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Abstract

Task-Oriented Dialogue (TOD) systems are de-
signed to carry out specific tasks by tracking
dialogue states and generating appropriate re-
sponses to help users achieve defined goals. Re-
cently, end-to-end dialogue models pre-trained
based on large datasets have shown promis-
ing performance in the conversational system.
However, they share the same parameters to
train tasks of the dialogue system (NLU, DST,
NLG), so debugging each task is challenging.
Also, they require a lot of effort to fine-tune
large parameters to create a task-oriented chat-
bot, making it difficult for non-experts to han-
dle. Therefore, we intend to train relatively
lightweight and fast models compared to PLM.
In this paper, we propose an End-to-end TOD
system with Task-Optimized Adapters which
learn independently per task, adding only small
number of parameters after fixed layers of pre-
trained network. We also enhance the perfor-
mance of the DST and NLG modules through
reinforcement learning, overcoming the learn-
ing curve that has lacked at the adapter learn-
ing and enabling the natural and consistent re-
sponse generation that is appropriate for the
goal. Our method is a model-agnostic approach
and does not require prompt-tuning as only in-
put data without a prompt. As results of the
experiment, our method shows competitive per-
formance on the MultiWOZ benchmark com-
pared to the existing end-to-end models. In par-
ticular, we attain state-of-the-art performance
on the DST task of 2.2 dataset.1

1 Introduction

Task-oriented dialogue systems are trained to
achieve specific goal to enhance efficiency and con-
venience in various fields such as customer ser-
vice centers and healthcare information retrieval.

*These authors contributed equally to this work.
1Our code is available at https://github.com/

sogang-isds/TOATOD.git

Task-oriented dialogue systems are divided into
key components: understanding the user’s intent
(NLU), tracking the current dialogue states (DST),
and generating responses based on previous ses-
sions (NLG). Pipeline-based systems separately
train each component, so they have the advantage
of optimizing each module and raising the perfor-
mance of a given task. User feedback is, however,
difficult to propagate to each module, and inputs
to the component is dependent on the result of the
previous module (Chen et al., 2017). Recently,
dialogue systems have been trained in an end-to-
end manner with transfer learning or pre-training
networks with large dialogue corpora. However,
building efficient end-to-end TOD systems requires
a large amount of data and has some limitations
due to parameter sharing. End-to-end models back-
propagate to transfer the gradients of the output and
end back to the entire neural network. They pose
an issue of parameter efficiency as updating all pa-
rameters for every downstream scenario. Also, it is
challenging to debug each task and take task-flow
characteristics into account.

Therefore, we propose a simple structure of
adding adapters to the core modules (NLU, DST,
NLG) of the TOD system as shown in Figure 1. By
using the adapters, it is possible to optimize each
task with only a small amount of training parame-
ters, remaining the pre-trained model’s parameters
fixed. Additionally, it is safe from the catastrophic
forgetting problem (French, 1999), which causes
pre-trained models to lose important skills acquired
during the pre-training process. The key is to apply
a transfer learning strategy that yields compact and
extensible downstream models in the dialogue sys-
tem (Houlsby et al., 2019). This makes it easy for
people to train large-scale end-to-end TOD mod-
els. Also, by applying REINFORCE (Sutton et al.,
1999), we attempt to reduce the expected score gap
caused by the small parameters of adapter com-
pared to the full fine-tuning. Specifically, we use
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[user] I need a place to dine in the center that s expensive. 
[system] I have several options for you; do you prefer 
African, Asian, or British food? [user] Any sort of food 
would be fine, as long as it is a bit expensive. Could I get 
the phone number for your recommendation?

NLU Adapter

DST Adapter

NLG Adapter

[user] I need a place to dine in the center that s expensive. 
[system] I have several options for you; do you prefer 
African, Asian, or British food? [user] Any sort of food 
would be fine, as long as it is a bit expensive. Could I get 
the phone number for your recommendation?

[user] Could I get the phone number for your 
recommendation?

[restaurant] area=centre
pricerange=expensive

There is an Afrian place named 
Bedouin in the centre. How 
does that sound?

[find_restaurant]TOATOD

Figure 1: Overview of the Task-Optimized Adapters for an End-to-End Task-Oriented Dialogue System

Joint Goal Accuracy, and weighted sum of BLEU
and Success rate as rewards for training DST and
NLG adapter. To best of our knowledge, this is first
work that use Joint Goal Accuracy as a reward for
E2E TOD system.

