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Abstract

Knowledge distillation (KD) involves train-
ing a small “student” model to replicate
the strong performance of a high-capacity
“teacher” model, enabling efficient deploy-
ment in resource-constrained settings. Top-
performing methods tend to be task- or
architecture-specific and lack generalizability.
Several existing approaches require pretraining
of the teacher on task-specific datasets, which
can be costly for large and unstable for small
datasets. Here we propose an approach for im-
proving KD through a novel distillation loss
agnostic to the task and model architecture. We
successfully apply our method to the distilla-
tion of the BERT-base and achieve highly com-
petitive results from the distilled student across
a range of GLUE tasks, especially for tasks
with smaller datasets.1

1 Introduction

An unfortunate problem affecting large language
models, such as BERT (Devlin et al., 2018) or GPT
(Radford et al., 2019), is their high compute costs,
as a consequence of their complex architectures and
vast numbers of parameters. This is particularly ap-
parent in initial (pre)training, but also impacts the
cost of fine-tuning to specific tasks, and the practi-
cality of their deployment on resource-constrained
edge devices (Sun et al., 2020). Knowledge distilla-
tion (KD; Hinton et al. (2014)) attempts to mitigate
these concerns through learning a small “student”
model to replicate the behaviour of a larger, un-
wieldy “teacher”. The idea is that much of the
performance of the teacher can be captured by the
student, despite it having many fewer parameters,
and thereby better portability.

Several distillation methods have been proposed
for large language models, including DistilBert
(Sanh et al., 2019), which distills the 12-layer

∗Now at Google DeepMind.
1Code available at https://github.com/Sayan21/MAKD

BERT transformer (Devlin et al., 2018) into a
6 layer student model with only a small loss in
the performance on downstream tasks. Broadly,
existing KD approaches are either architecture-
specific or agnostic. The former group includes
Jiao et al. (2020) and Sun et al. (2019a) which
incorporate a loss term to encourage matching
hidden between teacher and student, and thus re-
quiring aligned teacher and student architectures.
Approaches like Turc et al. (2019), on the other
hand are architecture-agnostic, treating the teacher
model as a black box using only the logits from
language modelling heads for distillation it into a
smaller LM. There are numerous advantages to the
architecture-agnostic approach: (1) it is possible to
distill a teacher model into a different student ar-
chitecture, e.g. Tang et al. (2019) distills the BERT
transformer into a simple single-layer Bi-LSTM;
and (2) it frees the student to use different inference
techniques, e.g., to better handle long sequences
(Xiong et al., 2021; Vyas et al., 2020).

While the training of large language models in-
curs substantial compute resources – for instance
the training cost of GPT3 (Brown et al., 2020) was
estimated at $4.6 million using Nvidia Tesla V100
GPUs (Sharir et al., 2020). the cost of pretraining
a given model is incurred only once. On the other
hand, practitioners apply models to specific tasks,
often involving fine-tuning of the LLM on their
task-specific datasets, after which fine-tuned LLMs
are then distilled into smaller LLMs for faster infer-
ence on real-time applications. This process incurs
more modest compute costs, however, given the
myriad of different applications, the process is re-
peated many times, meaning the aggregate cost can
be significant, rivaling the cost of pre-training.2

If we consider the per-instance training cost, fine-
tuning is as costly as pre-training. Arguably this

2Witness the explosion of BERT fine-tuning papers in the
literature, and OpenAI’s claim that GPT3 is being used in 300
applications: https://openai.com/blog/gpt-3-apps.
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(a) Standard KD Approach

(b) Our Approach

Figure 1: Comparison of our KD approach against stan-
dard KD. The red font signifies a computationally in-
tensive step. DLM represents the large generic corpora
such as Wiki or BookCorpus, whereas DT represents
the smaller task-specific corpora. The steps in the dotted
box are performed by practitioners, whereas the rest are
on-off performed by the authors of LLMs.

is less of an issue for small datasets, as the fine-
tuning costs will be also be small, however in this
setting fine-tuning can be unstable (Zhang et al.,
2020) because there are not enough data points to
reliably tune the parameters.

In this paper, we propose an architecture-
agnostic approach for LLM distillation to eliminate
the fine-tuning step. The standard KD for an LLM
is shown in Figure 1(a), whereas our approach cor-
responds to Figure 1(b). The boxes with red-font
stand for computationally expensive steps. The
boxes in the dotted line are replicated by the prac-
titioners and contribute to the major cost, whereas
the boxes outside represent a one-off cost and can
be ignored as such. We show the derivation of
our approach along with its convergence properties,
and then we describe our training strategy. We fi-
nally demonstrate the effectiveness of our approach
based on distilling BERT models evaluated against
the GLUE benchmark (Wang et al., 2018).

