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Abstract

Situation recognition is the task of recognizing
the activity depicted in an image, including the
people and objects involved. Previous mod-
els for this task typically train a classifier to
identify the activity using a backbone image
feature extractor. We propose that common-
sense knowledge about the objects depicted in
an image can also be a valuable source of in-
formation for activity identification. Previous
NLP research has argued that knowledge about
the prototypical functions of physical objects
is important for language understanding, and
NLP techniques have been developed to ac-
quire this knowledge. Our work investigates
whether this prototypical function knowledge
can also be beneficial for visual situation recog-
nition. We build a framework that incorpo-
rates this type of commonsense knowledge in a
transformer-based model that is trained to pre-
dict the action verb for situation recognition.
Our experimental results show that adding pro-
totypical function knowledge about physical
objects does improve performance for the vi-
sual activity recognition task.

1 Introduction

Physical objects play an important role in our daily
lives. People use different tools to achieve different
goals in all kinds of situations. For example, we
use a toothbrush to clean our teeth, a microwave
oven to heat food, and a camera to take photos. The
functions of physical objects is a type of common-
sense knowledge that has been recognized to play
an important role in natural language processing
(Burstein, 1979; Jiang and Riloff, 2021).

Physical objects play an important role in com-
puter vision as well. There are well-established
computer vision tasks that aim to identify the ob-
jects in an image, such as object detection (Lin
et al., 2014) and image classification (Deng et al.,
2009; Krizhevsky, 2009). Recently, attention has
been paid to more comprehensive image under-
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Figure 1: Situation Recognition involves predicting ac-
tivities with semantic role/value pairs.

standing, such as identifying the salient event de-
picted in an image as well as relevant people and ob-
jects. Situation recognition (Yatskar et al., 2016)
is the task of producing a structured summary of
an image that describes the main activity and the
entities that fill semantic roles for that activity. The
task was originally defined using frame structures
from FrameNet (Baker et al., 1998; Ruppenhofer
et al., 2016) as the activity representation. For
example, given the image shown in Figure 1, a
system should identify a baking event (which is in-
dexed in FrameNet as a type of Cooking_creation
activity), and recognize the corresponding semantic
role/value pairs associated with FrameNet’s Cook-
ing_creation frame. Models for this task usually
follow a two-step pipeline: (1) predict a verb that
describes the activity depicted in the image, and (2)
identify the entities associated with each semantic
role. Previous systems have relied solely on fea-
tures extracted from the image and have not yet
exploited any external commonsense knowledge.

Our work focuses on the activity recognition
(verb prediction) part of the situation recognition
task. We hypothesize that (a) correctly identifying
the activity in an image strongly depends on recog-
nizing the objects that appear in the image, and (b)
explicit commonsense knowledge about physical
objects can also be beneficial. More specifically,
our work is motivated by recent research empha-
sizing the importance of commonsense knowledge
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about the prototypical functions of physical objects
for language understanding (Jiang and Riloff, 2021,
2022). An intuitive extension to visual reasoning
is that if an object appears in an image, especially
when it is used by a person, the activity depicted in
the image is likely to be the prototypical function
associated with the object. For example, a woman
holding a comb is probably brushing her hair, and a
man holding a cookie sheet (as shown in Figure 1)
is probably baking.

We explore these hypotheses by creating a
transformer-based model that incorporates com-
monsense knowledge about the prototypical func-
tions of physical objects for visual activity recog-
nition. Our experimental results confirm that cor-
rectly identifying the objects in an image is very
important for activity recognition, and we show that
providing explicit knowledge about the prototypi-
cal functions of objects can improve performance
for this task.

2 Related Work

Commonsense knowledge about physical objects
has long been recognized to be important for
natural language understanding (Burstein, 1979).
Within the NLP community, a variety of recent
projects have focused on acquiring and using dif-
ferent types of knowledge about physical objects,
including relative physical knowledge (Forbes and
Choi, 2017), relative spatial relations (Collell et al.,
2018), semantic plausibility (Wang et al., 2018),
object affordances (Persiani and Hellström, 2019),
and object usage status (Jiang and Riloff, 2022).
The work most relevant to our research is Jiang and
Riloff (2021), which developed a NLP method to
learn the most typical way that people use human-
made physical artifacts. They used FrameNet
frames as a representation for object functions and
they created a dataset of physical objects paired
with their prototypical function frames to evalu-
ate their results. Our research incorporates their
prototypical function data into a transformer-based
model for visual activity recognition.