To address the aforementioned problems, we
propose a Task-Optimized Adapter for an end-to-
end Task-Oriented Dialogue system (TOATOD)
applying reinforcement learning to DST and NLG
tasks. In summary, our key contributions are as
follows:

• We present a new architecture that can debug
per task of the end-to-end model using the
separated adapters.

• Without updating the original parameters of
PLM, we train end-to-end TOD system effi-
ciently with a few trainable parameters.

• It is a novel approach to design a reward func-
tion not just for NLG, but also for DST task
with metric-aware reinforcement learning.

• The performance of the proposed approach
outperforms on the DST task of MultiWOZ
2.2 and shows comparable results to full fine-
tuning on the NLU and NLG tasks.

2 Background

Pipeline-based Task-Oriented Dialogue System
Conventional task-oriented dialogue systems usu-
ally based on the pipeline method, consisted of lan-
guage understanding (NLU), dialogue state track-
ing (DST), policy learning (POL), and language
generation (NLG). This kind of modularization al-
lows for each component to be optimized indepen-
dently, making it easier to update and understand
how the model is working. Pipeline-based systems,

however, have several limitations. Each of the mod-
ules train sequentially, so it is hard to align modules
to the common optimization targets (Liu and Lane,
2018). This makes the system more complex and
harder to backpropagate cumulated errors. The
performance of the previous components affects
the next modules, so if upper modules perform
poorly, errors that occurred earlier may propagate
and be amplified in downstream components (Liu
and Lane, 2018).
End-to-end Task-Oriented Dialogue System End-
to-end task-oriented dialogue systems, on the other
hand, are easier to optimize and train to directly
map the input to output in a single model. They
can leverage large amounts of data for robust learn-
ing and the entire system can be optimized under
end-to-end settings, which leads to better perfor-
mance. A general approach for building end-to-end
systems is to fine-tune pre-trained language models
(Budzianowski and Vulić, 2019). This approach
utilizes the strength of pre-trained networks, which
help the models to leverage the pre-trained knowl-
edge while also adapting to task-specific data. For
example, SimpleTOD (Hosseini-Asl et al., 2020)
solved task-oriented dialogue as causal language
modeling task using several versions of GPT (Rad-
ford and Narasimhan, 2018; Radford et al.).
Pre-training of Dialogue Language Model Re-
cently, methods with pre-training dialogue lan-
guage model (Wu et al., 2020; Zhang et al., 2020b;
Peng et al., 2021; Su et al., 2022; He et al., 2022a),
instead of fine-tuning pre-trained networks have
outperformed the previous baselines on the bench-
mark. For instance, SPACE-3 (He et al., 2022a)
captures the contextualized knowledge from large-
scale dialogue corpora by pre-training the unified
language model. However, there are still some is-
sues with these methods. A large amount of param-
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Figure 2: Architecture of the sub-modules in TOATOD.
A red line indicates the forward path during DST in-
ference. The DB result, based on the output of DST
inference, is used for NLG inference sequentially. All
of the adapter layers (NLU, DST, NLG) share the same
architecture.

eters is required for training backbone models like
BERT, T5 (Raffel et al., 2020), GPT, and UniLM
(Dong et al., 2019). As shown in Table 1, T5base
and T5small require the trainable parameters over
220M and 60M respectively. And they disregard
the task-flow features of task-oriented dialogue sys-
tems. Also, it’s still hard to debug per module be-
cause the model parameters are shared and jointly
optimized. PPTOD (Su et al., 2022) integrated
modules into a unified model with task-specific
prompts and alleviated the error accumulation in
plug-and-play way. Still, this method is not com-
pletely free from the interference among tasks due
to fully shared parameters.
Adapter tuning for NLP Since the pre-trained
models for NLP tasks have become mainstream,
they are mainly used for transfer learning down-
stream tasks. However, a parameter efficiency issue
has been raised because updating all PLM param-
eters is expensive for every downstream scenario.
To address the issue, the adapter module is pro-
posed to transfer PLM like BERT with parameter-
efficient tuning (Houlsby et al., 2019) and shows
comparable performance to full fine-tuning. The
main idea behind the adapter is to train the net-
work to the downstream task with task-specific pa-
rameters while maintaining the original pre-trained
parameters. The module is composed of two feed-
forward layers and a non-linear layer, which can be

