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Abstract

Recently, a series of works have looked into
further improving the adapter-based tuning by
manually designing better adapter architectures.
Understandably, these manually designed so-
lutions are sub-optimal. In this work, we pro-
pose the Learned Adapter framework to auto-
matically learn the optimal adapter architec-
tures for better task adaptation of pre-trained
models (PTMs). First, we construct a unified
search space for adapter architecture designs.
In terms of the optimization method on the
search space, we propose a simple-yet-effective
method, GDNAS, for better architecture op-
timization. Extensive experiments show that
our Learned Adapter framework can outper-
form the previous parameter-efficient tuning
(PETuning) baselines while tuning comparable
or fewer parameters. Moreover: (a) the learned
adapter architectures are explainable and trans-
ferable across tasks. (b) We demonstrate that
our architecture search space design is valid.

1 Introduction

Increasingly large pre-trained models (Han et al.,
2021; Devlin et al., 2019; Peters et al., 2018; Liu
et al., 2019b; Radford and Narasimhan, 2018; Raf-
fel et al., 2019) built upon the Transformer archi-
tecture (Vaswani et al., 2017) have been emerging
and achieving the state-of-the-art (SOTA) results
on a variety of downstream tasks (Gao et al., 2023;
Zhu et al., 2023; Li et al., 2019; Zhu, 2021b; Zuo
et al., 2022; Zhang et al., 2022; Guo et al., 2021b;
Zhu et al., 2021a; Sun et al., 2020; Zhu et al., 2019).
Despite their effectiveness, these large-scale mod-
els also bring the curse of prohibitive computation
(Zhu et al., 2021c; Zhu, 2021c; Sun et al., 2022)
and storage costs during the adaptations to down-
stream tasks due to the gradient computation of the
whole model and the giant size of the fine-tuned
checkpoint.
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Figure 1: Overall comparison between our Learned
Adapter framework and baselines. The x-axis is the
number of tunable parameters, and the y-axis is the
average performance on the GLUE benchmark with
RoBERTa-large backbone. The details can be found in
Section 5.

Recently, parameter efficient tuning (PETuning)
has raised much attention in the research field since
it can only train a small portion of PTMs and keep
the vast majority of parameters frozen, thus al-
leviating the computation costs during full fine-
tuning. A series of studies (Houlsby et al., 2019;
Pfeiffer et al., 2021; Mahabadi et al., 2021; Ben-
Zaken et al., 2021; Hu et al., 2021; Guo et al.,
2021a; Li and Liang, 2021; Lester et al., 2021)
has verified that PETuning can achieve competi-
tive performance compared to conventional fine-
tuning with very few trainable parameters, result-
ing in a considerable reduction in model adapta-
tion costs. Adapter-based methods (Houlsby et al.,
2019; Pfeiffer et al., 2021; Mahabadi et al., 2021;
He et al., 2021) inject newly-introduced layers after
or around the attention or feed-forward modules
of the Transformer block, and yield promising re-
sults by fine-tuning a small portion of the PTM’s
parameters.

Recently, a branch of recent research has ad-
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Figure 2: The overall framework of our Learned Adapter.

vanced the understanding of adapter-based tuning
more deeply and improved the adapters’ archi-
tectures to improve parameter efficiency further.
Adaptable adapters (Moosavi et al., 2022) propose
that adapters at different layers should have differ-
ent activation functions. Thus they fit the rational
activation functions to downstream tasks during pa-
rameter tuning. AdapterDrop (Rücklé et al., 2020)
tries to reduce the number of adapters’ parameter
number by not inserting adapters on the lower lay-
ers. He et al. (2021) bridge connections among
different PETuning approaches to form a unified
framework and further propose to insert adapters
in parallel to the modules of the Transformer block.
Jie and Deng (2022) and Sung et al. (2022) propose
to add encoding operations between the projection
layers of an adapter and achieve better PETuning
performances. The above empirical evidence im-
plies that altering the adapters’ architecture designs
can help to improve the PETuning performances of
adapters with even fewer tunable parameters. Pre-
dictably, such an optimal architecture is difficult to
construct manually and may vary across different
PTM backbones and tasks. Therefore, we propose
to search for the optimal architecture of adapters
automatically.

We present the Learned Adapter framework to
search for the optimal architecture of adapters auto-
matically. We first construct a unified search space
(Figure 2) that considers various design choices of
adapters, including the activation functions, encod-
ing operations, and how the adapters are connected
to the PTM backbone. In terms of the specific

methodology for optimization on the search space,
make a simple-yet-effective modification to the op-
timization method in DARTS (Liu et al., 2019a),
which is better at identifying the proper compo-
nents for adapters at different intermediate layers.

We conduct extensive experiments to study
the effectiveness of our Learned Adapter frame-
work. The experimental results show that with
0.068% parameters, we can recover 99.5% fine-
tuning performances on the GLUE (Wang et al.,
2018) benchmark. Moreover, the searched archi-
tecture outperforms the manually designed PETun-
ing baselines while tuning fewer parameters. Fig-
ure 1 depicts the overall comparison between our
Learned Adapter and the baselines. Furthermore,
the learned architectures of adapters are transfer-
able across tasks, which significantly strengthens
the usefulness of the searched structures. Further
experiments demonstrate that our newly proposed
search space for adapters is valid.

