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Abstract

The task of textual geolocation — retrieving the
coordinates of a place based on a free-form lan-
guage description — calls for not only ground-
ing but also natural language understanding and
geospatial reasoning. Even though there are
quite a few datasets in English used for geolo-
cation, they are currently based on open-source
data (Wikipedia and Twitter), where the loca-
tion of the described place is mostly implicit,
such that the location retrieval resolution is lim-
ited. Furthermore, there are no datasets avail-
able for addressing the problem of textual ge-
olocation in morphologically rich and resource-
poor languages, such as Hebrew. In this paper,
we present the Hebrew Geo-Location (HeGeL)
corpus, designed to collect literal place descrip-
tions and analyze lingual geospatial reasoning.
We crowdsourced 5,649 literal Hebrew place
descriptions of various place types in three
cities in Israel. Qualitative and empirical anal-
ysis show that the data exhibits abundant use
of geospatial reasoning and requires a novel
environmental representation.1

1 Introduction and Background

Textual Geolocation Identification, a crucial com-
ponent of Geographic Information Retrieval (GIR),
is the task of resolving the location, i.e., coordinates
of a place, based on the reference to it in a text. It
requires a combination of language and environ-
mental knowledge. On top of the usual non-spatial
linguistic challenges in Natural Language Under-
standing (NLU), such as named entity recognition
(NER), anaphora resolution, bridging anaphora,
etc., the textual geolocation task presents geospa-
tial challenges that require multimodal processing
and grounding (Ji et al., 2022; Fried et al., 2022;
Misra et al., 2017; Qi et al., 2020; Paz-Argaman
et al., 2020).

∗Equal contribution.
1For data and code see https://github.com/OnlpLab/HeGeL

Proper names, such as ‘Rabin Square’, also
known as named entities in Natural Language Pro-
cesing (NLP), and as rigid designators in formal
semantics (Kripke, 1972), can be easily grounded
based on a Gazetteer or a simple map. However,
geolocating linguistic terms that involve spatial ex-
pressions without the explicit mention of a proper
name still present an open challenge. This inter-
pretation challenge includes the understanding and
resolution of (at least): (i) definite descriptions,
such as ‘the school’ (ii) geospatial terms, such as
cardinal directions; ‘east of’; and (iii) geospatial
numerical reasoning; ‘two buildings away from
the pharmacy’. To address these and other chal-
lenges, we need to both ground entity mentions to
their corresponding physical entities in the envi-
ronment, and to reason about geospatial relations
expressed between entities — these two processes
being closely intertwined.

To do so, we need a corpus for the geolocation
task that maps rich geospatial place descriptions
to their corresponding location coordinates. How-
ever, current corpora for geolocation are based on
naturally-occurring open-source resources, such as
Wikipedia articles (Eisenstein et al., 2010; Wing
and Baldridge, 2011; Han et al., 2012; Wing and
Baldridge, 2014; Wallgrün et al., 2018), which are
not spatially oriented, i.e., the description of loca-
tions is implicit or absent in the corresponding text.
Subsequently, the accuracy of retrieval is fairly low
(around 100 km).

Furthermore, all geolocation datasets previously
studied in NLP are in English, with a dearth of cor-
pora for low-resource languages, in particular, for
morphologically rich languages, such as Hebrew.
To understand the geolocation challenges and build
models that do various spatial reasoning tasks, En-
glish cannot be our sole focus (Baldridge et al.,
2018). Hebrew, a Semitic morphologically rich
language is notoriously difficult to parse (Tsarfaty
et al., 2020, 2019). Moreover, resources that are
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Place Description: The place is located near the Rothschild complex – at the end of Rothschild Street, as you go towards
the sea, take a right for about three streets and then you will see the tower high above you.

Figure 1: A description example from HeGeL translated from Hebrew.

available for Hebrew NLP research focus on tradi-
tional tasks, such as Part-of-speech (POS) tagging,
syntactic parsing, etc; and lack corpora for under-
standing and reasoning in real-world situations.

