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Abstract

Global co-occurrence information is the pri-
mary source of structural information on mul-
tilingual corpora, and we find that analogi-
cal/parallel compound words across languages
have similar co-occurrence counts/frequencies
(normalized) giving weak but stable self-
supervision for cross-lingual transfer. Follow-
ing the observation, we aim at associating con-
textualized representations with relevant (con-
textualized) representations across languages
with the help of co-occurrence counts. The
result is MLM-GC (MLM with Global Co-
occurrence) pre-training that the model learns
local bidirectional information from MLM and
global co-occurrence information from a log-
bilinear regression. Experiments show that
MLM-GC pre-training substantially outper-
forms MLM pre-training for 4 downstream
cross-lingual tasks and 1 additional monolin-
gual task, showing the advantages of forming
isomorphic spaces across languages.

1 Introduction

Empirical studies (Lample et al., 2018a; Conneau
et al., 2020a,c) show multilinguality and cross-
linguality emerge from MLM pre-training on mul-
tilingual corpora without any supervision. The
model is trained/pre-trained as a generator that
yields masked token probabilities over the vocabu-
lary. To improve cross-lingual transfer, we present
MLM-GC (MLM with Global Co-occurrence) with
the combined objective of the generator and a
global log-bilinear regression for multilingual pre-
training. Our starting point is from two observa-
tions on multilingual MLM pre-training.

Language’s structural information is every prop-
erty of an individual language that is invariant to
the script of the language. Conneau et al. (2020c);
Karthikeyan et al. (2020); Sinha et al. (2021); Pires
et al. (2019) show that structural similarities across
languages can contribute to cross-lingual transfer.

Co-occurrence information or n-gram is the pri-
mary source of structural information available
to all methods. Some methods like span-based
masking (Devlin et al., 2019; Joshi et al., 2020;
Levine et al., 2021) now exist to leverage this infor-
mation for new masking schemes in monolingual
MLM pre-training, aiming at improving context
understanding. However, in multilingual MLM
pre-training, the question still remains as to how
meaning is generated from these statistics on mul-
tilingual corpora, how the structural similarities
could be learned from that meaning across lan-
guages, and how cross-lingual transfer might be
improved from that meaning.

Furthermore, GloVe (Pennington et al., 2014)
prove that leveraging global co-occurrence informa-
tion can search for relevant information on mono-
lingual embedding space. Inspired by GloVe, we
assume that global co-occurrence information can
also be used to search for relevant information
across languages on multilingual corpora. This as-
sumption underlies Zipf’s law (Ha et al., 2002; Sø-
gaard, 2020) that analogical words and compound
words across languages might have similar frequen-
cies/counts on the multilingual corpora. Our empir-
ical studies further justify our assumption that ana-
logical/parallel compound words across languages
have similar co-occurrence counts (normalized).
Meanwhile, in multilingual MLM pre-training, one
of the ultimate goals is to form contextualized rep-
resentations. Then, global co-occurrence infor-
mation might be used to regularize representation
learning in multilingual MLM pre-training, which
allows for better contextualized representations in
cross-lingual transfer.

In this work, we present MLM-GC to uti-
lize global co-occurrence information. MLM-GC
builds on MLM with an extra objective of global
log-bilinear regression that minimizes the error
between dot products of neighboring contextual-
ized representations and the matrix of global co-
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occurrence counts. Since MLM only needs to
predict masked tokens, we only consider the con-
textualized representations of the masked tokens
and their neighbors, factorizing relevant global co-
occurrence counts from the matrix. The model
is pre-trained to learn bidirectional information
from MLM and the global co-occurrence infor-
mation from the global log-bilinear regression.
On multilingual corpora, MLM-GC pre-training
can improve cross-lingual transfer because ana-
logical/parallel compound words across languages
might have similar co-occurrence counts allowing
for cross-lingual transfer, which is justified in our
empirical studies on translation pairs.

We have three contributions. 1) We present
MLM-GC pre-training for multilingual tasks. The
model is additionally supervised by co-occurrence
counts on multilingual corpora. 2) MLM-GC
pre-training outperforms MLM pre-training on 4
multilingual/cross-lingual tasks. The objective
of MLM-GC can be adapted to encoder-decoder-
based MLM models, e.g., MASS (Song et al., 2019)
and encoder-based MLM models, e.g., XLM (Lam-
ple and Conneau, 2019). MLM-GC pre-training
can also work on monolingual corpora for language
understanding tasks. 3) MLM-GC pre-training
can help the model to form isomorphic embedding
spaces across languages, which is potentially use-
ful for cross-lingual and multilingual tasks. Our
empirical study shows that analogical compound
words across languages have similar co-occurrence
counts (normalized) contributing to structural simi-
larities across languages for cross-lingual transfer.