2 Related work

Adapter-based tuning. One of the most important
research lines of PETuning is adapter-based tuning.
Adapter (Houlsby et al., 2019) inserts adapter mod-
ules with bottleneck architecture between every
consecutive Transformer (Vaswani et al., 2017) sub-
layers. AdapterFusion (Pfeiffer et al., 2021) only
inserts sequential adapters after the feed-forward
module. Adapter-based tuning methods have com-
parable results with model tuning when only tuning
a fraction of the backbone model’s parameter num-
ber. Due to their amazing results on PETuning, a
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branch of literature has investigated the architec-
ture of adapters in search of further improvements.
He et al. (2021) analyze a wide range of PETuning
methods and show that they are essentially equiv-
alent. They also propose the general architecture
of PETuning. AdapterDrop (Rücklé et al., 2020)
investigates the efficiency of removing adapters
from lower layers. Adaptive adapters (Moosavi
et al., 2022) investigate the activation functions of
adapters and propose to learn the activation func-
tions of adapters via optimizing the parameters of
rational functions as a part of the model parame-
ters. Compacter (Mahabadi et al., 2021) uses low-
rank parameterized hypercomplex multiplication
(Le et al., 2021) to compress adapters’ tunable pa-
rameters. There is also work (Sung et al., 2022;
Jie and Deng, 2022) trying to add different encod-
ing operations, like self-attention operations and
convolutions between the bottleneck structure of
adapters, and achieve better performances.

Our work complements this branch of literature
by investigating: (a) whether and how the adapter
architectures affect the PETuning performances,
and whether different layers of PTMs need different
adapter architectures; (b) whether we can obtain
better adapter architectures via neural architecture
search.

Other PETuning methods Another main research
line of PETuning is the prompt-based tuning that
inserts some additional soft prompts into the hid-
den states instead of injecting new neural modules
to PTMs. Prompt tuning (Lester et al., 2021) and
P-tuning (Liu et al., 2022) insert a soft prompt
to word embeddings only, and can achieve com-
petitive results when applied to supersized PTMs.
Prefix-tuning (Li and Liang, 2021) and P-tuning
v2 (Liu et al., 2021) insert prompts to every hidden
layer of PTM. IDPG (Wu et al., 2022) uses the
prompt generator with parameterized hypercom-
plex multiplication (Le et al., 2021) to generate a
soft prompt for every instance. There are also some
other popular PETuning methods, such as BitFit
(Ben-Zaken et al., 2021) which only tunes the bias
terms, LoRA (Hu et al., 2021) which optimizes
low-rank decomposition matrices of the weights
within self-attention layers.

Neural architecture search In the early attempts,
neural architecture search (NAS) requires massive
computations, like thousands of GPU days (Zoph
and Le, 2017; Zoph et al., 2018; Liu et al., 2018).
Recently, a particular group of one-shot NAS, led

by the seminal work DARTS (Liu et al., 2019a)
has attracted much attention. DARTS formulates
the search space into a super-network that can ad-
just itself in a continuous space so that the network
and architectural parameters can be optimized al-
ternately (bi-level optimization) using gradient de-
scent. A series of literature try to improve the
performance and efficiency of DARTS, such as Xie
et al. (2019), Chen et al. (2021), Chu et al. (2021),
Nayman et al. (2019). SNAS (Xie et al., 2019) re-
formulate DARTS as a credit assignment task while
maintaining the differentiability. Gao et al. (2020)
penalize the entropy of the architecture parameters
to encourage discretization on the hyper-network.
P-DARTS (Chen et al., 2021) analyze the issues
during the DARTS bi-level optimization, and pro-
pose a series of modifications. PC-DARTS (Xu
et al., 2021) reduces the memory cost during search
by sampling a portion of the channels in super-
networks. FairDARTS (Chu et al., 2021) change
the softmax operations in DARTS into sigmoid
and introduce a zero-one loss to prune the archi-
tectural parameters. XNAS (Nayman et al., 2019)
dynamically wipes out inferior architectures and
enhances superior ones. NAS is widely applied
in both computer vision and natural language pro-
cessing, especially in knowledge distillation (Zhu,
2021a; Zhang et al., 2021).

Our work complements the literature by examin-
ing the optimization of DARTS on our search space
and propose a new training procedure that does not
require re-training after discretization.

3 Search space of Learned Adapter

3.1 Pilot experiments and motivations

In this subsection, we conduct a series of experi-
ments on the RTE (Dagan et al., 2005) and MRPC
(Dolan and Brockett, 2005) datasets to demonstrate
the necessity of investigating the architecture of
adapters. The baseline modelM is RoBERTa-large
model with an parallel adapter at the feed-forward
module (FFN adapter) (He et al., 2021). The back-
bone model is frozen and we only tune the adapters
on downstream tasks. The bottleneck dimension is
32 and the activation function is ReLU. The other
experimental settings follows Appendix B. We now
consider a series of simple modifications to the
baseline model.

Modifying the activation function We replace
the activation functions of the adapters from ReLU
to GeLU, SWISH or Tanh, while keeping the other
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Model RTE MRPC
M 79.1 (0.5) 89.3 (0.4)
Mgelu 79.3 (0.2) 89.5 (0.3)
Mswish 79.6 (0.3) 89.2 (0.4)
Mtanh 79.2 (0.5) 88.9 (0.6)
Msa 79.5 (0.3) 89.6 (0.2)
Mconv 79.5 (0.6) 89.4 (0.5)
Mattn 79.0 (0.4) 89.1 (0.3)
Mblock 79.6 (0.5) 89.4 (0.3)

Table 1: Results of the pilot experiments.

settings unchanged. The three modified models
are denoted asMgelu,Mswish and Btanh, respec-
tively.