inserted into the transformer blocks of an end-to-
end model. It projects d-dimensional input features
into a smaller dimension m, and then projects back
into the original dimension, so the total of param-
eters add per layer with biases is 2md + d + m.
The number of additional parameters per task can
be restricted by setting m < d (Li et al., 2021).
In most of the previous research, the adapter was
used for efficient learning. But in this approach,
we adapt the adapter modules not just for efficient
learning (Stickland and Murray, 2019), but also
task-optimized learning as recent studies that have
mainly focused on separating parameters (Lin et al.,
2021; Feng et al., 2022; Bapna and Firat, 2019).
Reinforcement learning for Text Generation Al-
though token-based supervised learning is a widely
adopted training method in text generation tasks,
as highlighted by Ranzato et al., 2016, there are
two major problems associated with this approach.
The first problem is the exposure bias problem,
where during training, the model is exposed to the
ground-truth outputs, thus allowing it to learn to
generate text that is similar to the training data.
However, during evaluation, the model is not ex-
posed to the ground-truth outputs and instead, gen-
erates texts based on the previous words generated
by the model itself. This can lead to errors and
a significant deviation in the generated text from
the training data. The second problem is the token-
level loss problem, where the training objective
function is based solely on individual words’ pre-
diction, neglecting the predicted token sequence’s
overall coherence and fluency.

To address these problems, researchers have
applied reinforcement learning to text generation
tasks (Ranzato et al., 2016; Li et al., 2016; Paulus
et al., 2018; Chen et al., 2020; Wang et al., 2021; Ye
et al., 2022) using metrics such as BLEU (Papineni
et al., 2002) or ROUGE (Lin, 2004) as rewards
for sequence-level training. In our study, we also
use the REINFORCE method and task-oriented di-
alogue metrics to continually train our model after
supervised learning, not only to address these chal-
lenges but also to mitigate performance degradation
caused by the use of an Adapter.

3 Methodology

3.1 Adapter for each task (NLU, DST, NLG)

The Adapter module is designed to adapt the pre-
trained network for each of the tasks (NLU, DST,
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Pre-trained Trainable per task

Model T5base T5small TOATODbase TOATODsmall

# of Prams 220M 60M 36M (14%) 7.9M (12%)

Table 1: This table shows the size of the pre-trained T5
model (frozen shared parameters) and trainable Adapter
per task in our models. We do not experiment with a
large model, because the trainable parameter size of
TOATODlarge is bigger than T5base.

NLG) in a task-oriented dialogue system. As illus-
trated in Figure 2, the adapters are inserted after
the feed-forward layer following the multi-head
attention layer of the transformer blocks of the
end-to-end model. It enables the model to learn
task-specific representations while preserving the
shared parameters learned during pre-training. As
described in Table 1, our model consists of large-
size frozen shared parameters per task and small
size of trainable parameters that account for about
14% of the entire network. While original net-
work’s parameters are frozen, the jth adapter of
task i ∈ {NLU, DST, NLG}, Aij computes as be-
low:

Aij = LN (Wup ∗ ReLU (Wdown ∗ Hj) + Hj) (1)

The output of the jth feed-forward layer with
residual connection in the transformer block is rep-
resented as Hj ∈ Rn×d, where n is the input di-
mension, and d is the hidden dimension. As shown
in Figure 2, the overall architecture of the adapter
module includes multiple feed-forward projections,
referred to as down-projection and up-projection,
followed by layer normalization (LN). The down-
projection with Wdown ∈ Rd×h projects the input
Hj , which is passed by the ReLU activation func-
tion, and then the up-projection with Wup ∈ Rh×d

projects the output back to the original dimension.
The bottleneck dimension h is a hyperparameter to
project the original input to a smaller dimension.
And each adapter has a residual connection to avoid
vanishing gradient (Rebuffi et al., 2017; He et al.,
2016).

3.2 Metric-Aware Reinforcement Learning
for DST & NLG module

The overall loss function for the metric-aware rein-
forcement learning is given by the equation (2):

J (θ) = α× Jpolicy (θ) + (1− α)× CE (y, ŷ) (2)

The equation describes how the network updates
the parameters in order to maximize both the like-
lihood of the generated response (token loss) and
the quality of the response (policy loss). The token
loss can be described as a categorical cross-entropy
loss. ŷ denotes the predicted probability of ground
truth and y is the target probability. The token loss
CE(y, ŷ), which measures how well a set of pre-
dicted token probabilities match the target tokens
for a given context of dialogue when reinforcement
learning. By applying REINFORCE method, the
network can update weights towards the direction
that allows the model for getting more rewards even
when the reward function is non-differentiable.