Visual reasoning tasks, such as visual question
answering (Antol et al., 2015) and image caption-
ing (Young et al., 2014), have been widely explored
for understanding images and videos. Previous
work has proposed to use external knowledge for
visual tasks, such as image classification (Marino
et al., 2017), object detection (Singh et al., 2018),
and visual question answering (Wu et al., 2016).

Situation recognition is a task of recognizing the
activity depicted in an image, including the people
and objects involved in the activity and the roles
these participants play. Yatskar et al. (2016) intro-
duced the imSitu dataset, which associates images
with a verb that describes the main action, and a set
of semantic roles derived from FrameNet (Ruppen-
hofer et al., 2016). They tackled this problem by
first applying the VGG network (Simonyan and Zis-
serman, 2014) to extract features from the image
and then building a CRF model to jointly predict
the verb and semantic roles. Several research ef-
forts have further explored this task. Suhail and
Sigal (2019) used a graph neural network to cap-
ture the relations between semantic roles. Pratt
et al. (2020) used a LSTM to jointly classify verbs
and semantic roles. Cooray et al. (2020) cast situa-
tion recognition as a query-based visual reasoning
problem and further handled inter-dependencies be-
tween queries to overcome the sparsity issues of se-
mantic roles. Recently, Cho et al. (2022) proposed
a collaborative framework using two transformer
modules, and Li et al. (2022) used contrastive learn-
ing to distinguish the correct activities from nega-
tive examples. All of these prior efforts have relied
solely on features extracted directly from the image.
Our work aims to show that explicitly providing
commonsense knowledge about objects can also be
beneficial for visual activity recognition.

3 Methods

Given an image, the visual activity recognition
task predicts a verb that describes the main activ-
ity in the image. Figure 2 shows the framework
of our model called ARF (Activity Recognition
with Functions), which takes 3 sources of input:
1) the image, 2) nouns corresponding to the ob-
jects in the image, and 3) the names of FrameNet
frames that describe the prototypical functions of
the objects. We use the CLIP (Radford et al., 2021)
model, which has been pre-trained on both images
and text, to generate an encoding for each of the 3
types of input. Finally, we give the concatenated
representation vectors as input to a transformer
model that is trained to predict a verb for activity
recognition.

3.1 Notation

The task can be denoted as given the ith image Ii
(i = 1..n), the system should predict the correct
activity verb v∗i . The score for the jth candidate
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Figure 2: Overview of the ARF architecture.

verb being the activity for image Ii is defined as:

Pr(vji |Ii) =
exp(g(Ii, v

j
i ))∑m

k=1 exp(g(Ii, v
k
i ))

(1)

where g(·) is a function produced by our model for
scoring the assignment of a verb to the image, and
m is the total number of candidate verbs. We use
negative log likelihood as our loss function:

L = −
n∑

i=1

log Pr(v∗i |Ii) (2)

3.2 Object Recognition

Ideally, we would use an Object Detector to iden-
tify the objects in an image for our experiments.
However, the object detectors that are most read-
ily available use categories that do not cover the
range of object types that we need. For example,
object detection datasets often contain a number of
animate objects such as people and animals. As an
alternative, we turned to image captioning systems.
For our first set of experiments, we used a state-of-
the-art image captioning model called OFA (Wang
et al., 2022) to generate 10 different sentences that
describe the image. We set beam size 10 and di-
versity 10. We then extracted the nouns from these
sentences to create a set of words that (hopefully)
include the objects.

However, even though the image captioning sys-
tem often generated reasonable captions, the most
relevant objects were frequently omitted from the
caption, or misidentified.1 Since the goal of our
research is to determine whether adding explicit
knowledge about an object improves performance,

1One likely reason is that the images are in low resolution
and many objects are small, such as a pencil.

we cannot truly assess the value of such knowl-
edge when we do not know what objects appear in
the image. Developing better methods to identify
specific objects in an image is an important direc-
tion for future research in computer vision. For
now, we continued our investigation by perform-
ing additional experiments with the gold nouns in
the imSitu dataset. These experiments essentially
evaluate the impact of adding object knowledge
when the objects have been perfectly identified by
an oracle.