Adding encoding operations We add a self-
attention operation (Vaswani et al., 2017) or a con-
volutional operation of kernel size 3 after the down-
projection and before the activation function. The
two variants of modelM are denoted asMsa and
Mconv, respectively. Since extra operations intro-
duce more parameters, we reduce the bottleneck
dimension ofMsa andMconv to 24 to ensure fair
comparison.

Alternative adapter placements Instead of in-
serting the adapter around the FFN module of the
transformer block, we now consider: (1) Mattn

inserts the adapters at the attention modules (attn
adapter); (2) Mblock inserts the adapters around
the entire transformer block (block adapter). Note
that the setting of block adapters is theoretically
supported by the general framework of PETuning
in He et al. (2021) but not considered by the pre-
vious work. In this work, we will demonstrate the
usefulness of block adapters via experiments.

Table 1 reports the experimental results of the
above models. The evaluation metrics for the RTE
and MRPC tasks are introduced by Appendix A.2.
We can see that the four simple modifications to the
baseline model,Mgelu,Msa,Mconv andMblock,
can slightly outperformM, demonstrating that the
adapter architectures are essential for adapter tun-
ing, and it is promising to design better adapter ar-
chitectures for better adapter tuning performances.

The pilot experiments raise a vital research ques-
tion: What are the optimal architectures for
adapters? Obviously, such an optimal architecture
will be different across tasks and PTM models and
even across different intermediate layers of a PTM,
making it impossible for manual designs. We are
motivated to investigate the problem of optimizing
the architectures of adapters via neural architecture

search.

3.2 General architecture of adapters

As depicted in Figure 2, we now construct the
search space of the Learned Adapter. The adapter is
a bottleneck architecture with bottleneck dimension
r, consisting of down-projection layer MLPd, an ac-
tivation function g1, an encoder layer Enc, another
activation function g2 and finally a up-projection
layer MLPu. Formally, the hidden states hx goes
through the adapter and becomes

h(A)
x = MLPu(g2(Enc(g1(MLPd(hx))))). (1)

Following He et al. (2021), the hidden representa-
tion hx will also go through the backbone’s certain
encoding module BEnc, and the adapted hidden
states will become h

′
x = BEnc(hx) + h

(A)
x . Fol-

lowing (Wu et al., 2022; Mahabadi et al., 2021; Le
et al., 2021), we employ the parameterized hyper-
complex multiplication (PHM) layer (Le et al.,
2021) with parameter n to reduce the parameters of
MLPd and MLPu. The PHM layer has a parameter
complexity of O(rd/n), reducing the parameters
of the projection layers by at most 1

n .

3.3 Search space

We now formally introduce the search space of
our Learned Adapter framework. The whole search
space contains three types of search cells as shown
in Figure 2:
Activation Search Cell The Activation Search
Cell is designated to choose the proper activa-
tion functions g1 and g1 from several candidates.
Similar to So et al. (2019), the collection of
candidate activation functions considered is: (a)
ReLU (Agarap, 2018); (b) GeLU (Hendrycks and
Gimpel, 2016); (c) SWISH (Ramachandran et al.,
2017); (d) Tanh (Krizhevsky et al., 2012); (e) Nul-
lAct, which means no activation function and not
to make changes to the input.
Encoder Search Cell As is shown in Figure 2,
different from (Wang et al., 2020; Zhu et al.,
2021b), we construct our encoder cell as a sim-
ple DAG with a single edge. Our collection of
encoder operations consists of the following four
groups: (a) 1-d convolutional layers, with stride
1, same padding, output filters equal to the input’s
dimension, and kernel size equal to 1, 3, 5, or 7
(denoted as conv_k, k = 1, 3, 5, 7). (b) Multi-head
self-attention (MHA) layers (Vaswani et al., 2017),
with head size equal to 2 or 8 (denoted as mha_k,

7423



k = 2, 8). (c) Skip connection (He et al., 2015),
denoted as skip-connect. (d) The null encoding
operation that multiplies zero tensors to the input
(null).1
Adapter Placement Search Cell This search
cell is designated to decide the placement of the
adapter in an intermediate transformer block. We
consider three candidate placements shown in Fig-
ure 2:2 (a) FFN adapter, that is, to insert the
adapter in parallel to the feed-forward module; (b)
Attn adapter, parallel to the self-attention module;
(c) Block adapter inserts the adapter in parallel
to the whole transformer block. This placement
option is supported by the theoretical analysis of
He et al. (2021) but has not been considered by
the literature. In the experiments, we will show
that including the above three choices for adapter
placements are necessary.

Note that the above three search cells are single-
edge DAGs. Following Pham et al. (2018); Wang
et al. (2020); Zhu et al. (2021b); Zhu (2021a); Zhu
et al. (2021d), we consider the macro search space,
that is, different adapter architectures are learned
for different intermediate layers. Intuitively, the
macro search space allows for idiosyncratic archi-
tectures for different intermediate layers, leading
to easier model adaptation.

Despite the simple structures of search cell
DAGs compared to the general NAS literature, our
macro search space can result in 6.38e+90 com-
binations of different adapter architectures across
different intermediate layers of the PTM backbones.
Note that our search space contains the adapter ar-
chitectures from Sung et al. (2022); Jie and Deng
(2022) as special cases.

4 Search Method

4.1 Preliminaries on DARTS
Assume there is a pre-defined space of oper-

ations denoted by O, where each element, o(·),
denotes a neural network operation, like convo-
lutional operation, self-attention, activation, etc.
DARTS (Liu et al., 2019a) initialize a hyper-
network in which each block is a search cell,
that is, a fully connected directed acyclic graph
(DAG) with N nodes. Let (i, j) denote a pair of

1Choosing this operation means the model decides to dis-
card an operation in the encoder, thus making the encoder a
lighter architecture.

