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Abstract

The task of incomplete utterance rewriting has
recently gotten much attention. Previous mod-
els struggled to extract information from the di-
alogue context, as evidenced by the low restora-
tion scores. To address this issue, we propose
a novel sequence tagging-based model, which
is more adept at extracting information from
context. Meanwhile, we introduce speaker-
aware embedding to model speaker variation.
Experiments on multiple public datasets show
that our model achieves optimal results on all
nine restoration scores while having other met-
ric scores comparable to previous state-of-the-
art models. Furthermore, benefitting from the
model’s simplicity, our approach outperforms
most previous models on inference speed.

1 Introduction

Recent years have witnessed increasing attention
in dialogue systems mainly due to its promising
potential for applications like virtual assistants or
customer support systems (Hauswald et al., 2015;
Debnath et al., 2018). However, studies (Carbonell,
1983) show that users of dialogue systems tend
to use incomplete utterances which usually omit
(a.k.a. ellipsis) or refer back (a.k.a. co-reference)
to the concepts that appeared in previous dialogue
contexts. (also known as non-sentential utterances,
(Fernández et al., 2005). Thus, dialogue systems
must understand these incomplete utterances to
make appropriate responses.

To tackle the problem, the task of Incomplete
Utterance Rewriting(IUR, also known as context
rewriting) (Su et al., 2019; Pan et al., 2019; El-
gohary et al., 2019), which aims to rewrite an in-
complete utterance into an utterance that is semanti-
cally equivalent but self-contained to be understood
without context, has recently become an increas-
ing focus of NLP research. As depicted in Table
1, the incomplete utterance u3 not only omits the
subject “深圳”(Shenzhen), but also refers to the

Turn Utterance with Translation

u1 (A)
深圳最近天气怎么样？

(How is the recent weather in Shenzhen?)

u2 (B)
最近经常阴天下雨。

(It is always raining recently.)

u3 (A)
冬天就是这样的。
(Winter is like this.)

u′3
深圳冬天就是经常阴天下雨。

(It is always raining in winter Shenzhen.)

Table 1: An example dialogue between speaker A and
B, including the context utterances (u1, u2), the incom-
plete utterance (u3) and the rewritten utterance (u′

3).

semantics of “经常阴天下雨”(always raining) via
the pronoun “这样”(this). The downstream dia-
logue model only needs to take the last utterance by
explicitly recovering the dropped information into
the latest utterance. Thus, the burden of long-range
reasoning can be primarily relieved, making the
downstream dialogue modeling more accurate.

The previous top work on building IUR model
mainly includes generation-based methods and
tagging-based methods. Generation-based solu-
tion (Su et al., 2019; Pan et al., 2019; Elgo-
hary et al., 2019) consider this task as a standard
text-generation problem, adopting a sequence-to-
sequence model with a copy mechanism (Gulcehre
et al., 2016; Gu et al., 2016; See et al., 2017). How-
ever, those methods generate the rewritten utter-
ance from scratch, which introduces an over-large
search space and neglects the critical trait that the
main structure of a rewritten utterance is always
the same as the incomplete utterance.

In order to break through those limitations,
tagging-based approach (Liu et al., 2020; Hao et al.,
2021; Jin et al., 2022; Zhang et al., 2022; Wang
et al., 2022) was proposed. For specifically, here
we consider models like RUN (Liu et al., 2020) as
a tagging-based method. Its semantic segmentation
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Figure 1: The illustration of the main learning task of
the sequence tagging model SGT(Sequential Greedy
Tagging). We adopt the same example dialogue from
Table 1. Considering SGT is position-dependent, and
word order between Chinese and English is different,
the corresponding English utterance is not provided,
which is the same for Figure 3.

task can be analogous to the sequence tagging task.
The main difference is that the semantic segmenta-
tion task is tagging in two-dimensional coordinates,
while the sequence annotation task is tagging in
one-dimensional coordinates.

The previous top tagging-based approach gener-
ally formalizes IUR as learning the edit operation
and corresponding location. The tagging-based
approach enjoys a smaller search space than the
generation-based approach and can better utilize
the information that the main structure of a rewrit-
ten utterance is always the same as the incomplete
utterance.

