K =
|S| triples is called K-shot KG completion. Since
this K for a rare relation ri is often small (e.g.,
less than 10), the learning problem is organized
by working on meta-tasks Ti = {Si,Qi}, where a
query set Qi = {(h, t, Ch,ri)|(h, ri, t) ∈ T P}.

In the meta-training stage, there are a set of few-
shot tasks Ttrain = {Ti}Mi=1, where each task Ti
represents a relation ri ∈ Rtrain. A few-shot learn-

ing model can be optimized using meta-training
tasks following the meta-learning principle (Finn
et al., 2017). In the meta-testing stage, with a set
of testing tasks Ttest = {Tj}Jj=1, the model should
make inferences on new relation rj ∈ Rtest cor-
responding to task Tj . Note that all relations that
appear in the meta-testing tasks are unseen during
meta-training, i.e.,Rtrain ∩Rtest = ϕ.

Low-resource KGs suffer from severer incom-
pleteness issue and consist of fewer relations. Due
to the long-tail distribution of these relations, there
are only a small number of relations with a high
frequency qualified to offer triples for task construc-
tion, leading to insufficient Ttrain. Our proposed
solution enriches Ttrain by generating and select-
ing beneficial new tasks for virtual relations which
are undiscovered and not present in KGs.

4 The Proposed Method

In this section, we introduce the proposed method
FLow-KGC, describe each component in detail,
and elaborate on the optimization and inference,
following the overview shown in Figure 1.

4.1 Few-shot Learner
A few-shot learner is a basic yet essential com-
ponent in few-shot learning for generalizing a in-
ference model over rare relations with only a few
triples. In particular, the few-shot learner should be
able to learn accurate representation for rare rela-
tions using a small support set, then the learned rep-
resentation will be applied for subsequent inference.
We adopt a simple few-shot learner based on meta-
learning (Chen et al., 2019) to learn representation
for relations. Specifically, given a meta-training
task Ti with support set Si and its corresponding
relation ri ∈ Rtrain, a few-shot learner FS(·) aims
to generate a representation for ri by taking entities
in associated triples as input. The representation of
ri can be obtained by the following:

rTi =

∑|Si|
k=1 FS(ehk ⊕ etk)

|Si|
, (1)

where (hk, tk) denotes the k-th pair in Si, ehk and
etk are embeddings for entity hk and tk, and rTi
refers to the learned representation of relation ri.
x⊕y denotes the concatenation of the embedding x
and y. The few-shot learner FS(·) is implemented
by an L-layers fully connected neural network.

After obtaining the representation rTi of relation
ri, we measure if rTi can well represent relation
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Figure 1: An overview of the FLow-KGC model. (1) The few-shot learner learns the representation for relations
based on given meta-tasks. (2) The task generator estimates the latent distribution of meta-tasks and generates
synthetic tasks. (3) The task selector makes decisions on keeping or discarding generated tasks and feeds them to
update the few-shot learner. Then feedback from the few-shot learner can guide the optimization of the task selector.

ri by a score function fs(·) and define the meta-
training loss on support set Si as follow:

LSi =

|Si|∑

k=1

[γ + f s(hk, ri, tk)− fs(hk, ri, tn)]+,

(2)
where fs(·) is based on TransE (Bordes et al.,
2013) algorithm and measures the plausibil-
ity of triple (hk, ri, tk) by fs(hk, ri, tk) =
||ehk + rTi − etk ||. fs(hk, ri, tn) is the
score for negative sample (hk, tn) sampled from
{(hk, t′)|t′ ∈ E ∪ (hk, ri, t

′) /∈ T P}. And γ is a
predefined margin parameter. Then a fast update
on rTi can be conducted to obtain a more accurate
representation of relations and works as follows:

r̂Ti = rTi − β∇rTi
LSi , (3)

where β is the step size of the gradient updates.
Next, the updated relation representation r̂Ti is

exploited to measure the plausibility of triples in
the query set Qi with a score function f q(·) de-
fined by f q(hz, ri, tz) = ||ehz + r̂Ti −etz ||, where
(hz, tz) denotes the z-th pair in Qi. Then the loss
function for updating few-shot learner FS(·) on the
query set Qi is defined as follows:

LQi =

|Qi|∑

z=1

[γ + f q(hz, ri, tz)− f q(hz, ri, tc)]+,

(4)
where tc ∈ Chz ,ri is a tail entity candidate.