In this work we present HeGeL, a novel dataset
for Hebrew Geo-Location, the first ever Hebrew
NLU benchmark involving both grounding and
geospatial reasoning. To create HeGeL, we crowd-
sourced 5,649 geospatially-oriented Hebrew place
descriptions of various place types from three cities
in Israel. We designed our task based on a realistic
scenario of human place description, relying on
people’s memory of the world, rather than, e.g.,
using a map (Anderson et al., 1991; Paz-Argaman
and Tsarfaty, 2019). Crucially, relying on environ-
mental cognition results in various levels of geospa-
tial knowledge (Siegel and White, 1975) that are
manifested in the descriptions and the geospatial
reasoning that is required to resolve their location
(Hayward and Tarr, 1995). To avoid the much sim-
pler task of grounding proper named entities, we
explicitly restricted the use of proper names in the
description of the place and adjacent landmarks.

Unlike the text-based navigation task (MacMa-
hon et al., 2006; Chen et al., 2019; Ku et al., 2020;
De Vries et al., 2018; Thomason et al., 2020),
which requires representing an agent’s current per-
spective, reflecting its route knowledge, we show
that the HeGeL task requires a full-environment
representation, thus, capturing complex geospa-
tial relations among multiple physical entities.
Through a thorough linguistic and empirical anal-
ysis, we demonstrate the characteristics and chal-
lenges associated with Hebrew place descriptions,

showing that HeGeL serves both as a challenging
NLU benchmark and as a corpus for geospatial
cognition research.

2 The HeGeL Task and Dataset

This work addresses the task of geolocating places
on a map based on natural language (NL) geospa-
tial descriptions that are given in a colloquial lan-
guage and based on participants’ memory of the
environment (i.e., cognitive map). The input to the
HeGeL task is as follows: (i) an NL place descrip-
tion of the whereabouts of the place, and (ii) a map
with rich details of the environment (e.g., physical
entities names, geospatial relations, and attributes).
The output is a pair of coordinates (x,y) specify-
ing the physical location of the place described in
the text. Figure 1 shows an example of a place
description from HeGeL translated from Hebrew.

To simplify the crowdsourcing task and encour-
age participants’ engagement, we frame the data
crowdsourcing process as the well-known game,
the treasure hunt task (Kniestedt et al., 2022), in
which the instructor-participant is required to de-
scribe in writing the location of the treasure, a
known place in the city, to a different follower-
participant who then needs to locate it on a map.
Thus, the online assignment is divided into two
tasks: the instructor’s writing of place descriptions
and the follower’s validation. To avoid precon-
ceived notions as to the ‘correct’ way to describe
a place, we first presented the participants with
the task of writing a place description, and once
completed, the validation task was given.2

2Appendix A includes additional data collection details.
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We hereby provide the details of the two UI tasks:

(i) Task 1. Writing a place description In this
task we requested participants to describe in a free-
form text the location of a place known to them,
to a third party who might not be familiar with
the whereabouts of that place. To collect place de-
scriptions based solely on people’s memory, we
did not visualize the area of the place, e.g., on a
map. Instead, we ensured that the participants are
well familiarized with the place by asking them
to state how familiar they are with the place on a
scale of 1-5. If this score was 1 or 2, we presented
the participant with a different place to describe.
To ensure diverse human-generated textual descrip-
tions, places were chosen based on their type, posi-
tion/location in the city (places were spread across
the city), geometry, size, and context. To avoid the
use of proper names, we developed a rule-based
methodology to make sure that the explicit name of
the goal (place) or of the nearby landmarks (< 100
meters) will not appear explicitly in the description.
The original description was saved, and the par-
ticipants were asked to input another description
without the above names.

(i) Task 2. Place description validation To ver-
ify that a person who reads the text description
will understand where the treasure is hidden, i.e.,
geolocate the place, we developed a map-based re-
trieval task. The participant in the follower role
was asked to read the crowdsourced textual descrip-
tion and mark its location on the map, i.e., where
the treasure is hidden. For marking the location,
we implemented an interactive online map based
on OpenStreetMap (OSM),3 which allows the par-
ticipants to move and zoom-in to precisely pin the
described place on the map. The map supports the
cognitive process needed to ground mentioned enti-
ties to physical entities, reason about the geospatial
relations, and locate the described place. To famil-
iarize participants with the interactive map tool and
task, they had to first pass a simple map marking
test, and only then they could start task 2 of read-
ing place descriptions (given by other participants),
marking place locations on the map, and rate the
clarity of the textual description on a scale of 1-5.