Despite their success, existing approach that
learning edit operation and the corresponding loca-
tion has difficulty handling situations where multi-
ple inserts correspond to one position. Moreover,
models like RUN adopt a heavy model that takes
ten convolution layers in addition to the BERT en-
coder, which will increase its training time and
slows down its infer speed. More critically, al-
though BERT (Devlin et al., 2019) has shown to be
powerful in extracting information, the generally
low restoration scores prove that previous BERT-
based models are ineffective in extracting the infor-
mation needed for IUR from historical utterances.
Finally, the experimental results of SA-BERT (Gu
et al., 2020) demonstrate that explicitly modeling
speaker changes has a specific enhancement ef-
fect on modeling multi-turn dialogue tasks. The
previous approach did not model this critical infor-
mation.

To address these issues, we propose a novel
sequence tagging model named SGT(Sequential
Greedy Tagging), which is not based on learning
editing operations and can significantly improve

the restoration score and inference speed. Our so-
lution was derived from the following thinking:
First, we consider that in the dialogue process, any
complete utterance is composed by only of a few
fragments. For example, "I love you" includes three
components: subject, verb, and object. Even if it
is expanded with modifications and qualifications,
its composition is still minimal. Based on this
insight, we thought it would be possible to build
a model to identify the fragments and their order
from dialogue history to form a target completed ut-
terance. And then, splice those fragments together
in sequence and get the complete utterance. Mean-
while, in order to keep the number of fragments
constituting the target rewritten utterance relatively
small, we adopt the greedy tagging strategy. Our
model will identify all the fragments and their or-
der required to form a completed utterance; each
fragment is the longest fragment found in the given
order. We might as well call this fragment GLCS
(Greedy Longest Common Subsequence). Specif-
ically, we use the tag type to represent the order
of GLCS for composing the target rewrite utter-
ance, For example, the first GLCS that constitutes
a rewritten utterance would be tagged as A, and the
second is B, the third is C, and so on. In the above
manner, we converted IUR into a simple sequence
tagging task, as illustrated in Figure 1. After the
model has identified all GLCSs from the dialogue
history through this strategy, the target rewritten
utterance can be obtained by splicing each GLCS
in alphabetical order according to its tag.

Furthermore, we introduce speaker-aware em-
bedding to model the speaker changes in different
rounds. Finally, to better perceive the boundaries
of each tagging mention, we add two simple losses
in addition to the sequence labeling loss.

In summary, our contributions are as follows:

1. We proposed SGT, a novel paradigm to model
IUR. Due to the simplicity and effectiveness
of modeling, our approach can fully utilize
the sequence labeling capabilities of BERT
to extract information from historical utter-
ances and thus restore incomplete utterances
with more accuracy. Experiments on several
datasets show that our method significantly
improved the ability to extract mentions from
context, which are argued to be harder to copy
by (Pan et al., 2019).

2. To the best of our knowledge, we are the
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first to introduce speaker-aware embedding
to model IUR.

3. Finally, benefit from the model’s simplicity.
Our inference speed is faster than most previ-
ous models.

2 Related Work

Earlier efforts (Su et al., 2019; Elgohary et al.,
2019) treated dialogue utterance rewriting as a com-
mon text generation problem and integrated seq-to-
seq models with copy mechanisms to model this
task. Later work (Pan et al., 2019; Zhou et al., 2019;
Huang et al., 2021) explore task-specific features
for additional gains in performance. For example,
(Pan et al., 2019) adopt a pipeline-based method.
The idea is to detect keywords first and then ap-
pend those words to the context and adopt a pointer
generator that takes the output of the first step to
produce the output. However, this two-step method
inevitably accumulates errors.

SRL (Xu et al., 2020) trains a semantic labeling
model to highlight the central meaning of keywords
in the dialogue as a sort of prior knowledge for the
model. To obtain an accurate SRL model for dia-
logues, they manually annotate SRL information
for more than 27,000 dialogue turns, which is costly
and time-consuming.

RUN (Liu et al., 2020) convert this task into a
semantic segmentation problem, a significant task
in computer vision. In particular, their model gen-
erates a word-level edit matrix, which contains the
operations of insertion and substitution for each
original utterance. Rather than word embeddings,
RAU (Zhang et al., 2022) directly extracts ellipsis
and co-reference relationships from Transformer’s
self-attention weighting matrix and edits the orig-
inal text accordingly to generate complete utter-
ances. RUN++ (Wang et al., 2022) Introduce con-
trastive learning and keyword detection tasks to
model the problem jointly. Both RAU and RUN++
make significant improvements in most metrics on
several datasets. Although some additional effec-
tive strategies exist. It is still in the same paradigm
as RUN, learning edit matrix by cast IUR as a se-
mantic segmentation task.