2 Methodology

We follow the empirical risk management frame-
work for deriving our KD approach. For simplicity,
we assume temperature τ = 1 from the original def-
inition in (Hinton et al., 2014). Let us assume that
for a problem over a domain X,Y , the Bayesian
optimal probabilities are p0(x) = E[Y |X = x].
Then the ideal KD loss is a loss between the stu-
dent probabilities f(X) and p0(X) is l(f, p0), and

the optimal student is

f0 = argmin
f∈F

EX [l(f(X), p0(X))] , (1)

note we use f, p and f(x), p(x) interchangeably.
Given that we do not know p0, the best we can

do is to train a teacher from a function class F over
some loss to find an estimate p̂. We replace p0(X)
in the loss by the empirical distribution, p̂(X), to
arrive at the KD loss EX [l(f(X), p̂(X))]. This
is the KD loss defined over the entire population
of X,Y . Given a training set D of n data points
{xi, yi}ni=1, we can estimate it as

ED[l(f(X), p̂(X))] =
1

n

N∑

i=1

l(f(xi), p̂(xi)) .

This is the typical KD loss used in Hinton et al.
(2014), also known as Vanilla KD. The loss
l(f, p̂) is usually Kullbach-Liebler (KL) diver-
gence DKL(p̂∥f) for τ = 1, or the squared
difference of the logits. If the student ob-
tained from optimizing the KD loss is f̂ =
argminf∈F

∑N
i=1 l(f(xi), p̂(xi)), then with high

probability (Dao et al., 2020) it satisfies

∥f̂−f0∥2n = O

(
1

n
+ ∥p̂− p0∥2n + δn(F , p0)

2

)
,

(2)
where ∥ · ∥ stands for the L2 norm of the differ-
ence between the parameters of the two classifica-
tion functions. δn(F , p0)

2 is the local Rademacher
radius of the class of function F , and is usu-
ally convex when F is the family of neural net-
work or kernel functions (Dao et al., 2020). It
is specific to the classification function class of
the teacher and is a constant when the teacher is
fixed. The student error ∥f − f0∥n thus depends
on the second order teacher error ∥p̂ − p0∥2n =
1
n

∑n
i=1 ∥p̂(xi)− p0(xi)∥22.

2.1 Taylor Series Expansion of the Loss

Let us first start with a scalar p ∈ [0, 1]. If L(p) is
a convex loss on p, then the following inequality
holds (Böhning and Lindsay, 1988),

L(p) ≤ L(p̂) + (p− p̂)
dL(p)
dp

∣∣∣
p=p̂

+
1

2
(p− p̂)2C

(3)
where C = argmaxp

d2L(p)
dp2

is the maximum
curvature of the loss w.r.t. the entire domain of
p. For example, for a binary cross entropy loss
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Method Pre-training (DLM ) Task-specific (DT ) Architecture-agnostic

DistilBERT (Sanh et al., 2019) BERT-base (truncated) + KD Fine-tuning No
Patient-KD (Sun et al., 2019a) BERT-base (truncated) Patient-KD No
StudentBERT (Turc et al., 2019) LM pretraining Vanilla KD Yes
TinyBERT4 (Jiao et al., 2020) KD with loss between attention

matrices & hidden layers
KD with data augmentation
w.r.t fine-tuned BERT-base

No

MobileBERT (Sun et al., 2020) KD with layer transfer loss Fine-tuning No

Enhanced KD (ours) LM pretraining KD with Taylor series Yes

Table 1: Detail of the two stages performed during KD under different approaches

L(p) = −y log(p)− (1− y) log(1− p),

C = argmax
p

(
y

p2
+

1− y

(1− p)2

)
. (4)

Observe that C → ∞ as p → 0 or p → 1.
Now, when p ∈ [0, 1]K is a vector of probabili-

ties for K classes, we can extend the result to

L(p) ≤ L(p̂)+
〈
p−p̂,

dL(p)
dp

∣∣∣
p=p̂

〉
+
1

2
∥p−p̂∥22C

with C now being the maximum value of the deter-
minant of the Hessian, which is equivalent to the
curvature of the loss. This is also similar to the in-
equalities for a β-smooth convex function (Bubeck
et al., 2015, §3.2). However, the constant β is not
really informative, unlike our case where we can
connect C to the curvature of the loss,