Lastly, the few-shot learner is optimized on all

meta-training tasks as follows:

LFS =

|Ttrain|∑

i=1

LQi . (5)

4.2 Task Generator

The few-shot learner on low-resource KGs suffer-
ing from the deficiency of training tasks tends to
overfit and memorize the given tasks and lacks
generalization ability. We thus target to generate
few-shot tasks to complement the meta-training set.
In particular, We design a task generator in a task
representation space, rather than generating new
tasks in the original discrete format.

4.2.1 Task Representation
We build the representation of a task based on the
entities involved in the task. Specifically, for a task
Ti with a support set Si and a query set Qi, we
denote the representations of Si and Qi as Si ∈
RK×2d and Qi ∈ RZ×2d, which are obtained by:

Si = SHi ⊕ STi

Qi = QHi ⊕QTi,
(6)

where SHi ∈ RK×d denotes the representation ma-
trix of head entities in support set Si and is obtained
by SHi = eh1 ⊕ ...⊕ ehK . d is the dimension of
embeddings. Similarly, STi ∈ RK×d refers to the
representation matrix of tail entities in support set
Si and is obtained by STi = et1 ⊕ ... ⊕ etK . K
denotes the size of the support set. The representa-
tion of Qi can be acquired in the same way. QHi

7255



and QTi represent the head entities and tail enti-
ties in Qi, respectively. Z denotes the size of the
query set. With obtained Si and Qi, a task Ti can
be represented by Ti ∈ R(K+Z)×2d as follow:

Ti = Si ⊕Qi. (7)

4.2.2 Conditional Variational Autoencoder
With learned task representations and the aim to
generate meta-tasks, we expect to estimate the un-
derlying posterior distribution p(·|T, r) of meta-
tasks with given relations for task generation by
sampling. Due to the intractability of this posterior
distribution, we employ a conditional variational
autoencoder (CVAE) (Sohn et al., 2015) to circum-
vent the direct posterior estimation and generate
meta-tasks with relations as a conditional variable.

Encoder. The encoder takes the representation
T of a task T with its corresponding relation r as
input data and aims to construct a latent distribution
qϕ(z|T, r) to describe the distribution of meta tasks
related to relation r, which is represented by the
mean µ and standard deviation σ, and z is a sample
drawn from the distribution. µ and σ are learned by
two separate linear function fµ and fσ as follows:

µ = fµ(MLPenc(Concat(T, r))) (8)

σ = fσ(MLPenc(Concat(T, r))), (9)

where fµ(x) = Wµx+ bµ and fσ(x) = Wσx+
bσ, MLPenc(·) is an L-layer fully connected neu-
ral network, Concat(, ) is a concatenation operator,
which first squeezes T to a vector T′ ∈ R2(K+Z)·d

then concatenates T′ and a one-hot vector or (rep-
resenting the ID of relation r). Here we assume
there are V virtual relations representing undiscov-
ered but existent relations in the real world. These
virtual relations will have generated meta-tasks. A
relation r then can be represented as a one-hot vec-
tor or ∈ R(|Rtrain|+V ) to denote its ID.

Decoder. The decoder is to reconstruct the input
representation T with the learned µ and σ, which
defines the latent distribution of the given relation
r. Given µ and σ, we can sample a latent variable z
from the constructed space N (µ, σ). Yet the sam-
pling operator makes the model non-differentiable
and unable to calculate the gradient. Therefore,
we adopt the reparameterization trick (Kingma and
Welling, 2014) to solve this issue, which works
by z = µ + σ ⊙ ϵ, where ϵ ∼ N (0, I) and ⊙ de-
notes the element-wise multiplication. The recon-
struction should involve the relation information

because the reconstructed task representation is a
relation-specific representation. With the sampled
z, the decoder can be denoted as pθ(T|z, r) and
the reconstruction process is defined as follow:

T̃′ = MLPdec(z⊕ or), (10)

where MLPdec(·) is an L-layer fully connected
neural network and T̃′ ∈ R2(K+Z)·d denotes the
reconstructed representation of task T .