RAST (Hao et al., 2021) is the first work to con-
vert dialogue utterance rewriting into a sequence
tagging task. It takes experimentation to prove that
most models for this task suffer from the robust-
ness issue, i.e., performance drops when testing
on a different dataset. By contrast, RAST is more

robust than the previous works on cross-domain
situations. Moreover, this work design additional
reinforcement learning task to improve fluency. De-
spite all these efforts, its overall in-domain per-
formance still lags behind methods that learn edit
operation matric (Liu et al., 2020).

To better enhance pre-trained language models
for multi-turn response selection in retrieval-based
chatbots. A model named Speaker-Aware BERT
(SA-BERT) (Gu et al., 2020) proposed to make the
model aware of the speaker’s changed information,
which is an essential and intrinsic property of multi-
turn dialogues.

Although RAST has a different learning
paradigm from works that learn edit matrix, it still
tries to learn the edit operation and corresponding
location by sequence tagging. As mentioned before,
our method is sequence tagging-based but takes an
entirely new paradigm that would not learn edit op-
erations. Besides, inspired by SA-BERT (Gu et al.,
2020), we introduce speaker embedding to this task.
Finally, we introduce two simple sequence labeling
tasks to model this problem jointly.

3 Methodology

3.1 Task Definition

Here we give the formal definition of how we
model the IUR problem with the SGT approach.
Taking all history utterances H = (U1, U2, ..., Un)
as input, SGT aims to learn a function to rewrite
Un to R: f(H) → R. R is the target rewritten
utterance in the infer stage. In particular, Un is
the last utterance of all history utterances and the
utterance that needs to be rewritten in the IUR task.
R is the reference rewritten utterance Uref in the
training phase and the target rewritten utterance in
the inference phase.

3.2 Model Architecture

Figure 2 shows the overall architecture of our
model.

Contextual Encoder Since pre-trained language
models have been proven to be effective in many
NLP tasks, our experiment employs BERT (Devlin
et al., 2019) to be encoder. For a fair comparison,
we take the same BERT-base encoder as the previ-
ous sota work (e.g., RUN, RAU, RUN++) to repre-
sent each input. Concretely, given input token list
H = (x1, x2, · · · , xM ) which concatenated by all
utterances of dialogue history and inserted a special
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Figure 2: This figure depicts the SGT model’s overall structure, mainly contextual embedding, speaker-aware
embedding, and three linear layers for the SGT main task and two additional tasks, respectively. Among the three
learning tasks, the dark blue part represents the SGT task, the red part represents the GLCS Detection task(GD),
and the green part represents the GLCS Edge Detection task (GED).

token [SEP] between each utterance for separate
utterances in different turns. The BERT encoder is
firstly adopted to represent the input with contextu-
alized embeddings and the calculation of this part
is defined as:

E = (e1, · · · , eM ) = BERT (H) (1)

Speaker Aware Embedding To distinguish ut-
terances between different speakers, our approach
stitches a one-dimensional one-hot vector at the
hidden dimension with the output representation
of the BERT encoder. This design is based on
two considerations. On the one hand, most of the
dialogue in the dataset is back-and-forth conversa-
tions between only two people. On the other hand,
adding speaker embedding at the input layer and
performing domain adaptation like SA-BERT will
make the encoder different from the BERT-based
model, which would contradict the fair compari-
son conditions we assumed earlier in paragraph 3.2.
The calculation of this part is defined as follows::

EA = Concat (Dropout (E) , SA) (2)

In the above equation, E ∈ RM×768 is the out-
put representation from the contextual encoder.
SA ∈ RM×S denotes the speaker-aware embed-
ding. We concatenate E and SA alongside its hid-
den dimension to get EA ∈ RM×(768+S).

Sequential Greedy Tagging Our main task is
sequential greedy tagging, this can be generally

defined as:
Psgt = f(H) (3)

Specifically, H = (x1, x2, · · · , xM ) is the input to-
ken list that concatenated by the dialogue’s history
utterances. The model learns a mapping function f
to predict from H to the token-level sequence label-
ing matrix Psgt ∈ RMXN , where M is the token
number of sequence H , and N is the number of tag
types. The objective function is defined as:

Lsgt =
1

M ×N

M×N∑

i=0

CE
(
P i
sgt, Y

i
sgt

)
(4)

Where Y i
sgt is the target type of the i-th sample at

the token level. CE is the notation of cross-entropy
loss which is the same for both equations 5 and 6.