3.3 Prototypical Function Knowledge

We obtained the knowledge of what an object is typ-
ically used for from a dataset2 created by (Jiang and
Riloff, 2021). Their data contains a list of physi-
cal objects represented as WordNet synsets (Miller,
1995), and each object is paired with a human-
annotated frame from FrameNet that represents its
prototypical function. For example, knife is paired
with the Cutting frame.

For each object in an image, we aim to use
its function frame to help with activity identifica-
tion. However, Jiang and Riloff (2021) and im-
Situ (Yatskar et al., 2016) used different subsets
of frames from FrameNet. We felt that it made
sense to align them, so we used the inter-frame
relations provided by FrameNet to map the pro-
totypical function frames to imSitu’s frames. For
each function frame, we create a mapping to all of
the imSitu frames that are within one hop via any
frame relation. Finally, we associate each object
with its corresponding imSitu frames.

3.4 Activity Recognition Model

We use CLIP ViT-B/32 (Radford et al., 2021) as the
backbone model to encode the image and text. For
each example, we first apply CLIP’s image encoder
to produce an image feature vector. Then we use
CLIP’s text encoder to generate an embedding for
each object (noun) and average the object vectors.
For each object, we also collect its prototypical
function frames and use CLIP’s text encoder again
to generate embeddings for each frame’s name,
then average those vectors. If there is no object,
or no associated frame, then we encode an empty
string.

Next, we build a transformer model consisting
of 6 encoding layers and a classification layer on

2https://github.com/tyjiangU/physical_
artifacts_function
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Model Dev Acc Test Acc

Yatskar et al. (2016) 32.3 32.3
Cooray et al. (2020) 38.0 38.2
Pratt et al. (2020) 39.6 39.9
Suhail and Sigal (2019) 43.2 43.3
Cho et al. (2022) 44.4 44.7
Li et al. (2022) - 45.6

ARF 46.2 46.4

ARF+nounsC 46.6 46.5
ARF+nounsC+func 46.9 47.2

ARF+nounsG 69.2 69.5
ARF+nounsG+func 72.0 71.9

Table 1: Experimental results.

top. As input, the model takes the concatenation
of all 3 vectors (corresponding to image, objects
and functions). The classifier then selects the most
probable action verb from all 504 candidate verbs
used in the imSitu dataset.

4 Evaluation

The imSitu data contains 126,102 images, with
manually annotated activity verbs and frame struc-
tures. We follow the same data split (train 75,702,
development 25,200, test 25,200) as Yatskar et al.
(2016). We report verb prediction accuracy on both
the development and test sets. When fine-tuning
the transformer, we use batch size 32, hidden vector
dimension 512, AdamW optimizer with learning
rate 1e-4 and train for 10 epochs.

4.1 Experimental Results

Table 1 compares our model with six previous meth-
ods described in Section 2. The ARF row shows
the performance of our basic model using only
image input. Our model performs a little better
than previous systems, probably due to the CLIP
model which is quite good. Also, the other models
are trained for the full situation recognition task,
whereas our model is trained solely for the verb
prediction task.

The next two rows show results when adding
embeddings for the nouns extracted from the cap-
tioning system (nounsC) and when using the nouns
as well as their function frames (nounsC+func).
The nouns alone produce just a tiny improvement,
but adding the function frames improves a bit more.
We believe that these results are primarily due to
the limitations of the captioning system.

(a) spoon → Ingestion (b) shield → Protecting

(c) canoe → Motion (d) knife → Cutting

Figure 3: Object triggering function frames. The gold
verbs are (a) feeding (b) guarding (c) floating, and (d)
slicing.

The last two rows in Table 1 show the perfor-
mance when using the gold nouns (nounsG) and
when using the gold nouns plus their associated
function frames (nounsG+func). These results
show a huge performance boost simply from cor-
rectly identifying all the objects in the image. And
providing the external knowledge about their pro-
totypical functions further improves performance.
In the next section, we try to better understand the
role that objects play.