C = argmax
p

det
∣∣∣d

2L(p)
dp2

∣∣∣ . (5)

Coming back to KD, if we assume the teacher
probabilities are p ∈ [0, 1]K and the student prob-
abilities are f ∈ [0, 1]K , then the vanilla KD loss
is defined as l(f, p). As long as l(f, p) is convex
w.r.t. to p, the following inequality holds,

l(f, p0) ≤ l(f, p̂) + ⟨p0 − p̂,∇p̂l(f, p̂)⟩

+
1

2
∥p0 − p̂∥22C(f)

Now we replace the derivatives with the partial
derivatives as ∇p̂l(f, p̂) = ∂l(p)

∂p

∣∣∣
p=p̂

. The maxi-

mum curvature will be a function of the student
probabilities f ,

C(f) = argmax
p

det
∣∣∣∂

2l(f, p)

∂p2

∣∣∣ . (6)

Recall that l(f, p0) is the ideal KD loss, as de-
fined in Equation (1). Although we cannot estimate

it, we can now obtain an upper bound on it and
minimize this upper bound in our algorithm.

The most common KD loss used in the literature
is the KL divergence between the student and the
teacher probabilities DKL(p̂∥f), when we keep
τ = 1. For KL divergence l(f, p̂) =

∑
p̂ log(p̂/f)

the first order derivative is,

∇p̂l(f, p̂) = 1 + log p̂− log f

and C(f) = argmaxp∇2
p̂l(f, p̂) will not contain

any term involving f . This means we can exclude
this term from KD. Removing the constant terms,
the loss function becomes,

l(f, p0) ≤ l(f, p̂) + ⟨p0 − p̂,− log(f)⟩ (7)

As we do not have knowledge of p0, we cannot
compute the loss directly. But we can take an unbi-
ased estimate of p0 as y from the training data D,
enabling the computation of the Taylor series term.
As such, our KD loss is,

LKD = Ex,y∼D[l(f, p̂)] + ⟨y − p̂,− log(f)⟩
≥ Ex,y∼D[l(f, p0)] (8)

Following Mackey et al. (2018), an
O(n−1/(2k+2)) estimate of the teacher p with k
Neyman orthogonal factors gives us an O(1/

√
n)

estimation of the student f . For Vanilla KD (i.e.
k = 0), we see in Equation (2) that an O(1/

√
n)

estimation of the student must have a O(1/
√
n)

estimation of the teacher p, which is a more
conservative requirement. The Taylor series term
satisfies the condition of the first-order orthogonal
term (k = 1). That means now a O(1/n1/4)
estimate of teacher error ∥p − p0∥n is enough to
give us an O(1/

√
n) bound of the student error

∥f − f0∥n. O(1/n1/4) is a weaker convergence
guarantee than O(1/

√
n). This simply means now

we can train a good student even from a weaker
estimate of the teacher.
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Finally, combining this with the explicit classi-
fication loss Lclass for the student, the overall loss
function for some λ ∈ [0, 1] is

L = λLclass + (1− λ)LKD (9)

3 Training Strategy

Existing methods generally rely on a two-stage
approach: (1) pre-train the student model on the
entire or a truncated part of the same dataset as
the teacher (DLM ), and (2) perform fine-tuning or
KD on a task-specific dataset (DT ). This avoids
the costly fine-tuning of BERT on task-specific
datasets. For example, Turc et al. (2019) and Sun
et al. (2019a) perform simple pretraining of the
student model on DLM , while Sanh et al. (2019)
and Jiao et al. (2020) perform KD on DLM . While
Sanh et al. (2019) and Sun et al. (2020) only per-
form output layer fine-tuning on the task-specific
dataset, others perform KD on DT . The details of
the different stages of training are summarized in
Table 1.

To test our method, we choose to perform KD
on BERT language models (DLM ) from Hugging-
face (Wolf et al., 2020) and perform KD using
only the task-specific dataset DT . We do not use
a fine-tuned teacher on the task-specific dataset.
Fine-tuning of BERT is not only expensive but
may be unstable for small datasets (Zhang et al.,
2020). While the teachers without fine-tuning will
be weak, as described in Section 2.1, our proposed
approach is designed to be robust to this.