GLCS Detection and GLCS Edge Detection To
better lock in the span of target GLCS needed to
make up the rewritten utterance, we introduced
multi-task learning.

Firstly, as depicted by the red components on the
right side of Figure 2, the GLCS Detection module
(GD) is a binary classification task to distinguish
whether a token should belong to a target GLCS.
The module GD outputs Pgd ∈ RMX1. LD is
essentially a sequence tagging problem, and the
loss function of the GLCS detection is as follows:

Lgd =
1

M

M∑

i=0

CE
(
P i
gd, Y

i
gd

)
(5)
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Y i
gd is the golden mentions label of the i-th sam-

ple. P i
gd is the predicted mentions label of the i-th

sample.
Secondly, as depicted by the green components

on the right side of Figure 2, the GLCS Edge
Detection module (GED) is a binary classification
task with a structure similar to GD. Specifically, a
target that consists of a single token or only two
tokens will be marked throughout as 1; only tokens
at its start position and end position will be marked
as 1 when more than three tokens, left with the
others as 0. The loss function of the GED is as
follows:

Lged =
1

M

M∑

i=0

CE
(
P i
ged, Y

i
ged

)
(6)

Y i
ged is the golden mentions label of the i-th sam-

ple. P i
ged is the predict mentions label of the i-th

sample.

Final Learning objectives Finally, we combine
all tasks and train them simultaneously by taking
the summation of all loss functions, and the final
loss function is shown below:

Lfinal = Lgd + Lged + Lsgt (7)

3.3 Data Construction

The construction of the training data for the SGT
task is shown in Figure 3. First, in step S1, we make
U

(1)
ref = Uref , then find the LCS between each his-

tory utterance and U1
ref separately. Also, this LCS

needs to satisfy being a prefix of U (1)
ref . After step

S1, we can get the first GLCS “深圳”(Shenzhen),
and we set the label of its corresponding position
to "AA." Then, in step S2, we make U

(2)
ref = (U (2)

ref

remove the prefix “深圳”(Shenzhen)). Perform-
ing the same GLCS search process, we can obtain
the second GLCS “冬天就是”(winter is) and set
its label as "BBBB." Analogously, we can get the
third GLCS “经常阴天下雨”(always cloudy and
raining) and set its label as "CCCCCC" at Step
S3. Finally, the historical utterances are stitched
together as the input of the SGT task. The corre-
sponding labels obtained from steps S1, S2, and S3

are used as the labels of the sequence labeling task.
Points need to be clarified: (i) Granularity The

token sequence is char level for Chinese and word
level for English and numbers, both in the GLCS

S1: Find LCS between each utterance and the prefix of uref
(1)

S2: Find LCS between each utterance and the prefix of uref
(2)

S3: Find LCS between each utterance and the prefix of uref
(3)

ref
(3)

ref
(2)

ref
(2)

ref
(1)u   = u   remove the prefix “深圳”

u   = u   remove the prefix “冬天就是”

u1 深圳最近天气怎么样
A A OOOOOOO

O O OOOOOO

O O OOOO

u2 最近经常阴天下雨

u3 冬天就是这样

uref
(1) 深圳冬天就是经常阴天下雨

u1 深圳最近天气怎么样
A A OOOOOOO

O O OOOOOO

B B OOBB

u2 最近经常阴天下雨

u3 冬天就是这样

uref
(2) 冬天就是经常阴天下雨

S4: Concat each utterance as input and concat each tag as label

input = H

u1 深圳最近天气怎么样
A A OOOOOOO

O O CCCCCC

B B OOBB

u2 最近经常阴天下雨

u3 冬天就是这样

uref
(3) 经常阴天下雨

深圳最近天气怎么样[SEP]最近经常阴天下雨[SEP]冬天就是这样

label

A A O O O O O OOB B B BCCCCCCOOOOOO

Figure 3: This figure depicts how the training data for
the sequence tagging task required by SGT can be gen-
erated from the original dataset’s history utterances and
the reference utterance.
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matching phase of S1, S2, and S3 and in the train-
ing phase of data obtained from S4, which is the
same as RUN; (ii) Duplicate Matching In case of
duplicate matches, e.g., if U1 and U2 have the same
desired GLCS, the principal is the latter, the better.