2Through our initial experiments, we find no improve-
ments to include other standard adapter placement options,
like Houlsby et al. (2019); Pfeiffer et al. (2021)

nodes in the DAG. The core idea of DARTS is
to use a weighted sum to include all |O| opera-
tions in O, fi,j(zi) =

∑
o∈O aoi,j · o(zi), where

aoi,j =
expαo

i,j∑
o′∈O expαo′

i,j

, zi denotes the output of

the i-th node, and αo
i,j is the architectural parame-

ters that represents the weight (or the importance
score) of o(·) in edge (i, j). The output of a node is
the sum of all input flow, i.e., zj =

∑
i<j fi,j(zi).

The output of the entire cell is formed by summing
the last two nodes.

This design makes the entire framework differ-
entiable to both layer weights and architectural pa-
rameters αo

i,j so that it is possible to perform archi-
tecture search in an end-to-end fashion. After the
search process is completed, the discretization pro-
cedure extracts the final sub-network by selecting
the best operation on each edge and dropping the
lower-score operations. And the final sub-network
will train on the original train set with randomly
initialized parameters.

4.2 Discussion on the search method

The standard optimization method for the above
framework is the bi-level optimization proposed
in DARTS (Liu et al., 2019a). However, there are
recent works arguing that the single-level optimiza-
tion method could also work for the DARTS frame-
work. As pointed out by Bi et al. (2019) and Bi et al.
(2020), bi-level optimization suffers considerable
inaccuracy of gradient estimation and the potential
instability can increase with the complexity of the
search space. And Bi et al. (2020) conduct experi-
ments to demonstrate that one-level optimization
performs comparably with bi-level optimization
but with better efficiency. Their experiments are
conducted mainly on computer vision benchmarks
like CIFAR-10 (Krizhevsky et al., 2012). In this
work, we would like to investigate which optimiza-
tion method is better under our framework.

Note that the original DARTS requires one to
re-train the learned networks from scratch after the
search procedure, which definitely introduce addi-
tional computation costs. In this work, we propose
to gradually discretize the hyper-network and ob-
tain a sub-network without re-training. We will
refer to this method as gradually discretizing neu-
ral architecture search (GDNAS). We first train the
complete hyper-network M for K1 epochs. Then
we select a edge e in the search space to discretize
(for example, the edge in the encoder cell). Dis-
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cretization simply means selecting the operation
oe∗ with highest architectural parameter, and drop
the other operations. Now we have obtain a new
reduced hyper-network M . The discretized edge
may cause the performance of the hyper-network
to drop significantly, so we further finetune the
hyper-network M for K2 epochs.

In addition to the advantage of not to retrain the
learned network, GDNAS retains the knowledge
in the hyper-network, and obtain the performance
gains against the re-trained sub-network. This is
analogous to the model pruning literature, where a
network pruned from a larger one is usually better
than the network trained from scratch (Liang et al.,
2021).

Algorithm 1: GDNAS
Input: A hyper-network M , all edges E on

hyper-network M ;
Output: Set of selected operations {o∗e}e∈E
Data: Training set Dtrain, a batch of

validation data Bval

1 Train hyper-network M on the training set
Dtrain for K1 epochs;

2 for edge e in E do
3 Select the best operation

o∗e ← argmaxo α
o
e;

4 Discretize edge e of hyper-network M
by only keeping o∗e;

5 Further train the hyper-network M on
Dtrain for K2 epochs;

5 Experiments

5.1 Evaluation datasets
We evaluate the performance of the methods on

the GLUE (Wang et al., 2018) benchmarks. These
benchmarks cover multiple tasks of paraphrase
detection (MRPC, QQP), sentiment classification
(SST-2), natural language inference (MNLI, RTE,
QNLI), linguistic acceptability (CoLA).3

Since the original test sets of the GLUE bench-
mark are not publicly available, we follow Zhang
et al. (2020) and Mahabadi et al. (2021) to construct
the train/dev/test splits as follows to ensure a fiar
comparison: (a) for datasets with fewer than 10k
samples (RTE, MRPC, STS-B, CoLA), we divide

3Following Devlin et al. (2019) and (Raffel et al., 2019),
as a common practice, we do not experiment with the WNLI
task (Levesque et al., 2011) due to its adversarial nature with
respect to the training set.

the original validation set in half, using one half for
validation and the other for testing. (b) for larger
datasets, we split 1k samples from the training set
as the development set, and use the original devel-
opment set as the test set. The detailed statistics
and evaluation metrics of the GLUE benchmark is
presented in Table 7 of Appendix A.

5.2 Experiment Settings

We run all the experiments on NVIDIA V100
32GB GPUs. We mainly evaluate our method on
the GLUE benchmarks with the RoBERTa-large
(Liu et al., 2019c) backbone model. We also eval-
uate our framework with the DeBERTa-large (He
et al., 2020) and GPT2-large (Radford et al., 2019)
backbones. We use the HugginFace Transform-
ers (Wolf et al., 2020) for implementing all the
methods. Unless otherwise specified, GDNAS
will adopt the bi-level optimization method of
DARTS. For GDNAS’ discretization procedure,
we set K1 = 5 and K2 = 0.5 on large datasets
(SST-2, QNLI, QQP and MNLI), and K1 = 20 and
K2 = 2 on low-resource datasets. And the batch
size is set to 128 for dataset with more than 10k
training samples, and 32 otherwise. For Learned
Adapter, we set the bottleneck dimension r to 32
and select at most one adapter at each transformer
layer. For the PHM layers, we use the PyTorch
implementation of Le et al. (2021) and set n to 8.
We run each task under 5 different random seeds
and report the average performance and standard
deviation. More details of the experimental settings
are put in Appendix B.