4 Experiments

We use datasets from GLUE (Wang et al., 2018) for
our experiments, specifically: SST-2 (Socher et al.,
2013) for sentiment classification; MRPC (Dolan
and Brockett, 2005), QQP, and STS-B for para-
phrase similarity matching (Conneau and Kiela,
2018); and MNLI (Williams et al., 2018), QNLI
(Rajpurkar et al., 2016), and RTE (Wang et al.,
2018) for natural language inference. We use KL
divergence loss and the first Taylor series term (see
Equation 8). For datasets with real-valued outputs,
we can use Platt scaling (Platt et al., 1999) with a
sigmoid function centered at the mean to convert it
to a probability. For example, for STSB the output
is a real number between 0 and 5, which we con-
vert the target t into a probability via Platt Scaling
p = 1/(1 + exp(−(t− 2.5))).

The teacher model is BERT-base (Devlin et al.,
2018), with 109 million parameters across 12 lay-
ers, and 768d hidden states. We conduct exper-
iments for three student models as listed in Ta-
ble 2. We take our baseline results for Vanilla
KD from the corresponding student model in Turc
et al. (2019). We present results for our method
based on: (a) a 4-layer student model, which we
compare with the 4-layer TinyBERT model (Jiao
et al., 2020) and MobileBERT (Sun et al., 2020);3

and (b) a 6-layer student model, which we simi-
larly compare against 6-layer TinyBert and Distil-
BERT (Sanh et al., 2019) models. We constrain
all experiments to run on a single RTX-3090 GPU
with 24GB RAM. The benchmark TinyBERT, Mo-
bileBERT, and Distilbert models were downloaded
from the Huggingface repository (Wolf et al., 2020)
and used without further modification. We present
the results of 6-layer TinyBERT from Zhou et al.
(2022).

The only hyper-parameter we optimize with our
method is λ, in the range [0, 1] at a step-size of 0.1,
with a fixed temperature of τ = 1 and learning rate
of η = 5× 10−5 (for the Adam optimizer).

In the results in Table 2, we register improve-
ments in the GLUE metrics using the modified loss
for all our student architectures against the base-
line of Vanilla KD (Turc et al., 2019). Relative to
the other KD methods, we get consistently better
results for smaller datasets like MRPC, RTE, and
STSB, but are slightly below the best KD mod-
els for the larger datasets, noting that these are all
architecture-specific and rely on additional fine-
tuning or data augmentation. The effect of dataset
size follows from the theory in Equation (2), which
shows that the teacher error typically follows the
sample complexity ∥p0 − p̂∥n ∈ O(n−1/(2k+2)),
with k = 0 being the best case (Mackey et al.,
2018). The difference between p0 and p̂ is large for
smaller n, and this teacher error in turn reflects in
the student error in Vanilla KD. I.e., our technique
for expanding the loss makes a large difference for
smaller n.

TinyBERT is overall the strongest performer for
larger datasets (> 10K samples) but achieves this
using expensive task-specific fine-tuning and data
augmentation. Data augmentation helps single-
sentence tasks more than paired tasks because it is
difficult to align the extra data in a pair according to

3MobileBERT uses a 6-layer architecture, but has similar
#parameters as our 4-layer model.
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Task # of P(M) QQP MNLI (m/mm) SST-2 QNLI MRPC RTE STSB
# of Training Samples (in K) 363.8 392.7 67.3 104.7 3.7 2.5 5.7

BERT base 109 87.9 84.6/84.9 93.0 91.2 90.4 71.4 89.8

Vanilla KD (2 x 128) 4 62.2 70.2/70.3 83.2 81.5 71.1 57.2 73.6
Our method (2 x 128) 4 64.4 71.7/70.5 83.4 81.6 72.1 62.1 76.2

Vanilla KD (4 x 312) 15 66.5 75.4/74.9 87.6 84.8 83.2 62.6 77.1
MobileBERTTINY 15 68.9 81.5/81.6 91.7 89.5 87.9 65.1 80.1

TinyBERT†
4 (4 x 312) 15 71.3 82.5/81.8 91.9 87.7 86.4 66.6 80.4

Our method (4 x 312) 15 68.8 80.6/80.1 89.9 86.5 88.1 66.7 82.2

Vanilla KD (6 x 768) 66 70.7 82.8/82.2 91.0 88.9 86.8 65.3 81.0
DistilBERT (6 x 768) 66 70.1 82.6/81.3 92.5 88.9 86.9 58.4 81.3
TinyBERT†