With the encoder and decoder, we can define
the reconstruction loss to minimize the variational
lower bound by:

LCVAE = −KL(qϕ(z|T, r)||pθ(z|r))+
E[log pθ(T|z, r)],

(11)

where the first term is a KL-divergence loss which
can be rewritten as −KL(qϕ(z|T, r)||pθ(z|r)) =

−1
2

∑M
i=1(−σi + exp(σi) + µ2i − 1) by letting

the prior distribution pθ(z|r) be N (0, I), and the
second term is the reconstruction loss defined as
E[log pθ(T|z, r)] =

∑M
i=1 ||T̃′ −T′||22.

4.2.3 Task Generation
With the designed CVAE, we can generate meta-
tasks that are related to a relation. We generate
tasks for virtual relations that refer to undiscovered
relations, which would improve the diversity of
tasks and enhance the generalization of the few-
shot learner. Note that we do not generate tasks
for known relations, because the key issue in low-
resource KGC is the absence of representative tasks
for a large portion of unknown relations, and those
known relations without sufficient triples for meta-
task construction. Specifically, given a virtual re-
lation rv, its one-hot vector representation can be
obtained, which is denoted as ov. Then we can
sample a latent variable zv from the prior distri-
bution pθ(z|r) ∼ N (0, I). With the sampled zv
and one-hot vector ov, according to Eq.(10), the
well-trained decoder can be employed to generate
the representation T̃′

v for the task corresponding to
relation rv. Then the vector T̃′

v can be unsqueezed
as T̃v ∈ R(K+Z)×2d, which is further decomposed
as four matrices S̃Hv ∈ RK×d, S̃Tv ∈ RK×d,
Q̃Hv ∈ RZ×d, and Q̃Tv ∈ RZ×d standing for the
generated representations of head and tail entities
in a support set and a query set. And the four matri-
ces form a task T̃v =

{
S̃Hv, S̃Tv, Q̃Hv, Q̃Tv

}
.

The generation process can be repeated multiple
times to obtain a set of tasks for a relation, which
will be further exploited in the meta-training.
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4.3 Task Selector
The generated meta-tasks are leveraged in the meta-
training stage with the desire to ease overfitting
and improve generalization. However, these tasks
inevitably comprise noisy meta-tasks, which can-
not represent the corresponding relation well, and
would mislead learning of the few-shot learner. To
alleviate the adverse impact of noisy tasks, we de-
sign a task selector to select beneficial meta-tasks
to promote the training of the few-shot learner.
Specifically, given a set of generated meta-tasks
TGEN =

{
T̃1, ..., T̃N

}
, where N denotes the num-

ber of tasks, the task selector learns to generate
a score to measure the authenticity of a task and
decide the beneficial tasks used for meta-training.
For a task T̃i, the score is calculated as follows:

s(T̃i) =
1

K

K∑

j=1

MLPrs(ehj + rT̃i − etj ), (12)

where MLPrs(·|ψ) is an L-layer fully connected
neural network with an output dimension as 1 and
parameterized by ψ. Here rT̃i is obtained using

S̃Hi and S̃Ti following Eq.(1), ehj denotes the
embedding of i-th head entity in S̃Hi and etj is
the embedding of i-th tail entity in S̃Ti. For better
exploration, the task selector adopts a stochastic
policy π to make the choice on meta-tasks under
the categorical distribution p = Cat(·|TGEN ). The
probability p(T̃i) of selecting task T̃i is calculated
by p(T̃i) = s(T̃i)/

∑N
i=1 s(T̃i).

With the obtained sampling probabilities, we
can select B meta-tasks from TGEN . Then meta-
training of few-shot learner FS(·) can be conducted
following Eq.(1) to Eq.(4) using the selected B
meta-tasks. Hence the few-shot learner is opti-
mized on B generated meta-tasks as follows:

L
F̃S

=
B∑

i=1

LQ̃i
, (13)

where LQ̃i
denotes the loss on generated query set.

To motivate the task selector towards the selec-
tion of precise meta-tasks, we evaluate the task
selector with feedback signals from the few-shot
learner, which reflect the effectiveness of meta-
tasks for training the few-shot learner. Specifically,
we denote ΦOLD as the parameters of the current
few-shot learner and ΦNEW as the parameters after
the few-shot learner undertakes a temporary up-
date with Eq.(13). Leveraging FS(·|ΦOLD) and

Table 1: Statistics of used Datasets.