5.3 Baselines

We compare our Learned Adapter framework
with the current SOTA baseline methods.
Fine-tune The traditional fine-tuning methods that
train all parameters in the PTM backbone.
Adapter-based tuning For adapter-based tuning
methods, we compare with: (1) Adapter (Houlsby
et al., 2019); (2) Compacter (Mahabadi et al.,
2021); (3) Parallel Adapter proposed by (He et al.,
2021) added on the FFN module; (4) LST (Sung
et al., 2022). We re-implement Parallel Adapter
with PHM projection layers (n = 8).
Prompt-based tuning For prompt-based tuning
methods, we compare with (1) Prompt Tuning
(Lester et al., 2021), (2) P-tuning v2 (Liu et al.,
2021). The number of prompt tokens in these meth-
ods is set to 20.
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Method Tunable CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE AvgParams (mcc) (acc) (acc-f1) (acc-f1) (corr) (acc) (acc) (acc)
Baselines

RoBERTa-large 355M 65.3 95.4 91.5 90.3 91.8 89.8 94.5 80.1 87.3
Prompt Tuning 21K 54.6 (2.5) 90.9 (0.5) 74.8 (1.3) 87.4 (0.5) 90.1 (0.3) 83.4 (0.2) 92.4 (0.3) 68.7 (1.9) 80.3

P-tuning v2 985K 57.3 (2.1) 92.3 (0.3) 86.9 (1.2) 88.1 (0.4) 90.4 (0.1) 87.3 (0.2) 92.9 (0.4) 77.2 (2.1) 84.1
BitFit 273K 59.2 (0.9) 94.1 (0.3) 88.6 (0.8) 88.5 (0.6) 91.1 (0.3) 87.3 (0.1) 93.2 (0.2) 78.6 (1.4) 85.1
LoRA 778K 59.7 (1.4) 93.6 (0.1) 88.9 (0.7) 88.3 (0.4) 90.9 (0.2) 87.9 (0.2) 93.2 (0.1) 78.8 (1.3) 85.2

UNIPELT 1.4M 61.5 (1.7) 93.6 (0.2) 89.2 (0.8) 88.7 (0.4) 91.0 (0.5) 87.5 (0.2) 92.9 (0.1) 79.1 (0.9) 85.4
Adapter 1.6M 63.1 (1.4) 93.8 (0.1) 87.5 (0.8) 88.7 (0.4) 90.9 (0.4) 88.5 (0.2) 93.2 (0.1) 78.9 (1.3) 85.6

LST 1.7M 63.6 (1.5) 93.9 (0.2) 89.2 (0.7) 88.7 (0.2) 91.2 (0.4) 88.3 (0.1) 93.0 (0.2) 79.2 (0.9) 85.9
Parallel Adapters 279K 63.8 (1.5) 94.2 (0.3) 89.3 (0.5) 88.9 (0.6) 91.1 (0.4) 88.3 (0.1) 93.2 (0.1) 79.1 (0.5) 86.0

Compacter 279K 63.7 (0.9) 94.2 (0.4) 89.1 (0.7) 88.6 (0.3) 90.8 (0.2) 88.2 (0.2) 92.8 (0.2) 78.7 (0.9) 85.8
Our proposed methods

Learned Adapter 294K 64.3 (0.9) 94.9 (0.3) 89.8 (0.9) 89.2 (0.3) 91.3 (0.2) 88.6 (0.2) 93.5 (0.2) 80.4 (1.3) 86.5

Table 2: The Overall comparison on the GLUE benchmark with RoBERTa-large backbone. We report mean and
standard deviation of performance over 5 random seeds. Bold and Underline indicate the best and the second best
results. The metric for each task is explained in Appendix A.2.

Other PETuning methods We also compare: (1)
BitFit (Ben-Zaken et al., 2021); (3) LoRA (Hu
et al., 2021); (4) UNIPET (Mao et al., 2021) com-
bines different types of PETuning methods in an
automatical manner.

We implement Aadpter, BitFit, and LoRA using
the OpenDelta4 library. Other baselines are imple-
mented using their open-sourced codes with their
default settings. For a fair comparison, we do not
use supplementary training like Wu et al. (2022) to
enhance performance.

5.4 Results on the GLUE benchmark

Table 2 shows the results on GLUE with
RoBERTa-large. Our Learned Adapter framework,
outperforms the previous PETuning methods and
notably preserves 99.4% performance of the full-
model fine-tuning method while only tuning 240K
to 300K parameters.

We can observe from Table 2 that: (a) Note that
our Learned Adapter framework obtains further
improvements by automatically designing adapter
architectures for different intermediate layers of
the PTM. (b) Note that although we add encoding
operations in adapters, the total tunable parameters
of the Learned Adapter in the macro setting are
fewer than Compacter since our framework can
automatically drop adapters on certain layers when
necessary.