Jpolicy (θ) = − logP (ŷ)×Reward(y, ŷ) (3)

The policy loss Jpolicy(θ) is introduced to mea-
sure of how well the model can generate a token
sequence with high probabilities that result in high
rewards. ŷ denotes the predicted token sequence by
model. The policy loss described in the equation
(3) is calculated as the negative log probability of
the token sequence that has the highest probability
multiplied by the reward.

The parameter α in the overall loss (2) is a hyper-
parameter, that is a scalar value between 0 and 1 to
weigh the importance of these losses. In this way,
the model is trained to predict the correct labels
(categorical cross-entropy loss) and to make good
decisions that result in high rewards (policy loss)
at the same time. We define the reward functions
of the DST and NLG modules as follows:

RewardDST = JGA(y, ŷ) + 1 (4)

The RewardDST is calculated as the sum of the
Joint Goal Accuracy (JGA) and a constant value
of 1. The JGA measures how well the model pre-
dicted the values for every slot in the dialogue turns.
Using JGA as a reward, the model is encouraged to
accurately track the state of the dialogue, which is
crucial for generating appropriate responses and im-
proving the performance of task-oriented dialogue
systems.

RewardNLG =(1− β)× E[BLEU(yu, ŷu)]

+ β × Success(y, ŷ ) + 1 (5)

In the equation (5), BLEU score and Success rate
are used as rewards to guide the learning process
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of NLG module. yu denotes the ground truth to-
ken sequence of each utterance, and ŷu denotes the
predicted token sequence. To calculate the success
rate, we apply the batch of a session-level, not an
utterance-level. y and ŷ without u mean the session
level ground truth and prediction. The weighting
factor β is adjusted to balance these two metrics.
The hyperparameter β may have to be carefully
chosen because there is a trade-off relationship be-
tween these two metrics in the RL setting (Wu et al.,
2021), where increasing one metric may come at
the cost of decreasing the other. We experiment to
choose α and β on the Section 6.1.3 and 6.1.4.

4 Experimental Setup

4.1 Datasets

We experiment our method for dialogue state track-
ing (DST) and end-to-end response generation
(NLG) tasks on the MultiWOZ 2.1 and 2.2 datasets,
and the intent prediction (NLU) task with the Bank-
ing77, CLINC150, and HWU64 datasets.
MultiWOZ - 2.1, 2.2 The MultiWOZ
(Budzianowski et al., 2018) dataset has been
widely used to evaluate the performance of TOD
systems. It consists of 8438, 1000, and 1000 for
training, dev, test sets with multi-turn dialogues,
collected through a Wizard-of-Oz (WOZ) setup.
The dialogues cover a wide range of domains
and topics. MultiWOZ 2.2 (Zang et al., 2020)
is the improved version of MultiWOZ 2.1 (Eric
et al., 2020) that has corrected annotation errors,
inconsistencies, and ontology issues, also added
span annotations to standardize.
Banking 77 (Casanueva et al., 2020) This dataset
is a collection of 77 real-life customer banking
service queries. It consists of 13,083 utterances.
Each query is labeled with a single intent, however,
it is hard to differentiate because they correspond
to very similar tasks.
CLINC150 (Larson et al., 2019) This dataset is
multi-domain dataset which contains 23,700 utter-
ances that cover 150 intent classes over 10 domains.
HWU64 (Liu et al., 2019) This dataset consists
of 25,716 examples. It maps user utterances to
structured, but mode abstract. The data provides
annotation with the 64 intents from 21 different
domains.

Model Backbone Model
(Trainable Prams)

MultiWOZ
2.1

MultiWOZ
2.2

TRADE - 46.0 45.4

DS-DST BERTbase (110M) 51.2 51.7

DST-Picklist BERTbase (110M) 53.3

TripPy BERTbase (110M) 55.3
ConvBERT
+DG+Multi BERTbase (110M) 58.7
Trippy
+SaCLog BERTbase (110M) 60.61

SimpleTOD DistilGPT-2 (82M) 56.45

UniLM UniLM (340M) 54.25* 54.25*

AG-DST PLATO-2 (310M) 57.26 57.26

SPACE-3 UniLM (340M) 57.50 57.50

D3STbase T5base (220M) 54.2 56.1

D3STlarge T5large (770M) 54.5 54.2

SDP-DST T5base (220M) 56.66 57.60

PPTODbase T5base (220M) 57.10

PPTODlarge T5large (770M) 57.45

D3STXXL T5XXL (11B) 57.80 58.7

TOATODsmall T5small (7.9M) 53.02 61.92
TOATODbase T5base (36M) 54.97 63.79

Table 2: Joint Goal Accuracy for DST results. We use
the best models after hyperparameter tuning and apply-
ing REINFORCE. Our models get the slightly higher
score on the 2.2 dataset. Trainable Params denotes the
number of trainable parameters of the network. The
values with * are from SPACE-3 (He et al., 2022a).