KGs FR ES JA EL
#Entities 13,176 12,382 11,805 5,231
#Relations 178 144 128 111
#Triples 49,015 54,066 28,774 13,839
#Meta-training Tasks 25 30 24 21
#Meta-validation Tasks 5 5 4 4
#Meta-testing Tasks 10 10 8 8

FS(·|ΦNEW) and following Eq.(1) to Eq.(4), the
reward R is defined as follows:

R = tanh(
1

|Tval|

|Tval|∑

i=1

LOLD
Qi
− LNEW

Qi
), (14)

where LOLD
Qi

and LNEW
Qi

are loss functions, defined
in Eq.(5) with meta-validation tasks and obtained
with FS(·|ΦOLD) and FS(·|ΦNEW) respectively.

Thereby performance improvement with ΦNEW

against ΦOLD will reward the task selector and re-
inforce it to choose corresponding meta-tasks. To
optimize the selector, we adopt the policy gradi-
ent algorithm REINFORCE (Williams, 1992) to
overcome the issue of non-differentiability of the
sampling process. The optimization works by:

ψ ← ψ − α▽ψ log πψ(R− b), (15)

where we use π with a slight abuse of notation to
denote the task selector parameterized by ψ and α
is the learning rate. Besides, b denotes a baseline
function, e.g., the moving average of the reward,
for reducing computational variance.

4.4 Optimization and Inference
We employ the iterative optimization strategy to op-
timize three components in the proposed method,
i.e., few-shot learner, task generator, and task selec-
tor. With the pre-trained representation for entities,
the task generator is first optimized to generate
meta-tasks TGEN , then the task selector is applied
to conduct selection on TGEN , next the few-shot
learner can be optimized using selected meta-tasks
and given meta-tasks Ttrain. With the obtained re-
ward R, we can update the task selector according
to Eq.(15). The whole process is repeated with
enough iterations until all components converge.

In the inference stage, we use the optimized few-
shot learner to make inferences on new relations in
meta-testing set Ttest. Similar to the meta-training
stage, FS(·) can learn relation representation using
the support set in Ttest for a new relation. Then the
generated representation is leveraged to evaluate
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the test triples in the query set. Note that FS(·) is
not updated by using the query set anymore in the
meta-testing stage.

5 Experiments

5.1 Experimental Settings

Dataset. We adopt a multilingual KG dataset
(Chen et al., 2020) for evaluation. Specifically,
we select four different language-specific KGs ex-
tracted from French (FR), Spanish (ES), Japanese
(JA) and Greek (EL) DBpedia (Lehmann et al.,
2015) as low-resource KGs, as they only have a
small number of frequent relations that can offer
triples for training task construction. Table 1 shows
the statistics of used datasets.

Baselines. To validate the effectiveness of our
method, we compare our method with two groups
of baseline methods. The first group consists of
canonical KG completion models including TransE
(Bordes et al., 2013), DistMult (Yang et al., 2015),
ComplEx (Trouillon et al., 2017), SimplE (Kazemi
and Poole, 2018), and WRAN (Zhang et al., 2020b).
The second group is the few-shot KG completion
models, including GMatching (Xiong et al., 2018),
FSRL (Zhang et al., 2020a), MetaR (Chen et al.,
2019), and GANA (Niu et al., 2021).

Implementation. We implement the proposed
method using the Python library Pytorch and con-
duct all the experiments on an NVIDIA GeForce
RTX 3090Ti. Following the popular setting (Zhang
et al., 2020a; Xiong et al., 2018), we remove all the
relations in Ttrain and Ttest from KG G and obtain
a background knowledge graph for pre-training the
KG embedding leveraging DistMult (Yang et al.,
2015) as the KG encoder. After that, the pre-trained
embeddings of entities and relations can be used in
the proposed method. Following the popular pro-
cedure and the setting in the related works (Zhang
et al., 2020a; Xiong et al., 2018), we extract the
few-shot learning tasks and divide them into the
meta-training, meta-validation, and meta-testing
tasks. Specifically, we select the relations with less
than 500 but more than 50 triples for preparing
the few-shot learning tasks following the popular
setting (Zhang et al., 2020a; Xiong et al., 2018).
Note that even though the meta-testing tasks in-
clude relations with more than 50 triples, we only
sample K = 1 or K = 3 triples as the support set
during the meta-testing phase and adopt the rest for
evaluation to imitate the real few-shot scenario.