5.5 Further analysis

Explanations of the searched architectures To
understand the searched adapter architectures un-
der our Learned Adapter framework, we present the

4https://github.com/thunlp/OpenDelta

learned adapter architectures on the RTE and SST-2
tasks on Table 9 and 10 in Appendix D, respectively.
From the learned adapter architectures, we can ob-
serve that: (a) The adapter architecture varies for
different layers, showing that different layers re-
quire different adapter architectures. (b) On each
task, Learned Adapter chooses the null encoding
operation on 3-5 intermediate layers, meaning to
drop the adapters on these layers. (c) Regarding
the adapter placement choices, we find that on each
task, all three placement candidates, FFN adapter,
Attn adapter, and Block adapter, are selected. This
observation demonstrates that introducing block
adapters into our search space is necessary. (d)
Most adapters select the convolutional operations,
and multi-head self-attention operations tend to oc-
cur in adapters of deeper layers. (e) around half
of the learned adapters choose the NullAct for the
second activation function g2. Furthermore, we
observe that there are adapters on the deeper trans-
former layers that requires no activation function
but an encoder operation, demonstrating novel de-
sign patterns for adapters.

Exploring the limit of parameter efficiency To
explore the limit of parameter efficiency, we train
the Learned Adapter, and Compacter (Mahabadi
et al., 2021) with different rank parameters n ∈
{1, 2, 4, 8, 16, 32}. Note that in the main exper-
iments, we set n equal to 4. With larger n, the
parameters of adapters will increase proportionally.
In Figure 3, we demonstrate the results of the RTE
and SST-2 tasks. We can see that the advantages
of our Learned Adapter framework become more
prominent with lower tunable parameter budgets.
The results demonstrate that our framework can
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Source
Target

RTE SST-2
RTE 80.4 (1.3) 94.6 (0.1)

SST-2 80.3 (1.4) 94.9 (0.3)

Table 3: Architecture transfer from source datasets to
target datasets. The target datasets are in the column
names, and the source datasets are in the row names.

Search space RTE SST-2
(acc) (acc)

S 80.4 (1.3) 94.9 (0.3)
S1 80.1 (1.5) 94.6 (0.3)
S2 79.8 (1.0) 94.4 (0.4)

Parallel Adapter 79.1 (0.5) 94.2 (0.3)

Table 4: Experimental results for the ablation study of
our Learned Adapter search space.

effectively deliver the most proper architectures
under the given parameter budgets and boost the
performance of adapter-based tuning.
Architectures’ Transferability We now evalu-
ate the transferability of the searched structures by
the Learned Adapter.The RTE and SST-2 datasets
are used as source and target datasets. We search
the adapter architectures on the source dataset and
train the searched architectures from scratch on the
target task, and report the average and standard de-
viation of scores over 5 random seeds on table 3.
We can see from Table 3 that the searched architec-
tures are highly transferable. The transferred archi-
tectures can already achieve comparable or better
performances than most baseline models (Table 2).
The transferability guarantees the reusability of the
searched adapter architectures.
Ablation studies on the search space We now
conduct an ablation study of our search space by
reducing our search space S to a singleton step-by-
step : (a) reduce the activation cells by only keeping
the ReLU activation for g1 and the NullAct for g2
(S1); (b) further reduce the encoder cell to only
include skip-connect (S2); (c) further reduce the
adapter placement cell to only include FFN adapter,
and now the search space only contains Parallel
Adapter (He et al., 2021). Table 4 reports the search
results on different search spaces, showing that
that dropping any components of the whole search
space results in performance losses. The results
demonstrate that each search cell in our search
space design is necessary and beneficial.
Working with other PTM backbones To ver-
ify the general applicability of our Learned Adapter

Method Tunable RTE SST-2
Params (acc) (acc)

DeBERTa-large backbone
Fine-tuning 406M 82.1 (1.1) 95.7 (0.2)

Adapters 1.6M 80.7 (1.3) 93.8 (0.1)
Parallel Adapters 279K 81.5 (1.2) 93.9 (0.3)
Learned Adapter 245K 82.0 (0.9) 94.5 (0.3)

GPT2-large backbone
Fine-tuning 774M 79.5 (0.8) 95.5 (0.1)

Adapters 2.7M 78.1 (0.9) 93.9 (0.1)
Parallel Adapters 462K 78.5 (1.2) 93.8 (0.1)
Learned Adapter 482K 79.1 (0.6) 94.2 (0.2)

Table 5: Results on 2 GLUE tasks using DeBERTa-
large and GPT2-large models as the backbone. Bold
indicates the best PETuning results.

framework, we also conduct experiments on two
other widely used PTM backbones, DeBERTa-
large (He et al., 2020), and GPT2-large (Radford
et al., 2019). The results are shown in Table 5.
Our Learned Adapter successfully outperforms the
adapter-based tuning baselines on both pre-trained
backbones. This result enhances the reliability of
our framework.

We now validate our Learned Adapter frame-
work on other pre-trained backbone: DeBERTa-
large (He et al., 2020) and GPT2-large (Radford
et al., 2019). The results are presented in Table 5.

5.6 Discussions on the search method

Search efficiency of GDNAS We use the RTE
task to demonstrate the search efficiency. Running
the RTE task with DARTS takes 1.5h (70.5min for
bi-level optimization for 25 epochs and 21.6min for
re-training with 25 epochs). Since GDNAS does
not require re-training, it requires 1.2h (73.3min
for training the hyper-network for k1+3∗K2 = 26
epochs). Our method consumes around three times
the training time of Parallel Adapter (He et al.,
2021), which is affordable compared to manually
designing different architectures and running nu-
merous evaluations.
Ablation study of search methods We now
run Learned Adapter with GDNAS with single-
level optimization, the original DARTS (Liu et al.,
2019a) and ENAS (Cai et al., 2018). The results are
shown in Table 6. The results demonstrate that our
GDNAS are effective in discovering better adapter
architectures. In addition, the results demonstrate
that bi-level optimization obtains slightly better
results.
Performance on a NAS benchmark To further
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(a) RTE (b) SST-2

Figure 3: Performances under different PHM rank n. The x-axis represents the number of tunable parameters, and
the y-axis represents the performance. The performance of full-model fine-tuning is in dotted horizontal line.