4.2 Baselines & Settings

For the DST task, we compare our models with
other strong baselines including TRADE (Wu
et al., 2019), DS-DST (Zhang et al., 2020a),
DST-Picklist (Zhang et al., 2020a), TripPy (Heck
et al., 2020), ConvBERT+DG+Multi (Mehri et al.,
2020a), TripPy+SaCLog (Dai et al., 2021), Simple-
TOD (Hosseini-Asl et al., 2020), AG-DST (Tian
et al., 2021), UniLM, SPACE-3, D3ST (Zhao
et al., 2022), SDP-DST (Lee et al., 2021), and PP-
TOD. On the NLG task, we choose models trained
on PLM in an end-to-end setting such as DoTS
(Jeon and Lee, 2021), PPTOD, UBAR (Yang et al.,
2021), MTTOD (Lee, 2021), RSTOD (Cholakov
and Kolev, 2022), GALAXY (He et al., 2022b),
MinTL (Lin et al., 2020), SOLOLIST, BORT (Sun
et al., 2022a) and Mars (Sun et al., 2022b). For
the NLU task, we compare TOATOD with existing
baselines of each dataset.

We use T5small and T5base as backbone mod-
els initialized with PPTOD (Su et al., 2022)’s pre-
trained weights, which are trained on a large di-
alogue dataset. As described in the Appendix A,
the bottleneck dimension h of the adapter is 1/2 of
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Model Backbone Model
(Trainable Params) MultiWOZ 2.1 MultiWOZ 2.2

Inform Success BLEU Combined Inform Success BLEU Combined
DoTS BERTbase (110M) 86.65 74.18 15.90 96.32 - - - -

PPTOD T5base (220M) 87.09 79.08 19.17 102.26 - - - -

UBAR GPT2 (1.5B) 95.70 81.80 16.50 104.94 83.4 70.3 17.6 94.4
MTTOD T5base (360.9M)* 90.99 82.08 19.68 106.22 85.9 76.5 19.0 100.2
RSTOD T5small (105.5M)* 93.50* 84.70* 19.24* 108.34* 83.5 75.0 18.0 97.3
GALAXY UniLM (340M) 95.30 86.20 20.01 110.76 85.4 75.7 19.64 100.2
MinTL BARTlarge (440M) - - - - 73.7 65.4 19.4 89.0
SOLOIST GPT2 (1.5B) - - - - 82.3 72.4 13.6 90.9
BORT T5small (60M) - - - - 85.5 77.4 17.9 99.4
Mars T5small (60M) - - - - 88.9 78.0 19.9 103.4
TOATODsmall T5small (7.9M) 92.10 80.40 18.29 104.54 85.80 74.00 18.00 97.90
TOATODbase T5base (36M) 97.00 87.40 17.12 109.32 90.00 79.80 17.04 101.94

Table 3: Inform, Success, BLEU, Combined Score for NLG results. All results of other models are cited from the
official leaderboard. The values with * are from RSTOD. For the MultiWOZ 2.2 evaluation, we used our models
trained on the MultiWOZ 2.1 after replacing the DST-optimized adapter with those trained on MultiWOZ 2.2.

the hidden dimension of the T5 model. We use the
Adafactor (Shazeer and Stern, 2018) optimizer with
15 epochs and set batch size as 16, learning rate of
1e-4 during supervised learning of DST and NLG
tasks. We sweep a wide range of learning rates:
{1e-5, 1e-6, 1e-7}. For reinforcement learning, we
train models 10 epochs for DST and 3 epochs for
NLG. We do not train NLG-optimized adapters for
the MultiWOZ 2.2, because there are not significant
changes of response annotations from MultiWOZ
2.1 and intend to train robust models with noised
dataset.

We follow the preprocessing method from
UBAR to delexicalize slot values for each system
responses. We evaluate our models using the older
version of the standardized evaluation script for
MultiWOZ 2.1, and the newly opened version for
MultiWOZ 2.2, released by Nekvinda and Dusek,
2021. It has been adopted by the official MultiWoZ
dataset github 2. Other implementation details are
described in Appendix C.