2 Related Work and Comparison

Structural Similarity and Zipf’s Law Zipf’s
law (Zipf, 1949, 2013; Søgaard, 2020) indicates
that words or phrases appear with different fre-
quencies, and one may suggest analogical words
or phrases appear with relatively similar frequen-
cies in other languages. In multilingual MLM
pre-training, Conneau et al. (2020c); Karthikeyan
et al. (2020); Pires et al. (2019); Karthikeyan et al.
(2020); Sinha et al. (2021) shed light on study-
ing structural information and find that structural
similarities across languages are essential for mul-
tilinguality, where in this paper, structural similar-
ities mean similar counts as Zipf’s law indicated.
We follow this line, consider structural similari-
ties from co-occurrence counts, and provide an
empirical study to observe how the model learns

structural similarities from global co-occurrence
counts on multilingual corpora. Meanwhile, GloVe
(Pennington et al., 2014) report that co-occurrence
counts can provide regularities for embeddings to
understand word analogies for monolingual tasks.
We extend the scope of GloVe to contextualized
representations and multilingual tasks, helping the
model form isomorphic spaces across languages in
multilingual MLM pre-training.

N-gram, Co-occurrence, and Regularity in
MLM pre-training Studying co-occurrence or
n-gram is not a novel idea in MLM pre-training.
Whole Word Masking (Devlin et al., 2019), Span-
BERT (Joshi et al., 2020), and PMI-Masking
(Levine et al., 2021) suggest n-gram spans across
several sub-tokens for masking to improve con-
text understanding in monolingual tasks because
the model may only learn from easier multi-tokens
instead of usefully hard context, where easier multi-
tokens are in a subset of the context and result in
sub-optimization. In contrast, we show that co-
occurrence counts can refine contextualized rep-
resentations for improving context understanding
and allow for better cross-lingual transfer, suggest-
ing a new objective for MLM pre-training instead
of a new masking scheme to capture global co-
occurrence information in multilingual pre-training.
On the other hand, for cross-lingual transfer, the
contextualized representations could be further reg-
ularized and refined by aligning cherry-picked pairs
after MLM pre-training on multilingual corpora
(Ren et al., 2019; Chaudhary et al., 2020; Wang
et al., 2020; Cao et al., 2020; Aldarmaki and Diab,
2019; Artetxe et al., 2020; Ai and Fang, 2021).
Compared to that, MLM-GC pre-training does not
require dictionaries, translation tables, or statistical
machine translation models.

3 Approach

3.1 Global Regression Modeling in
Monolingual Embedding Space

GloVe (Pennington et al., 2014) presents a log-
bilinear regression model:

L =
V∑

i,j=1

f(Xwiwj )(E
T
wi
Ewj − logXwiwj )

2,

(1)

where f(x) =

{
(x/xmax)

α, x < xmax

1, otherwise
, V is

the vocabulary, Ew is the embedding of token w, X
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stands for the matrix of token-token co-occurrence
counts, entries Xwiwj tabulate the number of times
token wj occurs in the context of token wi, and
xmax is empirically set to 100. The model is able
to distinguish relevant embeddings from irrelevant
embeddings and discriminate between the two rele-
vant embeddings.

3.2 Global Co-occurrence Modeling for
Contextualized Representations

In MLM pre-training, when wt at the position t is
replaced by the artificial masking token [M]t, the
final hidden state or the contextualized representa-
tion H[M]t of position t is factorized from the final
sequence representation of the input sentence to
predict wt (with a softmax operation). We further
factorize a neighboring contextualized representa-
tion Hwk

(of wt) at position k for the neighboring
token wk. Note that wk could be masked (if span-
based masking strategies are applied, e.g., MASK
(Song et al., 2019) ) or unmasked (e.g., XLM (Lam-
ple and Conneau, 2019)), and we test both scenar-
ios in our experiments. Then, similar to global
regression modeling in monolingual embedding
space, we consider a regression model 1:

L[M]twk
= f(Xwtwk

)(HT
[M]t

Hwk
− logXwtwk

)2.

(2)
For all the neighboring tokens wt±n of the input
sentence at position [t − n, ..., t) ∪ (t, ..., t + n],
i.e., excluding position t, we have the model LGC .
Then, we employ the new global log-bilinear re-
gression model in MLM pre-training. Formally,
given the factorized Hwt±n and H[M]t from H and
Xwtwt±n from X , we have the model:

LGC =
1

2n

∑

n

f(Xwtwt±n)(
HT

[M]t
Hwt±n√
d

− logXwtwt±n)
2,

(3)
where d is the model dimension. Compared to
Eq.1, we add scaling

√
d and weight 1

2n to make
training stable, where

√
d is inspired by scaled dot-

product attention (Vaswani et al., 2017) to prevent
the dot products get large. They serve as principled
hyper-parameters.