Search RTE SST-2
method (acc) (acc)
GDNAS 80.4 (1.3) 94.9 (0.3)

GDNAS (single-level) 80.2 (0.9) 94.7 (0.2)
DARTS 79.8 (1.2) 94.5 (0.5)
ENAS 80.3 (1.0) 94.3 (0.4)

Table 6: Experimental results for the ablation study of
the search methods.

validate our GDNAS method, we conduct exper-
iments on the widely studied neural architecture
search benchmark dataset, CIFAR-10 (Krizhevsky,
2009). The results are reported in Table 8 of Ap-
pendix C. Our GDNAS method achieves 2.52% test
error, which manageable search cost of 0.6 GPU
days.

6 Conclusion

In this work, we propose the Learned Adapter
framework, which automatically optimizes the
adapter architectures. First, we design a unified
search space for adapters, taking into account the
recent works of manual adapter designs. Second,
in light of the issues in the DARTS method, we pro-
pose a novel GDNAS method that can deliver better
adapter architectures and requires no re-training of
the learned adapter architectures. We run extensive
experiments and analyses on the GLUE benchmark,
demonstrating that our Learned Adapter framework
can achieve better tuning performances than the
baselines while maintaining parameter efficiency.

Limitations

We showed that our proposed method can greatly
improve the performance of parameter efficient tun-
ing on diverse NLU tasks and three different pre-

trained models (i.e., RoBERTa-large, DeBERTa-
large and GPT2-large). However, we acknowledge
the following limitations: (a) the more super-sized
pretrained models with tens of billions of or more
parameters were not studied due to limited compu-
tation resources. (b) Other tasks in natural language
processing, like the text generation tasks, were also
not considered. But our framework can be easily
transferred to other backbone architectures and dif-
ferent types of tasks. It would be of interest to
investigate if the superiority of our method holds
for other backbone models and types of tasks. And
we will explore it in future work.

Ethics Statement

The finding and proposed method aims to im-
prove the adapter based tuning in terms of tuning
parameters and performances. The used datasets
are widely used in previous work and, to our knowl-
edge, do not have any attached privacy or ethical
issues.
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Category Datasets |train| |dev| |test| |Y| Type Labels

Single-sentence
SST-2 66349 1000 872 2 sentiment positive, negative
CoLA 8551 521 522 2 linguistic acceptability acceptable, not acceptable

Sentence-pair

MNLI 391702 1000 19647 3 NLI entailment, neutral, contradiction
MRPC 2668 1000 408 2 paraphrase equivalent, not equivalent
QNLI 103743 1000 5463 2 NLI entailment, not entailment
QQP 362846 1000 40430 2 paraphrase equivalent, not equivalent
RTE 1490 1000 277 2 NLI entailment, not entailment

STS-B 5750 750 751 - semantic similarity -

Table 7: The dataset statistics of the GLUE benchmark tasks evaluated in this work. For MNLI task, the number
of samples in the test set is summed by matched and mismatched samples. |Y| is the number of classes for a
classification task.
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A Datasets and evaluation metrics

A.1 Dataset splits

The detailed statistics of the GLUE benchmark
is presented in Table 7.

A.2 Evaluation metrics

For MNLI, we report the average of the accuracy
scores on the matched and mis-matched test set.
For MRPC and QQP, we report acc-f1, which is
the average of accuracy and F1 scores. For STS-
B, we report corr, which denotes the average of
the Pearson and Spearman correlation coefficients.
For CoLA, we report mcc, which is the Matthews
correlation. For all other tasks, we report accuracy.

B Appendix for experimental settings

Details of experiments We run our methods and
baseline method on the GLUE (Wang et al., 2018)
following the previous works. All datasets are
downloaded via the HuggingFace Datasets5 library.
Since the test split of these tasks are invisible to
the researchers, we randomly split off 1k samples
from the training set as validation set for large
datasets(QQP, QNLI, SST2, MNLI), and use the
remaining as the training set, and use the original
validation set as the test set. For other datasets, we
randomly split the original validation set in half
as the validation set and the test set, and use the
original train set as our train set. The same dataset
is split differently with different random seeds.

For each experiment setting, we repeat the ex-
periment with 5 seeds, and report the average score
and standard deviation. In all experiments, the
maximum sequence length is 128 for the tasks. We
mainly use the RoBERTa-large model (355M pa-
rameters) as the backbone model, but we also adopt
the GPT2-large and DeBERTa-large the backbone
models for ablation studies. We freeze the pre-
trained parameters in all experiments except full-
model finetuning. We use AdamW as the optimizer
with a linear learning rate decay schedule and 6%
of the training steps for warm-up.

5https://huggingface.co/docs/datasets/index

7432

https://doi.org/10.18653/v1/W19-5040
https://doi.org/10.18653/v1/W19-5040
https://aclanthology.org/2022.coling-1.268
https://aclanthology.org/2022.coling-1.268


We train the hyper-network on the train set
Dtrain following (Liu et al., 2019a). For train-
ing epochs, we set K1 = 5 and K2 = 1 on
large datasets (SST-2, QNLI, QQP and MNLI), and
K1 = 20 and K2 = 5 on low-resource datasets.
We will run the search procedure once for each
task.