5 Experimental Results

5.1 Dialogue State Tracking

We evaluate our models on the DST task with the
MultiWOZ 2.1 & 2.2 datasets. We compute Joint
Goal Accuracy on the test set, which measures how
many values are filled accurately compared to the
ground truth states for all slots. Joint Goal Accu-
racy is considered as more difficult and important
metric in most research (Zhou and Small, 2019;

2https://github.com/budzianowski/multiwoz

Dey et al., 2022), because once wrong prediction
has been made, it cannot get the score at that turn.

5.1.1 Evaluation Result

We compare our best models, TOATODsmall and
TOATODbase to the models trained with a pre-
trained network. Table 2 shows that our models are
competitive to the end-to-end models on the current
benchmark. In the 2.1 dataset, our models show a
relatively good performance, despite the small num-
ber of trainable parameters. As shown in the Table
5, the Joint Goal Accuracy of TOATODbase only
with task-optimized adapter (SL) is 53.33, which
is slightly lower than other models using T5base as
backbone. So, we reduce the performance degra-
dation applying metric-aware REINFORCE and
report the final results. Trainable parameters of our
models are less than 1/2 of the models with the
smallest parameters. The result implies that the
adapter module helps the network more adaptable
to the DST task by only activating a few parts of
the model. Because of relatively small parameters,
our model is more robust to overfitting problem
with confused labels. As mentioned in Section 4.1,
MultiWOZ 2.2 is the cleaned version of 2.1 dataset,
so the performance is better in the 2.2. Among
the top results on the 2.2 dataset, our models ob-
tain state-of-the-art performance. It demonstrates
that TOATOD optimizes well on the given task
remaining the prior knowledge learned from the
pre-trained network.
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5.2 End-to-End Response Generation

We test our methods with end-to-end response gen-
eration (NLG) task on the MultiWOZ 2.1 & 2.2 as
in DST evaluation. Four metrics are used to mea-
sure the quality of generated responses. We mea-
sure if the system provides the appropriate entity
(Inform rate), answers all the requested informa-
tion (Success rate), and responds fluently (BLEU
score). And the Combined Score for end-to-end
response generation is computed as ’BLEU+0.5 ×
(Inform+Success)’. Under the end-to-end settings,
the models have to predict proper dialogue states
and then generate responses based on the states.

5.2.1 Evaluation Result
From Table 3, our models achieve comparable re-
sults (1.x point different from SOTA model) in all
datasets. The adapter module helps each part of the
model be fine-tuned independently, therefore we
can optimize the DST and NLG task respectively.
Our model performs well on NLG task based on the
belief states from DST modules and base knowl-
edge gained from the large-scale dialog dataset
during pre-training. TOATODbase attains the best
score on the Inform and Success rate. It shows
that the reinforcement learning of our approach is
effective for adjusting trade-off problem between
BLEU score and others.

5.3 Intent Classification

Model Banking77 CLINC150 HWU64

BERT-FIXED 87.19’ 91.79’ 85.77’
BERT-DG 91.75* 95.98* 90.89*
cist-dial (mslm) 91.17* 95.80* 91.36*
USE 92.81’ 95.06’ 91.25’
USE+CONVERT 93.36’ 97.16’ 92.62’
ConvBERT+Pre+Multi 93.44* 92.38* 97.11*
SPACE 2.0 94.77* 97.80* 94.33*
TOATODsmall 92.40 98.45 90.42
TOATODbase 92.17 98.01 90.79

Table 4: Accuracy score (%) on all three NLU task
dataset with full training. The values with ’ are from
banking77 paper (Casanueva et al., 2020), and * are
from the leaderboard for DialoGLUE paper (Mehri et al.,
2020b) and benchmark 3.

We test our models on the NLU task with Bank-
ing77, CLINC150, and HWU64. Intent prediction
is the task to identify the intent behind a given in-

3https://eval.ai/web/challenges/
challenge-page/708/leaderboard/1943

put. The task is normally framed as a classification
problem, so we set the metric as turn accuracy.

5.3.1 Evaluation Result

From Table 4, while our models do not achieve the
highest score on NLU task, it is important to note
that they perform well in relation to the size when
compared to other models. This highlights the ef-
fectiveness of our task-optimized adapter approach
in achieving a balance between model performance
and efficiency.