To obtain the matrix of token-token co-
occurrence counts on multilingual corpora for mul-
tilingual tasks, we follow GloVe’s suggestion that a

1We provide an alternative in Appendix D

distance weight scheme is employed. Specifically,
in a context window of size 2n + 1, we calculate
the token-token co-occurrence counts for positions
[t − n, ..., t, ..., k + n] with the rule [clang/(n +
1), ..., clang/2, 0, clang/2, ..., clang/(n + 1)] over
the shared vocabulary, which means we do not cal-
culate the unigram counts or self-co-occurrence
Xwtwt for the centric token wt at position t.
Meanwhile, we are aware that the probability
is not normalized and equivalent to token-token
co-occurrence counts on the multilingual cor-
pora. However, not all the languages have the
same amount of samples in the corpora (e.g.,
low-resource vs. high-resource). Considering
this, we use the language-wise constant clang =
CEn/Clang, where CEn is the total number of to-
kens in English corpora, and Clang is the total
number of tokens in the language lang, i.e., co-
occurrence counts are normalized by clang.

3.3 Multilingual MLM-GC Pre-training

In multilingual pre-training, we have a combined
objective of MLM and global co-occurrence mod-
eling2, attempting to train the model to understand
the masked tokens from bidirectional information
and linguistic structures surrounding the masked
tokens from global co-occurrence counts, and the
result is our MLM-GC pre-training:

LMLM−GC = LMLM + λLGC . (4)

In the early experiment, we experiment with λ ∈
{0.1, 0.5, 1, 2}. We find λ = 1 is a general choice
for experiments. On the other hand, we find
warm_up (Vaswani et al., 2017) of lr,

√
d, and 1

2n
(Eq. 3) are significant. The model might collapse to
LGC without warm_up,

√
d, or 1

2n because LGC

converges too fast and is unstable. In this situation,
the model ignores the objective of MLM. Then, the
model can only learn co-occurrence information
and does not learn the language knowledge. The
result is presented in Table 1.

Improved Contextualized Representation
LGC considers the correspondence in the context
[t− n, ..., t) ∪ (t, ..., t+ n] with an explicit objec-
tive. In this way, the model is encouraged to learn
from usefully hard context instead of easier multi-
tokens under the supervision from co-occurrence
information, where easier multi-tokens are in a
subset of the context and result in sub-optimization

2We discuss the scope and limitation in §Limitation.
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MUSE
# Model cosine
1 MUSE Lample et al. (2018a) 0.38
2 XLMLample and Conneau (2019) 0.55
3 XLM + OURS λ = 1 (default) 0.60
4 XLM + OURS λ = 0.1, 0.59
5 XLM + OURS λ = 0.5 0.60
6 XLM + OURS λ = 2 0.58
7 XLM + OURS λ = 1 and no warm_up of learning rate fail
8 XLM + OURS λ = 1 and no

√
d fail

9 XLM + OURS λ = 1 and no 1
2n

fail

Table 1: Early Experiments on MUSE tasks.

(Levine et al., 2021), as discussed in §Related
Work. Meanwhile, co-occurrence counts help
the model disambiguate word representations
(Ai and Fang, 2022) in language modeling by
distinguishing relevant information from irrelevant
information and discriminating between the two
relevant information in the language.

Improved Cross-lingual Transfer With the ob-
jective of LGC , we aim at associating HT

[M]t
Hwt±n

with HT
[M ]t̃

Hw̃t̃±n
of different languages if

Xwtwt±n = Xw̃t̃w̃t̃±n
, where compound words

wtwt±n and w̃t̃w̃t̃±n are analogical in different
languages. In this way, it underlies the basic as-
sumption that analogical compound words across
languages have similar co-occurrence counts (nor-
malized by clang), i.e., wtwt±n and w̃t̃w̃t̃±n are
analogical compound words =⇒ Xwtwt±n =
Xw̃t̃w̃t̃±n

. Although Zipf’s law supports this as-
sumption (Ha et al., 2002; Søgaard, 2020) in lin-
guistics, we are still interested in the questions:
how it reflects on the multilingual corpora we
use and whether analogical pair of wtwt±n and
w̃t̃w̃t̃±n =⇒ Xwtwt±n = Xw̃t̃w̃t̃±n