4 Experiments

In this section, we conduct through experiments to
demonstrate the superiority of our approach.

Datasets We conduct experiments on three pub-
lic datasets across different domains: Chinese
datasets in open-domain dialogues: MULTI (Pan
et al., 2019) and REWRITE (Su et al., 2019) , En-
glish Task-Oriented Dialogue TASK (Quan et al.,
2019). For a fair comparison, We adopt the same
data split for these datasets as our baselines. The
statistics of these datasets are displayed in Table 2.

MULTI REWRITE TASK

Language Chinese Chinese English
Train 194K 18K 2.2K
Dev 5K 2K 0.5K
Test 5K NA NA

Avg. C len 25.5 17.7 52.6
Avg. Q len 8.6 6.5 9.4
Avg. R len 12.4 10.5 11.3

Table 2: Statistics of different datasets. NA means the
development set is also the test set. “Ques” is short for
questions, “Avg” for short for average, “len” for length,
“C” for context utterance, “Q” for current utterance, and
“R” for rewritten utterance.

Baselines To prove the effectiveness of our ap-
proach, we take the State-of-the-art models as
strong baselines including SRL (Xu et al., 2020),
SARG (Huang et al., 2021), PAC (Pan et al., 2019),
RAST (Hao et al., 2021), T-Ptr-λ (Su et al., 2019),
RUN (Liu et al., 2020) and RUN++ (Wang et al.,
2022) .

Evaluation We employ credible automatic met-
rics to evaluate our approach. As in literature (Pan
et al., 2019), we examine SGT using the widely
used automatic metrics BLEU, ROUGE, EM and
Restoration F-score. (i) BLEUn (Bn) evaluates
how similar the rewritten utterances are to the
golden ones via the cumulative n-gram BLEU score
(Papineni et al., 2002). (ii) ROUGEn (Rn) mea-
sures the n-gram overlapping between the rewritten

utterances and the golden ones, while ROUGEL

(RL) measures the longest matching sequence be-
tween them (Lin, 2004). (iii) EM stands for
the exact match accuracy, which is the strictest
evaluation metric. (iv) Restoration Precisionn,
Restoration Recalln and Restoration F-scoren
(Pn, Rn, Fn) emphasize more on words from dia-
logue context which are argued to be harder to copy
(Pan et al., 2019). Therefore, they are calculated on
the collection of n-grams that contain at least one
word from context utterance. As validated by Pan
et al. (2019), above automatic metrics are credible
indicators to reflect the rewrite quality.

Implementation Our implementation was based
on PyTorch (Paszke et al., 2019) and fastNLP
(Xipeng Qiu, 2018). In practice, we adopt the exact
connection words setting with RUN and append
the list of connection words to the head of H , as
part of it. Considering that only two speakers are
in the datasets related to our experiments, we set
the hidden_size of SA to 1. For encoding different
tagging types, We choose IO encoding, the sim-
plest tag encoding schema, which tags each token
as either being in (I-X) a particular type of named
entity type X or in no entity (O). Since the dis-
tribution of tag types is severely unbalanced (e.g.
(O) accounts for more than 81% on MULTI), we
employed weighted cross-entropy loss and tuned
the weight on development sets. We used Adam
(Kingma and Ba, 2014) to optimize our model and
set the learning rate as 2e-5. We set the dropout rate
as 0.3 for the dropout operation on the equation 2.
For a fair comparison, the BERT used in our model
is BERT-base which is the same as our baselines.

4.1 Model Comparison

Table 3, Table 4, and Table 5 show the experi-
mental results of our approach and baselines on
MULTI and REWRITE. As shown, our approach
greatly surpasses all baselines on practically all
restoration scores significantly. Taking MULTI
as an example, our approach exceeds the best
baseline RUN++(PCL) on restoration score by a
significant margin, reaching a new state-of-the-
art performance on almost all restoration metrics.
Our approach improves the previous best model
by 9.79 points and 9.89 points on restoration F3

and F2, respectively. Furthermore, our approach
reaches comparable performance on other auto met-
rics. As demonstrated by the result of REWRITE,
our approach achieves comparable performance
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Model P1 R1 F1 P2 R2 F2 P3 R3 F3 B1 B2 R1 R2