6 Further Analysis and Discussion

6.1 Reinforcement Learning

6.1.1 w/o Reinforcement Learning

Task DST NLG

Metrics JGA Slot F1 Inform Success BLEU Combined

SL (2.2) 62.92 93.72 85.30 77.00 18.44 99.59

RL (2.2) 63.79 93.96 90.00 79.80 17.04 101.94

SL (2.1) 53.33 91.68 88.90 81.40 18.73 103.88

RL (2.1) 54.97 92.01 97.00 87.40 17.12 109.32

Table 5: Task performance of TOATODbase before
and after applying REINFORCE. SL means supervised
learning and RL means reinforcement learning. The test
results of the TOATODsmall is attached to Appendix B.

Described on the Table 5, after applying reinforce-
ment learning, the performance of DST and NLG
modules are enhanced. Models with reinforcement
learning obtain best JGA on the DST task and
get the highest Combined Score on the NLG task.
The BLEU scores fall slightly but the Combined
Score rise with Inform and Success, which means
that incorporating reinforcement learning into the
training process leads our model to complete tasks
more efficiently. We conduct hyperparameter tun-
ing only for the TOATODbase, so there is some gap
in the degree of performance improvement between
TOATODsmall and TOATODbase.

6.1.2 Hyperparameters of REINFORCE

The hyperparameter α is used for balancing the
importance between cross-entropy loss and policy
loss. We re-train DST and NLG modules by opti-
mizing the mixed objective function to get higher
rewards. The second hyperparameter β is a scaling
factor to control the trade-off between BLEU score
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α 1.0 0.7 0.9 1.0 1.0 0.3 0.5 0.7 1.0
β 0.4 0.5 0.5 0.5 0.6 0.7 0.7 0.7 0.7
Inform 97.50 97.40 97.50 97.50 97.50 93.40 97.00 97.30 97.50
Success 85.70 86.40 85.90 85.70 85.80 85.40 87.40 87.10 86.10
BLEU 16.01 16.35 16.07 16.03 16.04 18.36 17.12 16.52 16.10
Combined 107.67 108.25 107.77 107.63 107.69 107.76 109.32 108.72 107.90

Table 6: Hyperparameter experiment with α and β on the NLG task. We experiment TOATODbase on the MultiWOZ
2.1.

and Success rate for NLG module. The BLEU
score is calculated based on the number of match-
ing n-grams between the generated text and the
reference text. A higher score indicates that the
generated text is more similar to the label text.
Success rate measures the proportion of dialogues,
where the model successfully completes the task.
A higher success rate means the model is better at
achieving the user’s goal of the dialogue. In some
cases, however, the model may generate text that is
close to the reference text (high BLEU score) but
not relevant to the current dialogue (low Success
rate). So, we aim to reduce the gap between two
metrics via hyperparameter tuning.

6.1.3 α of DST-optimized adapter

α 1.0 0.9 0.7

JGA 54.97 54.96 54.76
Slot F1 92.01 92.02 91.95

Table 7: Hyperparameter experiment with α on the DST
task. We test TOATODbase on the MultiWOZ 2.1.

In the Table 7, the result of α experiment on DST
task indicates that 1.0 yielded the best performance,
suggesting the significance of the policy loss in
the overall loss function. By maximizing policy
loss, the model is encouraged to make decisions
that result in high rewards, which improves the
performance of the DST task.

6.1.4 α and β of NLG-optimized adapter

We experiment with several combinations of α and
β within {α: 0.3, 0.5, 0.7, 0.9, 1.0 / β: 0.4, 0.5,
0.6, 0.7}. Regardless of hyperparameters, perfor-
mances improve after applying the reinforcement
learning. The hyperparameters of α=0.5 and β=0.7,
result the best Combined Score, which is 5.44 point
higher than the performance of the supervised learn-
ing. As shown in the Figure 3, on the experiment

Figure 3: Effect of hyperparameter α when β is fixed
(β=0.7). At the point of α is 0.5, trade-off issue occurs
on MultiWOZ 2.1.

after removing impact of CE loss (α=1), we found
that the higher the β, success rate increases com-
pared to BLEU score as we expected.

As shown in Table 6, when the β is fixed, the
bigger weight (smaller α) on the CE loss ensures
the higher BLEU score. On the other hand, the
success rate started to decline from the certain point.
Trade-off issue appears at this point. Therefore, α
and β need to be properly tuned in NLG task for
good performance.