6 (6 x 368) 66 71.6 84.6/83.2 93.1 90.4 87.3 66.8 83.7
Our method (6 x 768) 66 71.4 82.8/82.5 91.6 89.3 89.0 67.5 84.0

Table 2: Results for different student models on the GLUE test dataset, with result blocks grouping models of the
same architecture and parameter base. The Vanilla KD results are of the corresponding student model from (Turc
et al., 2019). The numbers in parenthesis are the number of layers and hidden states, respectively. The second
column indicates the number of parameters (millions). The scores mentioned are F1 score for QQP & MRPC,
Pearson’s correlation for STSB, and accuracy for the rest of the datasets. † TinyBERT uses additional unlabelled
data compared to the other methods, conferring an advantage.

the task. This is why TinyBert performs better than
even BERT-base for SST2. We achieved the best re-
sults over tasks with small datasets, which is where
task-specific KD is more difficult. The simplicity
of our approach also makes it compatible with KD
for more complex tasks like machine translation
(Wang et al., 2021). A fairer comparison would be
against the results of TinyBert without data aug-
mentation, but those results were not reported in
their publication.

5 Conclusion

We have proposed a general approach to improve
KD on language models. We constrain the experi-
ments on BERT mainly due lack of benchmarks on
other LLMs as well as resource limitations. But any
LLM distillation will show a similar trend. Existing
KD methods are highly customized to the specifics
of the teacher model, and require additional pre-
training, fine-tuning, or data augmentation. Our
approach is much simpler and agnostic to both ar-
chitecture and task. We ran our experiments on
an RTX3090 GPU with 24GB RAM which cost
only $0.11 an hour, which is considerably cheap
compared to other approaches that include teacher
fine-tuning. We showed that our method is partic-
ularly effective on small datasets, and competitive
with other KD methods which are much more com-
putationally intensive and tailored to the teacher.
A possible reason could be since the fine-tuning
of BERT on small datasets like MRPC, STSB, or

RTE can be unstable (Zhang et al., 2020), eliminat-
ing it makes the KD more robust and improves the
results. All other methods such as TinyBert (Jiao
et al., 2020) or PatientKD (Sun et al., 2019b) use
fine-tuned teachers. DistilBert (Sanh et al., 2019)
does not use a fine-tuned teacher, but it is only
limited to students with a hidden state of 784 due
to the cosine loss it uses and lacks generalization
across architectures.

6 Ethical Issues

As we distill the knowledge from an existing model
(here BERT-base), our approach does not introduce
any extra ethical concerns during knowledge dis-
tillation. However, if a bias is already present in
the teacher model, it might get transferred to the
student model (Hooker et al., 2020). This is not
specific to our algorithm but is a common risk for
all types of knowledge distillation.

7 Limitations

A key limitation of our experiments is that we only
consider English corpora. The exclusive use of
English datasets is unlikely to have a substantive
effect on distillation performance, and we would
expect the results to transfer to other languages and
datasets, however, languages with rich morphology
may present modeling challenges arising from to-
kenization, that is, with many small word-pieces,
language modeling (and its distillation) is likely
to be a considerably harder task. As it stands, our
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work follows the standard evaluation protocols in
peer benchmarks e.g., Jiao et al. (2020), Sanh et al.
(2019), and Turc et al. (2019).

We only use BERT-base (Devlin et al., 2018)
as our teacher model and benchmark against stu-
dents that use it as a teacher model. For larger
teacher models such as BERT-large or GPT2 (Rad-
ford et al., 2019), the inference time as well as
memory requirement would be much higher, and
would necessitate larger GPU clusters. This is a
consequence of the cost of the forward pass with
the teacher model, rather than our distillation algo-
rithm, which has a much lighter footprint. We ar-
gue that the result from one transformer-based pre-
trained language model should generalize well to
other transformer-based pre-trained models. Thus
our results are representative, despite our smaller-
scale evaluation protocol.

Another shortcoming of transformer models,
in general, is their scalability to long text. In
this setting, model-agnostic knowledge distillation,
like our technique, enjoys a distinctive advantage.
We can incorporate techniques like Beltagy et al.
(2020) or Xiong et al. (2021) to speed up attention
in the student model enabling it to scale to long
texts, even when paired with a different architec-
ture for the teacher. Jiao et al. (2020) and Sanh
et al. (2019) rely on specific model internals during
distillation, and therefore the student model has to
be similar to the teacher.
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