SRL NA NA NA NA NA NA NA NA NA 85.8 82.9 89.6 83.1
T-Ptr-λ (n_beam=5) NA NA 51.0 NA NA 40.4 NA NA 33.3 90.3 87.7 90.1 83.0

PAC (n_beam=5) 70.5 58.1 63.7 55.4 45.1 49.7 45.2 36.6 40.4 89.9 86.3 91.6 82.8
SARG (n_beam=5) NA NA 62.3 NA NA 52.5 NA NA 46.4 91.4 88.9 91.9 85.7

RAST NA NA NA NA NA NA NA NA NA 89.7 88.9 90.9 84.0
RUN 73.2 64.6 68.8 59.5 53.0 56.0 50.7 45.1 47.7 92.3 89.6 92.4 85.1

RUN++(PCL) NA NA 71.1 NA NA 59.1 NA NA 51.1 92.1 89.4 92.6 86.2
SGT(Ours) 75.0 67.5 71.1 73.1 65.3 69.0 64.7 57.5 60.9 92.1 89.0 92.7 85.3

Table 3: Reuslts on MULTI. All models except T-Ptr-λ are initalized from pretrained Bert-base-Chinese model. All
results are extracted from the original papers. The final line is the result of our complete model. A bolded number
in a column indicates a sota result against all the other approach, whereas underline numbers show comparable
performances. Both are same for Table 4&5.

.

Model F1 F2 F3 EM B1 B2 B4 R1 R2 RL

SRL NA NA NA 60.5 89.7 86.8 77.8 91.8 85.9 90.5
RAST NA NA NA 63.0 89.2 88.8 86.9 93.5 88.2 90.7
RUN 89.3 81.9 76.5 67.7 93.5 91.1 86.1 95.3 90.4 94.3

RUN++(PCL) 89.8 83.2 78.2 69.0 93.7 91.5 87.0 95.6 91.0 94.6
SGT(Ours) 91.0 89.8 85.1 67.4 94.9 92.2 86.8 96.4 90.8 93.8

Table 4: Results on REWRITE. All models are initialized from pretrained Bert-base-Chinese model. All baseline
results are extracted from the RUN++ (Wang et al., 2022). The final line is the result of our complete model.

Model EM B4 F1

Ellipsis Recovery † 50.4 74.1 44.1
GECOR 1 † 68.5 83.9 66.1
GECOR 2 † 66.2 83.0 66.2

RUN 70.6 86.1 68.3
SGT(Ours) 71.1 86.7 85.0

Table 5: The experimental results on TASK. † Results
from Quan et al. (2019). RUN and SGT are initialized
from pretrained Bert-base model, which are same for
Table 6.

on the B4, R2, and RL scores and a new state-of-
the-art performance on B1 and R1 scores. Even
for the most strict metric EM on REWRITE, our
approach reached comparable performance with
RUN, demonstrating the comprehensive ability of
our model. Besides, our approach achieves better
results against all baselines on TASK, as depicted
in Table 5. Specifically, we achieve state-of-the-art
performance on the EM score and exceed the pre-
vious best model by 16.7 points on the restoration
F1 score. Finally, the combined performance of
our model on the three datasets above demonstrates
that our model can perform well on datasets with

varied languages and tasks.

4.2 Closer Analysis

We conduct a series of experiments to analyze our
model thoroughly. First, we conduct a detailed
ablation study to validate the efficacy of the com-
ponents in our model. Then, in the same run-time
setting, we compare the inference speed of our
model to that of representative baselines.

Ablation Study By analyzing table 6, we can
find that “w/o sa”,“w/o gd” or “w/o ged” basically
hurts the effect of the model, and these can initially
corroborate that each of these modules is beneficial
to our model.