4.2 Analysis

Figure 3 shows some examples of how the func-
tions of objects in the image can help identify the
main activity. Consider subfigure (a), we see a
hand-held spoon in front of the baby’s mouth; the
baby is expressing their like or dislike by making
a grimace; there is some green substance (presum-
ably food) both on the face and spoon. We don’t
see a series of continuous actions, yet we know it
is a feeding event because of our commonsense
knowledge. Similarly for the other images in Fig-
ure 3, from the shields, we can infer Protecting;
looking at the canoe, we know it is Motion; and the
knife is a good indicator for Cutting.
Images with and without Objects However, not
all images contain “salient” physical objects. For
example, imagine a picture showing a man run-
ning on a trail. The man is wearing clothes, which
usually does not help with identifying the running
activity (people generally wear clothes). In order to
tease apart the images with and without salient ob-
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Model w/ Func w/o Func

ARF 46.0 46.4
ARF+nounsG 70.4 68.5
ARF+nounsG+func 75.1 70.4

Table 2: Comparing performance on images with and
without physical objects that have function frames.

jects, we divided the dev set into two subsets: one
set (w/ Func) contains 8,957 images where at least
one gold noun is associated with a function frame,
and the other set (w/o Func) contains 16,243 im-
ages for which no nouns map to any frames. Since
the gold annotations only provide semantic role
values that are associated with the main activity, it
is safe to assume that the w/ Func set of images
would contain salient objects. Table 2 compares the
performance of our systems on each subset of data.
We see that performance is nearly identical when
only using image features. Adding the gold nouns
produces a big performance gain for both groups,
although it benefits the w/ Func subset a little more.
When the function frame knowledge is introduced,
we see more separation: the images that depict
physical objects associated with functions benefit
more from having external knowledge about func-
tions. This result confirms that the knowledge is
beneficial in the expected way.
Which Semantic Categories Matter? The per-
formance gap between ARF+nounsG and ARF is
substantial, and we were curious to understand
what types of nouns contributed the most. So we
conducted another set of experiments on the dev
set to identify certain types of semantic roles.

There are 190 different semantic roles in the
data, but we are primarily interested in understand-
ing the importance of physical objects. So we
coarsely grouped the semantic roles into 3 cate-
gories roughly corresponding to People, Locations
and Objects. To keep things manageable, we iden-
tified the 16 most frequent semantic roles that ap-
pear in at least 2,000 images and manually assigned
them to the 3 categories. The People category in-
cludes agent, agentpart, victim, and coagent. The
Locations category contains place and destination.
The Objects category contains tool, item, substance,
object, container, and vehicle. We disregarded a
few semantic roles that are highly ambiguous (e.g.,
source can be both a location and object).

Table 3 shows our experimental results. Each
experiment collected all images containing at least

People Locations Objects

with Nouns 69.3 69.2 72.2
without Nouns 61.4 64.4 37.2

Table 3: Performance with and without the nouns for
specific semantic roles.

one instance of a relevant semantic role and then
evaluated performance on those images both with
and without the gold annotated nouns. For example,
the Objects column shows that our model achieved
72.2% accuracy on the images that contain at least
one object when it was given the nouns. But perfor-
mance dropped to 37.2% accuracy on those same
images without the nouns. In contrast, providing
the gold nouns had much less impact on the other
sets of images, which contain People or Locations
but not necessarily Objects.
Salient Objects Another challenge is how to find
the “salient” objects that play important roles in the
image, and from which we have a better chance of
identifying the main activity. We count the number
of physical objects (not in the People or Locations
semantic category) for all images. We find that
nearly 40% of images are annotated with two or
more objects. In our ARF model, when there are
multiple objects in the image, we simply use the
average of each object’s embedding, which could
potentially be improved by giving more weight to
the most salient object. This issue may be even
more important when using object detection sys-
tems because they may identify more objects (the
gold annotation only contains objects that belong to
a pre-defined semantic role)! This is an important
issue to study in future work.

5 Conclusion

The prototypical functions of physical objects is a
type of commonsense knowledge that is important
for NLP. In this work, we showed that it can be a
useful source of information for image understand-
ing as well. Specifically, we tackled the situation
recognition task by building a transformer model
that incorporates the functions of objects to predict
the activity in an image. The experiments show
that knowledge of the objects and their prototypi-
cal functions can improve performance on this task.
However, automatically recognizing the objects in
an image remains a challenge, and exploiting better
object detection methods is an important direction
for future work.
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6 Limitations

For image captioning, we used the pre-trained OFA
model for zero-shot inference. We did not ex-
plore every state-of-the-art model or fine-tune OFA
specifically on the imSitu dataset. Other image cap-
tioning systems could yield better results. The gap
between automatic object recognition and using
gold nouns confirms that correctly identifying the
objects in an image is very important for activity
recognition. Also, we are not certain that mapping
the Jiang and Riloff (2021) function frames to the
imSitu frames is strictly necessary.
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