For the few-shot learner, we use three-layer MLP
to implement FS(·) with LeakyReLU as the acti-
vation function. The hidden units of each layer in
FS(·) are set as 500, 200, and 100, respectively.
And we set the margin parameter γ as 1.0 and set
the step size β as 5.0. For the task generator, we
use two-layer MLP to implement MLPenc(·) and
MLPdec(·) with ReLU as the activation function.
The hidden units of each layer in MLPenc(·) are
set as 512, and 256, respectively. And the hidden
units of each layer in MLPdec(·) are set as 256,
and 512, respectively. Besides, we use a linear
layer to implement fµ(·) and fσ(·) with the layer
size as 256. For the task selector, we use two-layer
MLP to implement MLPrs(·) with LeakyReLU as
the activation function. The hidden units of each
layer in MLPrs(·) are set as 100, and 50, respec-
tively. The dimension of entity embedding is set
as 100 for all methods. Besides, we also find the
optimal parameters or follow the original paper to
achieve the best performance for baseline methods.
Note that all triples in the background KGs and
the meta-training tasks, as well as all triples corre-
sponding to entity pairs in the support set of meta-
validation and meta-testing tasks, should be used
to train the canonical KG completion models. For
optimization, we employ Adam optimizer to opti-
mize all loss functions with a learning rate of 0.001.
The model trained on the meta-training tasks can
be used for the meta-validation tasks every 1000
epochs, and the model parameters and correspond-
ing performance will be recorded. Then the model
with the best performance on MRR can be used as
the final model for meta-testing. Besides, we use
early stopping with 30 patient epochs during meta-
training. Following the previous work, we report
the Hits@1, Hits@5, Hits@10, and MRR (mean
reciprocal rank) results to evaluate the performance
of few-shot KG completion. Each evaluation is
repeated 3 times and averaged results are reported.

5.2 Experimental Results

Performance comparison. The results of all
evaluated KG completion models on four differ-
ent low-resource KGs with K = 1 and K = 3
are shown in Table 2. We can observe that (1)
the proposed method FLow-KGC has superior per-
formance over canonical KG completion models
and few-shot KG completion models by Hits@1,
Hits@5, Hits@10, and MRR; (2) The long-tail
problem of low-resource KGs has a significant im-
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Table 2: Few-shot KG completion comparison on low-resource KGs. The few-shot size K = 1 and K = 3. The
best results are in bold, and the strongest baseline is indicated with *.

(a) The few-shot size K = 1.

KGs ES (Spanish) EL (Greek) FR (French) JA (Japanese)

Methods MRR Hits@1 Hits@5 Hits@10 MRR Hits@1 Hits@5 Hits@10 MRR Hits@1 Hits@5 Hits@10 MRR Hits@1 Hits@5 Hits@10

TransE 0.068 0.003 0.127 0.191 0.043 0.001 0.078 0.124 0.078 0.001 0.159 0.213 0.103 0.008 0.211 0.271
DistMult 0.051 0.019 0.055 0.108 0.059 0.029 0.077 0.116 0.035 0.008 0.045 0.081 0.065 0.008 0.103 0.161
ComplEx 0.089 0.040 0.124 0.188 0.162 0.105 0.217 0.263 0.075 0.036 0.106 0.163 0.091 0.037 0.135 0.188
SimplE 0.048 0.017 0.054 0.111 0.059 0.02 0.093 0.132 0.029 0.006 0.036 0.068 0.076 0.018 0.111 0.21
WRAN 0.105 0.035 0.165 0.224 0.084 0.053 0.117 0.242 0.097 0.018 0.162 0.223 0.096 0.042 0.135 0.206

GMatching 0.186 0.153 0.248 0.289 0.212 0.146 0.297 0.329 0.168 0.125 0.203 0.274 0.162 0.143 0.258 0.278
GANA 0.195 0.167 0.254 0.265 0.202 0.162 0.294 0.324 0.172 0.128 0.216 0.273 0.167 0.081 0.268* 0.288
FSRL 0.223 0.176 0.265 0.298 0.245 0.176 0.305* 0.347* 0.183 0.145 0.239 0.304 0.194 0.165 0.263 0.297*
MetaR 0.242* 0.194* 0.285* 0.317* 0.247* 0.199* 0.284 0.338 0.210* 0.158* 0.256* 0.315* 0.227* 0.186* 0.264 0.285

FLow-KGC 0.271 0.221 0.311 0.354 0.267 0.210 0.326 0.375 0.240 0.185 0.282 0.348 0.234 0.189 0.278 0.315
Improv. (%) 11.98 13.92 9.12 11.67 8.10 5.52 6.88 8.07 14.28 17.08 10.15 10.47 3.08 1.61 5.30 10.52

(b) The few-shot size K = 3.