Appendix B presents a display of the online assignment’s UI
translated from Hebrew to English.

3OSM is a free, editable, map of the whole world, that was
built by volunteers, with millions of users constantly adding
informative tags to the map.

Target Selection and Retrieval Errors The
treasure-hunt task we devised included 167 places
in the three largest cities in Israel: Tel Aviv, Haifa,
and Jerusalem. These three cities are differently
shaped, and show different physical, morpholog-
ical and topographic features, which potentially
affect the legibility and imageability of urban com-
ponents, and therefore also on place descriptions.
These differences can be expressed in the use of
various physical features and prepositions, e.g., fre-
quent use of the physical object ‘landmark’ and
the prepositions ‘above’ or ‘below’ in hilly terrains
that characterize Haifa and Jerusalem.

To assess the quality and interpretability of the
place descriptions, we calculate the shortest Eu-
clidean distance between the coordinates of the
goal’s (physical element) shape (polygon, line or
point), and the location marked by the ’follower’ on
the map (task 2); we term this distance as retrieval
error. To determine the agreement rate among hu-
man participants, each textual place description is
validated by at least two participants. To ensure
that we work with descriptions that can be geolo-
cated, we set a hard distance threshold of 300 me-
ters, based on analysis of the descriptions’ clarity
score that we had conducted on a prior (held-out)
development corpus we collected for the task.

3 Data Statistics and Analysis

The resulting HeGeL dataset contains 5,649 val-
idated descriptions paired with their coordinates
on a map. The locations are divided among three
cities: 2,142 in Tel Aviv, 1,442 in Haifa, and 2,065
in Jerusalem. 1,833 participants completed the writ-
ing task, inserting in total 10,946 place descriptions,
and 2,050 participants completed 12,655 validation
tasks. The dataset is balanced, with about 33 de-
scriptions per place.

Figure 2 shows a Venn diagram representing the
relation of the three sets of city-based vocabularies
(formed from unique lemmas produced by More
et al. (2019) lemmatization tool). The intersec-
tion of the three cities contains only 15.07% of
the entire vocabulary (the union of the three cities’
vocabularies). The shared language is not focused
on city-specific terms, such as ‘Knesset’. Instead,
it includes rich spatial terms, such as ‘between’,
modified prepositions such as ‘next to’, and non-
definite entities, such as ‘street’. From the Venn
diagram we also conclude that almost half of the
lemmas of the three vocabularies, corresponding
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Phenomenon c µ Example from HeGeL (translated into English)

Type of
elements in a city
(Lynch, 1960)

Edge 36% 0.6 “when reaching Yafo, one should go toward the sea. . . ”
Node 40% 0.44 “. . . a few minutes walk from the HaShaon square. . . ”
Landmark 60% 1.08 “. . . near Levinski market”
District 36% 0.4 “South part of the city next to. . . ”
Path 68% 0.76 “On Carlebach street. . . ”

Spatial knowledge
(Siegel and White, 1975)

Landmarks 32% n/a “Next to the sea in Tel Aviv-Yafo”
Route 20% n/a “Passing Azrieli on Menachem Begin and then turn right. . . ”
Survey 48% n/a “South part of the city near Levinski market”

Reference to unique entity 100% 2.32 “. . . in the middle of Dizengoff street”
Cardinal direction 44% 0.76 “South of Sharona. . . ”
Coreference 16% 0.16 “. . . continue a bit west and it. . . ”

Table 1: Linguistic qualitative analysis of 25 randomly sampled descriptions in HeGeL. c is the percentage of
descriptions containing at least one example of the phenomenon, and µ is the mean number of times the phenomenon
appears in each description.

Figure 2: A Venn diagram showing the top 10 words
(translated from Hebrew) used in each city-set relation.

to the three cities, contain city-specific lemmas:
48.6%, 40.65%, and 49.3% for Tel Aviv, Haifa, and
Jerusalem, respectively. As such, HeGeL enables a
city-split setup, training on one city and testing on
a different unseen city, where city-reserved named
entities present an out-of-vocabulary (OOV) chal-
lenge for models trained on another city.