7 Conclusion

We propose TOATOD, task-optimized adapters for
an end-to-end task dialogue system. By adapting
task-optimized adapters, we utilize the end-to-end
models without updating the pre-trained param-
eters and enabling debugging per task, which is
different from previous research. In addition, we
apply REINFORCE algorithm with metric-aware
reward function directly not only on the NLG task
but also DST task to prevent score degradation. As
a result, we attain comparable performance to the
previous SOTA models on every benchmark with
very small number of trainable parameters. For the
DST task of MultiWOZ2.2, our TOATOD model
outperforms the current SOTA systems.
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Limitations

We train the task-optimized adapters based on the
pre-trained weights of dialogue LM. Therefore, if
applied to other dialogue tasks such as chit-chat
and conversational QA system, the performance
could be lower than that shown in our research.
And we need future works to clarify the reason
why the performance was better on the MultiWOZ
2.2 dataset, which is expected that our model does
not overfit to the confused labels. Our model infer-
ences in on the end-to-end manner, but trains like
modular system for each task. End-to-end learning
is currently under study. We could adapt the multi-
task end-to-end learning to our method, which may
lead to the better performance. Also, we could ana-
lyze the inner working of task-optimized adapters
applying XAI technologies.
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Appendices

A Units of Adapters

Dim 1/2 1/4 1/8

JGA 51.59 51.11 50.43

Slot f1 91.02 91.07 90.40

Trainable Params 7.9M 7.2M 6.6M

Table 8: Adapter units experiment results. We test dif-
ferent bottleneck dimension of adapter module on the
DST task.

In this experiment, we evaluate the performance
with several bottleneck dimensions, h = 256, 128,
64 with TOATODsmall, which is 1/2, 1/4, 1/8 size
of T5small’s embedding dimension of 512. The
main focus of the experiment is to investigate the
effect of the bottleneck dimension h of the adapter
module on the performance of the model. To evalu-
ate the performance of the model, we use the Joint
Goal Accuracy for DST task. We keep the other hy-
perparameters constant across all the experiments,
including learning rate of 1e-4 and evaluate the
performance on the test set of MultiWOZ 2.1. We
report the result on the Table 8.

The result implies that there is a trade-off be-
tween the bottleneck dimension and the perfor-
mance of the model. As the bottleneck dimension
increases, the performance of the model also im-
proves. The best performance is achieved with a
bottleneck dimension of 256, where the JGA is
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51.59. It is important to carefully choose the bottle-
neck dimension when using the adapter module in
the task-oriented dialogue system. As described in
the Table 1, the trainable parameters of our model
with bottleneck dimension of 256 is still signifi-
cantly smaller than the PLM’s parameters, so we
choose the size of 1/2.

B w/o Reinforcement Learning of
TOATODsmall

Task DST NLG

Metrics JGA Slot F1 Inform Success BLEU Combined

SL (2.2) 61.29 93.46 78.80 69.50 18.46 92.61

RL (2.2) 61.92 93.65 85.80 74.00 18.00 97.90

SL (2.1) 52.58 91.31 84.30 74.40 18.82 98.17

RL (2.1) 53.01 91.61 92.10 80.50 18.28 104.58

Table 9: Task performance of TOATODsmall before
and after applying REINFORCE. SL means supervised
learning and RL means reinforcement learning.

C Implementation Details

We used 8 A100 (80G) GPUs, but they were fully
used during only reinforcement learning. During
supervised learning, we used 4 GPUs. While re-
inforcement learning of the DST task-optimized
adapters, we set learning rate as 1e-5, and batch
size as 32 (utterance-level). On the contrary, while
reinforcement training of the NLG task-optimized
adapters, we set learning rate as 1e-6 and batch
size as 4 (session-level). During the entire training
process, we set random seed as 42. And for the
NLU task, we used 1 RTX A5000 (24GB) GPU
and trained models without reinforcement learning.
We set batch size as 64 and single run with random
seeds. When training T5small and T5base for the
Banking 77 and CLINC150, we used learning rates
of 0.001 and 0.15. And we used learning rates of
0.01 and 0.1 for the T5small and T5base with the
HWU64.

7367



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Limitations

�3 A2. Did you discuss any potential risks of your work?
Limitations

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
3

�3 B1. Did you cite the creators of artifacts you used?
2, 3

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
4

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
2

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. All of the datasets used in our study are from previous studies and do not have
privacy issues.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
4

C �3 Did you run computational experiments?
4.2 & Appendix C

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Table 1 & Appendix C

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

7368

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
4.2 & 6 & Appendix C

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Appendix C

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
4.2

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

7369