KGs ES (Spanish) EL (Greek) FR (French) JA (Japanese)

Methods MRR Hits@1 Hits@5 Hits@10 MRR Hits@1 Hits@5 Hits@10 MRR Hits@1 Hits@5 Hits@10 MRR Hits@1 Hits@5 Hits@10

TransE 0.072 0.003 0.142 0.199 0.081 0.001 0.163 0.228 0.098 0.001 0.202 0.258 0.09 0.007 0.174 0.235
DistMult 0.076 0.028 0.102 0.163 0.149 0.087 0.205 0.272 0.064 0.02 0.089 0.156 0.142 0.074 0.197 0.266
ComplEx 0.114 0.097 0.147 0.235 0.164 0.096 0.237 0.305 0.139 0.076 0.206 0.261 0.137 0.069 0.217 0.27
SimplE 0.008 0.098 0.118 0.178 0.134 0.069 0.207 0.274 0.058 0.017 0.081 0.145 0.103 0.039 0.158 0.254
WRAN 0.125 0.069 0.174 0.241 0.168 0.082 0.213 0.267 0.125 0.089 0.223 0.244 0.146 0.083 0.187 0.256

GMatching 0.201 0.164 0.252 0.309 0.226 0.164 0.272 0.347 0.175 0.138 0.226 0.292 0.186 0.152 0.263 0.307
GANA 0.206 0.173 0.242 0.252 0.265* 0.208* 0.307 0.389* 0.203 0.158* 0.251* 0.312* 0.151 0.093 0.246 0.310
FSRL 0.234 0.185 0.281 0.327 0.257 0.203 0.310* 0.384 0.182 0.143 0.246 0.284 0.205 0.162 0.269 0.335*
MetaR 0.247* 0.199* 0.297* 0.332* 0.252 0.197 0.302 0.365 0.205* 0.154 0.246 0.297 0.224* 0.167* 0.285* 0.320

FLow-KGC 0.275 0.227 0.320 0.348 0.270 0.217 0.323 0.421 0.223 0.164 0.283 0.345 0.248 0.199 0.292 0.341
Improv. (%) 11.33 14.07 7.74 4.82 1.88 4.32 4.19 8.22 8.78 3.79 12.74 10.57 10.71 19.16 2.45 1.79

pact on canonical KG completion models, such as
TransE, DisMult, ComplEx, and SimplE, which
have dramatic performance degradation when in-
ferring the missing triples associated with rare rela-
tions; (3) Few-shot KG completion models make
progress in improving the inference by pre-training
on similar tasks to learn better initialization for rare
relations. However, their performance is confined
by the deficiency of training tasks; (4) The supe-
rior results of FLow-KGC show the effectiveness
of leveraging generated meta-tasks to mitigate the
influence of the long-tail problem on low-resource
KG completion and improve the generalization.

Ablation study. To gain deeper insight into the
effectiveness of each component in the proposed
model, we conduct ablation studies by comparing
the following variants with FLow-KGC: (1) FLow-
KGC-FSL that only keeps a few-shot learner and
does not adopt the task generator and task selec-
tor. (2) FLow-KGC-w/o-S that adopts the few-shot
learner to learn representation and task generator
to generate tasks, without the adaptive selection
enabled by the task selector. The results on French
(FR) and Greek (EL) KG are summarized in Ta-

Table 3: Results of ablation study.