Meanwhile, we can find that “w/o gd+ged” sig-
nificantly reduces R3, indicating that these two sub-
tasks are very helpful for discovering the potential
target GLCS. Further, we find that although remov-
ing “sa” alone has little effect on the restoration
score, comparing the results of removing “gd+ged”
and removing “sa+gd+ged” reveals that the fit
with the missing speaker-aware information sig-
nificantly reduces the restoration score. The F3

decreases from 74.7 to 71.8, which indicates that
the information of different speakers or rounds is
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Variant P3 R3 F3 B1 B2 RL

SGT 81.9 71.7 76.5 94.5 91.4 94.5
SGT w/o (sa) 80.8 71.3 75.8 94.1 91.2 94.5
SGT w/o (gd) 80.9 71.6 76.0 94.1 90.9 94.4
SGT w/o (ged) 81.5 70.7 75.8 94.0 91.2 94.4
SGT w/o (gd+ged) 82.0 68.5 74.7 93.6 90.6 94.1
SGT w/o (sa+gd+ged) 79.4 65.5 71.8 93.6 90.3 93.8

RUN 70.7 45.7 55.5 91.5 89.4 93.7

Table 6: The ablation results on the development set of TASK. “SGT” denotes our complete model. “w/o sa”
indicates without the speaker-aware embedding. “w/o gd” means that remove GLCS detection task from our
multi-task learning. “w/o ged” means that remove GLCS Edge detection task from our multi-task learning. Other
remaining variants can be deduced in the same manner.

crucial to extract the target GLCS correctly, and
combining “sa” embedding and “gd+ged” subtasks
can significantly improve the model’s ability to ob-
tain the target GLCS fragments from the context.

Finally, we find that even though the absence
of the three critical components “sa+gd+gd” leads
to an overall decrease in model performance, our
model still achieves a better restoration score than
the RUN model, which further validates the effec-
tiveness of our sequential greedy tagging learning
strategy for modeling and solving UIR problems.

Model B4 ∆B4 Latency Speedup

L-Gen 73.6 0.0 82 ms 1.00 ×
L-Ptr-Gen 75.4 +1.8 110 ms 0.75 ×
T-Gen 62.5 -11.1 322 ms 0.25 ×
T-Ptr-Gen 77.6 +4.0 415 ms 0.20 ×
RUN 86.2 +12.6 71 ms 1.15 ×
SGT 86.8 +13.2 51 ms 1.60 ×

Table 7: The comparison of inference speeds between
SGT and baselines. We set the beam size parameter
to 4 for approaches that need the beam search method,
which is not relevant to RUN and SGT. Meanwhile,
we did not do inference performance measurements on
RUN++ and other RUN-based models with comparable
inference structures, considering they are theoretically
nearly identical to RUN. Latency is calculated as the
time it takes to produce a single phrase without data
batching, averaged over the REWRITE development
set. All models are built in PyTorch and run on a single
NVIDIA V100.

Inference Speed As shown in Table 7, both SGT
and RUN significantly outperform traditional gener-
ation algorithms regarding inference speed and B4

score. At the same time, the most time-consuming

computation of SGT in the inference phase, except
for the BERT encoder, is only one layer of a lin-
ear transformation, which dramatically saves the
inference time compared with RUN, which has U-
net (Ronneberger et al., 2015) structures after the
context encoder. Therefore, we can see that the
inference time of SGT is significantly less than that
of RUN. The latency of a single rewriting task is
reduced by 20ms, while the B4 score slightly better.

5 Conclusion

In this paper, we convert the IUR problem into a
simple sequence tagging task, SGT. The simplicity
and effectiveness of the modeling paradigm not
only improve the inference speed and allow the pre-
trained BERT encoder to fully exploit its widely
validated information extraction ability which can
significantly improve the restoration score and en-
sure that other metrics are competitive. We also
introduced speaker-aware embedding to explicitly
model speaker changes and verified that it has some
improvement effect on the IUR task.

In the future, we will explore the following di-
rections:

1. Adopt the GD task in this paper to extract
essential fragments and then pick the best per-
mutation of fragments with a language model
or using a PAC-like pointer network for frag-
ment integration to get rid of the problem of
category imbalance is caused by representing
the order with tag lists.

2. Combining SGT’s efficient fragment extrac-
tion paradigm with generation.
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Limitations

Although our model has made some progress, it
still has some limitations. First of all, SGT uses
the tag type to represent the connection order of
GLCS fragments when forming a complete utter-
ance, and the average statistics on the three datasets
we used show that more than 99% of the complete
utterance can be composed with less than three
GLCS fragments. That will lead to situations that
need to combine multiple GLCSs (e.g., more than
3) to form a complete utterance, which cannot be
fully trained or fall into unbalanced tag categories.
Second, like other tagging-based models, the frag-
ments that make up the complete utterance must ex-
ist in history utterances or connection words, which
does not work well for situations where it is neces-
sary to combine context information and introduce
new words to express their complete utterance.
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