Table 1 shows an analysis of the linguistic phe-
nomena manifested in the HeGeL dataset, demon-
strating the spatial knowledge and reasoning skills
required for solving the HeGeL task. We analyzed
the frequency of the five types of elements in a city
defined by Lynch (1960), along with the three types
of spatial knowledge defined in Siegel and White
(1975), and other spatial properties. The frequent
use of cardinal directions, as well as the use of sur-

Feature Avg. per description Unique in corpus
Number of lemmas 12.93 6,663
Number of tokens 11.50 9,207
Number of named entities 0.55 3,490
Number of prepositions 2.39 14,256
Number of verbs 0.53 3,152

Table 2: Quantitative analysis of HeGeL.

Feature p-value FDR corrected p-value
Number of Words 0.8306 0.8306
Number of named entities 0.0000 0.0000
Number of prepositions 0.0145 0.0217

Task 1:
Place description
(linguistic features)

Number of verbs 0.3400 0.4080
Retrieval error 0.0000 0.0000Task 2:

Human verification Clearness score 0.0000 0.0000

Table 3: Correlations between place types and linguistic
and features.

vey knowledge, suggests that any NLP model built
to deal with the HeGeL task should not only rep-
resent a local view of the goal, or possible routes,
but also take into consideration the full region, and
mimic people’s map-like view of the environment.
Therefore, unlike navigation tasks where only the
agent’s current perspective is represented in the
model, this task requires full representation of the
environment.

We further perform a quantitative analysis of
word tokens and lemmas that appear in HeGeL,
depicted in Table 2. Overall, the HeGeL dataset
contains a large vocabulary of 9,207 unique tokens
and 6,663 unique lemmas. There are mentions of
physical entities, but as we limited the mentions
of named-entities of the described place and land-
marks adjacent to it; these are relatively rare, and
are mostly references to prominent city landmarks.
Also, as most place descriptions are not route-based
descriptions, there are only few verbs used in the
descriptions. Prepositions, on the other hand, are
abundant.
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In Table 3, using a one-way analysis of variance
(ANOVA) test, we found a significantly (p<0.05)
different distribution between place type descrip-
tions and the following features: number of named
entities, number of verbs, human verification re-
trieval error, and clarity score.

4 Experiments

We create a zero-shot (ZS) city-based split, such
that we train on one city and test on another. The
train, development, and test sets correspond to
the descriptions collected in Tel Aviv, Haifa, and
Jerusalem, respectively. We evaluate different base-
line models for the geolocation task on the HeGeL
dataset. We use three evaluation metrics based on
retrieval error: mean, median, and task completion
(TC) accuracy – the percentage of place descrip-
tions located within the 300 meters threshold. We
provide three baselines for the HeGeL task.

We first assess a brute-force NER approach; i.e.,
we test whether recognizing named entities in the
text and retrieving their corresponding coordinates
is sufficient for solving the HeGeL task of geoloca-
tion. To this end, we used Google Maps API and
produced two baseline models: (i) Google Maps
API Query — we queried the API with the full raw
text descriptions as input, with no prepossessing;
and (ii) Oracle NER — we queried all 1-5 n-grams
against Google Maps API and retrieved the closest
geolocation to the goal.

In our second approach, we employ a dual-
encoder model. One encoder encodes the text using
a Hebrew Monolingual pre-trained encoder, Aleph-
BERT (Seker et al., 2022), which produces a 768-
dimension vector representation of the text. The
other encoder processes the environment, which is
represented as a graph based on OSM data. Each
point of interest in the graph is connected to an
S2Cell4, which contains its geometry and is based
on S2-geometry. These S2Cells are encoded us-
ing a random-walk algorithm to produce a 64-
dimensional vector for each cell. These vectors
are then passed through a linear layer to produce
768-dimensional vectors. We calculate the cosine
similarity score between the text and environment
vectors and use it to align the respective represen-
tations via maximization of the cosine similarity
score with a cross-entropy loss over the scores.

4S2Cells are based on S2-geometry
(https://s2geometry.io/), a hierarchical discretization of
the Earth’s surface (Hilbert, 1935).