FR MRR Hits@1 Hits@5 Hits@10

FLow-KGC-FSL 0.208 0.160 0.256 0.312

FLow-KGC-w/o-S 0.231 0.179 0.276 0.337

FLow-KGC 0.240 0.185 0.282 0.348

EL MRR Hits@1 Hits@5 Hits@10

FLow-KGC-FSL 0.245 0.198 0.285 0.334

FLow-KGC-w/o-S 0.262 0.205 0.314 0.367

FLow-KGC 0.267 0.210 0.326 0.375

ble 3, we see that the performance of FLow-KGC-
FSL is interior to that of others because the vari-
ant is a basic few-shot learner and easy to overfit
the small set of training tasks. FLow-KGC-w/o-
S outperforms FLow-KGC-FSL, because the task
generator can generate useful synthetic meta-tasks
which complement the existing tasks and mitigate
the overfitting of the few-shot learner to some ex-
tent. FLow-KGC combining the task generator and
task selector achieves the best performance among
these variants because the task selector distinguish
beneficial tasks from noisy tasks and utilizes the
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Figure 2: Results on Spanish (ES) and Greek (EL) KGs
when varying few-shot size K.
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Figure 3: Results on French (FR) and Spanish (ES)
KGs when varying the # virtual relations (Left) and #
generated tasks for each virtual relation (Right).

selected tasks to learn a better few-shot learner.

Impact of few-shot sizeK. To investigate the im-
pact of few-shot size K on the performance of few-
shot KG completion, we test MetaR, GANA, and
FLow-KGC with size K = 1, 3, 5, 7, 9 on Span-
ish (ES) and Greek (EL) KGs. Figure 2 shows
Hits@1 results of three methods with different K.
We see that FLow-KGC consistently outperforms
the other two baseline methods with different sizes
K, demonstrating the effectiveness of the proposed
method. And the performance of all methods gains
improvement with K increasing because the larger
support set provides more entity pairs to optimize
the few-shot learner and learn more accurate repre-
sentations for rare relations.

Impact of the number of synthetic tasks. The
number of virtual relations V and the number of
generated tasks Nv for each virtual relation are
hyper-parameters to decide the number of synthetic
tasks. Figure 3 shows MRR results of FLow-KGC
with different V and Nv on French (FR) and Span-
ish (ES) KGs. First, with a fixed Nv = 20 for
French KG and a fixed Nv = 25 for Spanish KG,
we find that FLow-KGC has superior performance
when V = 10. Second, with a fixed V = 10,
FLow-KGC with Nv = 20 and Nv = 25 performs
best for French KG and Spanish KG, respectively.
We think the reasons behind the observations are
similar. A small V or Nv cannot effectively com-
plement the current tasks, and a larger V or Nv,
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Figure 4: Results on Spanish (ES) and Japanese (JA)
when varying the proportion of task selection.

might introduce more noisy tasks and damage the
performance of the few-shot learner.

Impact of the proportion of task selection.
FLow-KGC selects B beneficial tasks from the
generated tasks to achieve the adaptive selection.
Here we denote the selection proportion as B

V×Nv
.

To evaluate the impact of the proportion of task
selection, we evaluate FLow-KGC with selection
proportion 10%, 30%, 50%, 70%, 90%. Figure
4 shows the results on two KGs (ES and JA). We
find that FLow-KGC with a selection proportion
of 50% achieves the best performance. We think
that a larger proportion unavoidably introduces
more noisy tasks into the meta-training phase and
a smaller proportion discards extra beneficial tasks,
which hurts the effectiveness of FLow-KGC.

6 Conclusion

In this paper, we proposed a novel few-shot KG
completion model to ease the adverse impact of
the long-tail issue on low-resource KG completion.
Specifically, we designed a task generator based on
a conditional variational autoencoder to generate
synthetic meta-tasks and proposed a task selector to
adaptively select beneficial meta-tasks for optimiz-
ing a few-shot learner, which further provides the
feedback to update the task selector following the
principle of reinforcement learning. These three
components constitute our method FLow-KGC. Ex-
tensive experimental results demonstrate the ratio-
nality and effectiveness of our proposed method.

Limitations

Despite achieving superior performance, our pro-
posed method requires manual selection for hyper-
parameters to decide the number of tasks, i.e., the
number of virtual relations V and the number of
synthetic tasks Nv for each virtual relation. In fu-
ture work, we target developing the method with
automatic adjustment to add/remove virtual rela-
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tions and the corresponding tasks according to the
status of the few-shot learner with the training go-
ing on by curriculum learning. Besides, although
we adopt a task selector to adaptively select benefi-
cial tasks, it is still inevitable to bring noisy tasks
in the meta-training stage. We will explore the
strategy to achieve better denoising.
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