After the hyper-network is fully discretized, in-
stead of retraining from scratch, we further train
the remained network for K2 epochs, and we eval-
uate the model on the dev set and save the model
checkpoint every Ieval steps. The best checkpoint
on the dev set is used to run predictions on the test
set. We report the average scores on the test set and
standard deviations across 5 random seeds.
Other hyper-parameters We do pilot experi-
ments on SST-2 using learning rates in {2e-5, 5e-5,
1e-4, 2e-4}, and find that 1e-4 performs the best.
For fine-tuning, we try learning rates in {1e-5, 2e-
5, 5e-5} and find that 2e-5 performs the best. The
number of training epochs for the baselines is set
as K = 5 on large datasets (SST-2, QNLI, QQP
and MNLI), and K = 20 on smaller datasets. We
apply these hyper-parameters to all baselines, and
no further hyperparameter-tuning are conducted.
Therefore, the comparison is fair for all methods.

C Experimental results on the CIFAR-10
task

To further validate that our GDNAS method can
obtain better search performances than the DNAS
baselines, we now conduct experiments in the gen-
eral NAS setting. Following DARTS (Liu et al.,
2019a), we conduct neural architecture search on
the CIFAR-10 dataset (Krizhevsky, 2009) based on
the search space of DARTS. We keep all the search
settings identical to DARTS. We first train the
hyper-network with frozen architectural weights
for 50 epochs. After selecting the operation on
an edge, we tune the hyper-net for 8 epochs to
let the modified hyper-network to adjust. Follow-
ing DARTS (Liu et al., 2019a), we run the search
and architecture selection phase with four random
seeds and report both the best and average test
errors of the obtained architectures. The results
are reported in Table 8, which compares GDNAS
with the DNAS baseline methods. Our GDNAS
method achieves 2.52% test error, which manage-
able search cost of 0.6 GPU days. The results of
GDNAS is comparable to other method (like P-
DARTS (Chen et al., 2021)) with more complex

procedures.

D Learned architectures on the GLUE
tasks

In this section, we present the learned adapter
architectures on the RTE and SST-2 tasks. The
learned adapter architecture are presented in Table
9, 10, respectively.
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Architecture
Test Error Params Search Cost Search

(%) (M) (GPU days) Framework
NASNet-A (Zoph et al., 2017) 2.65 3.3 2000 RL
AmoebaNet (Real et al., 2018) 3.34 3.2 3150 evolution

ENAS (Pham et al., 2018) 2.89 4.6 0.5 RL
DARTS (Liu et al., 2019a) 3.02 3.3 0.4 DNAS

SNAS (Xie et al., 2018) 2.85 2.8 1.5 DNAS
BayesNAS (Zhou et al., 2019) 2.81 3.4 0.2 DNAS
P-DARTS (Chen et al., 2021) 2.50 3.4 0.3 DNAS
R-DARTS (Zela et al., 2019) 2.95 - 1.6 DNAS

GDNAS (ours) 2.52 3.3 0.6 DNAS

Table 8: The search results on the CIFAR-10 task.

Layer index Adapter placement Activation g1 Activation g2 Encoder operation 1
1 FFN elu null_act mha_8
2 - - - -
3 - - - -
4 FFN elu null_act mha_2
5 Block tanh null_act mha_2
6 FFN gelu_new leaky_relu conv_3
7 FFN null_act tanh mha_2
8 - - - -
9 Attn elu relu conv_3
10 - - - -
11 Attn gelu_new relu conv_1
12 Attn gelu_new relu conv_3
13 Block relu leaky_relu conv_1
14 Attn swish relu conv_3
15 FFN leaky_relu relu conv_3
16 Block leaky_relu relu conv_5
17 FFN leaky_relu relu conv_1
18 Attn leaky_relu null_act skip_connect
19 FFN relu relu conv_3
20 FFN gelu_new null_act conv_3
21 - - - -
22 Block tanh null_act mha_8
23 Attn tanh null_act conv_3
24 FFN tanh null_act mha_2

Table 9: The learned adapter architectures on the RTE task when the PTM backbone is RoBERTa-large. If an
adapter’s architecture contains only "-", it means our Learned Adapter framework choose the null encoder operation,
and equivalently, dropping this layer’s adapter.
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Layer index Adapter placement Activation g1 Activation g2 Encoder operation 1
1 Attn null_act null_act conv_5
2 - - - -
3 FFN elu null_act mha_2
4 Attn tanh null_act mha_2
5 Attn elu null_act skip_connect
6 FFN gelu_new relu conv_5
7 Block leaky_relu leaky_relu conv_3
8 - - - -
9 Block leaky_relu leaky_relu conv_5
10 FFN relu relu conv_3
11 Block tanh null_act mha_8
12 - - - -
13 Block tanh null_act skip_connect
14 - - - -
15 FFN swish swish conv_1
16 Block relu relu conv_1
17 FFN relu swish conv_3
18 FFN leaky_relu relu conv_3
19 Attn gelu_new relu mha_8
20 FFN swish relu mha_8
21 Attn swish null_act conv_3
22 Attn elu null_act conv_3
23 Attn null_act null_act mha_8
24 Attn elu null_act mha_2

Table 10: The learned adapter architectures on the SST-2 task when the PTM backbone is RoBERTa-large. If an
adapter’s architecture contains only "-", it means our Learned Adapter framework choose the null encoder operation,
and equivalently, dropping this layer’s adapter.
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