Split Model Mean Median TC

ZS
Google Maps API Query 2,811 849 27.66

Oracle NER* 2,373 496 37.79
HUMAN 553 151 70.81**

ZS
Dual-encoder

2,727(1684) 2,612(1930) 2.37(1.5)

FS 20% 1717(35) 1583(49) 3.43(0.09)

FS 80% 983(23) 632(13) 15.7(0.38)

Table 4: Baseline results over the zero-shot (ZS) city-
split, and few-shot (FS) split of different sizes: 20%
and 80% of the samples in the test-region. For the
Dual-encoder we report the mean over three random ini-
tialization and the standard-deviation (std) is in brackets.
*Oracle NER is a skyline model based on a NER ap-
proach. **The human agreement rate.

Performing an ANOVA test, we found a signifi-
cantly (p<0.05) different distribution between place
type descriptions and the retrieval error of the Ora-
cle NER. The mean retrieval error of the Path and
Node place types were the lowest in both human
verification and Oracle NER. This suggests that
both of these place types are easier for humans to
geolocate.

The results in Table 4 show that our task is not
solvable with adequate resolution by the Google
Maps API. The human performance provides an up-
per bound for the HeGeL task performance, while
the simple Google Maps API Query provides a
lower bound. The Google API model’s low per-
formance suggests that NER and the Gazetteer-
based methods in and of themselves are insuffi-
cient to handle the HeGeL task successfully, and
that geospatial reasoning is necessary. The Dual-
encoder’s low performance on the ZS split suggests
that OOV is a major challenge. The few-shot (FS)
split shows an improvement of the model after fine-
tuning on additional samples from the test-region
(FS 20% and 80%). This suggests that a possi-
ble solution for the city-split setup might be data-
augmentation via generating grounded descriptions
for the tested region – an approach we reserve for
future research.

5 Conclusion

The contribution of this paper is threefold. First,
we present the first geolocation benchmark with
Hebrew place descriptions. Second, to the best of
our knowledge, this is the only crowdsourced ge-
olocation dataset, thus, eliciting explicit geospatial
descriptions, allowing for better retrieval resolution.
Finally, our analysis shows that the dataset presents
complex spatial reasoning challenges which require
novel environmental model representation.
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Limitations

While we aim for our HeGeL crowdsourcing
methodology to be applicable to other languages,
and in particular low-resource languages, the UI
design and our analyses require knowledge of the
intended language, as well as familiarity with the re-
gions where it is spoken. Moreover, as our method-
ology relies on people’s familiarity with the places,
it limits the cities chosen for the task and the par-
ticipants that could take part, restricting the demo-
graphics of the participants accordingly. In addi-
tion, relying on people’s memory of the environ-
ment causes many of the descriptions to be too
vague for humans to geolocate, thus, many of the
descriptions were disqualified during the valida-
tion process as they could not have been resolved.
The relatively low percentage of place descriptions
that were successfully validated, raises the costs of
collecting such a dataset.
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A Data Collection Details

We used the services of an Israeli surveying com-
pany to distribute the assignment to native Hebrew-
speakers participants in Israel only. The survey
company was charged with distributing the assign-
ments to a balanced set of participants in terms
of their demographic and geographic characteris-
tics (e.g., an equal number of males and females).
All participants were given full payment, non-
respective of whether they correctly completed the
task.

The first page the participants viewed contains
a disclosure about the assignments being part of
academic research and the purpose of the assign-
ments. The assignment protocol was approved by
a behavioral review board. This approval was also
presented to the participants on the initial screen.
Also, the participants were required to read an in-
formed consent form and sign an agreement box.

B Participant Interface

The tasks are performed via an online assignment
application, depicted in Figures 3-5.

C Experimental Setup Details

The cross-entropy loss function was optimized with
Adam optimizer (Kingma and Ba, 2015). The hy-
perparameter tuning is based on the average results
run with three different seeds. The Learning rate
was searched in [1e-5, 1e-4, 1e-3] and a 1e-5 was
chosen. The S2cell level was searched in [13, 15,
17] and 13 was chosen. Number-of-epochs for
early stopping was based on their average learning
curve.
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Figure 3: Participant Interface translated from Hebrew:
instructions for the writing task.

Figure 4: Participant Interface translated from Hebrew:
the writing task (task 1).
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Figure 5: Participant Interface translated from Hebrew:
the validation task (task 2).
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