. To answer
these questions, we extract all the pairs of par-
allel compound words in En and De from the
open-source translation tables (OPUS, Wikipedia
v1.0)⋄, e.g., "ist die" (De) and "is the" (En),
and compute co-occurrence counts on {De,En}
Wikipedia dumps (the same dataset we use in our
experiment). For any pair, we compute the ab-
solute difference |log(De) − log(En)|, the sum
log(De) + log(En) (sorted into bins), and the ra-
tio |log(De)−log(En)|/(log(De)+log(En)) for
statistics in Figure 1. The figure tells us that the
absolute difference avg and the ratio avg for all
the pairs are relatively small and have narrow con-
fidence (95%) intervals. Although the absolute
difference avg is proportional to the sum, the ra-
tio avg has no proportional relationship with the
sum and is small throughout all the bins. Note that
some pairs have low translation scores resulting

in large absolute differences. The absolute differ-
ence avg is not 0, i.e., an exact match for any pair.
However, it still confirms that analogical compound
words across languages have similar (but not identi-
cal) co-occurrence counts, which might give weak
(not 0) but stable (relatively small with high con-
fidence) self-supervision for cross-lingual transfer.
Meanwhile, the model is encouraged to distinguish
relevant information from irrelevant information
and to discriminate between the two relevant in-
formation across languages from co-occurrence
counts and refine contextualized representations
accordingly, which is beneficial for cross-lingual
transfer. For example, in our experiment (n = 2),
given the translation pair "ist die" (De) and "is the"
(En), the relevant pair "ist die" and "is a" (En),
the irrelevant pair "ist die" and "locally known"
(En), we find |log(ist die) − log(is the)| =
0.67 < |log(ist die) − log(is a)| = 1.73 <
|log(ist die) − log(locally known)| = 5.45 <
|log(ist die) − log(En avg)| = 5.58, where
log(En avg) is the avg co-occurrence counts in
En.

Efficiency 1) Computing the co-occurrence ma-
trix is laborious on large corpora. However, it re-
quires a single pass through the entire corpora to
collect the statistics, which is a one-time up-front
cost and is easy to obtain new information from
new corpora for updating. 2) For memories, the
co-occurrence matrix is huge, e.g., ≈ 11 G for
a 60k BPE vocabulary with float 32. However,
it is somewhat trivial because the memory is al-
located to CPUs, not GPUs. This can be auto-
matically finished by DL platforms like Tensor-
Flow. Also, the matrix can be formatted to float 16
or even float 8 by pre-logging the co-occurrence
counts, which will significantly reduce the mem-
ory. 3) Meanwhile, we save the token-token co-
occurrence matrix as dictionaries {(wi, wj): token-
token co-occurrence counts} so that querying the
co-occurrence counts for Xwiwj is O(1).

Tokenization Sub-token-level vocabularies may
impact the co-occurrence counts. In extreme cases,
several connective tokens of co-occurrence may
only come from one word. However, As discussed
in §Improved Contextualized Representation, even
in this scenario, the model can be improved from
the co-occurrence counts in MLM-GC pre-training.
See experiments in Appendix B.
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Figure 1: Study of co-occurrence counts of pairs across languages on {De,En} corpora. We report absolute
difference avg between (word-word) parallel co-occurred words across languages and 95% confidence interval.

4 Experiment

All the links of datasets, libraries, scripts, and tools
marked with ⋄ are listed in Appendix E. A preview
version of the code is submitted, and we will open
the source code on GitHub.

4.1 MLM Instance, Configuration, Data
Preprocessing and Pre-training

We use XLM (Lample and Conneau, 2019) and
MASS (Song et al., 2019) as the MLM instances,
where XLM is a token-based encoder model, and
MASS is a span-based encoder-decoder model (see
Appendix §A.1 for more details). The Transformer
configuration is identical to XLM and MASS,
where word embeddings, hidden states, and fil-
ter sizes are 1024, 1024, and 4096 respectively
(default). To be fair, we reimplement all the base-
line models with our configurations, using official
XLM⋄, Tensor2Tensor⋄, and HuggingFace⋄ as ref-
erences. We compare the results of our reimple-
mentation with the reported results on the same test
set to ensure the difference less than 2% in overall
performance (Appendix C). For the context win-
dow size 2n+ 1 of the co-occurrence counts and
Eq.4, we set n = 2 for all the experiments, which
is decided by our dev experiment.

Data preprocessing is identical to XLM and
Mass. Specifically, we employ fastBPE⋄ to learn
BPE (Sennrich et al., 2016b) with a sampling cri-
terion from Lample and Conneau (2019) for all
the experiments. To tokenize {Zh, Th,Ne}, we

use Stanford Word Segmenter⋄, PyThaiNLP⋄, and
Indic-NLP Library⋄, respectively. For the others,
we use the Moses tokenizer⋄ with default rules.

Our code is implemented on Tensorflow 2.6
(Abadi et al., 2016). We use Adam optimizer
(Kingma and Ba, 2015) with β1 = 0.9,β2 = 0.999,
ϵ = 1e − 8, warm_up = 10000 (Vaswani et al.,
2017) and lr = 1e− 4. We set dropout regulariza-
tion with a drop rate rate = 0.1. The mini-batch
size is set to 8192 tokens.

4.2 Multilingual Task

Readers can refer to Appendix §A.2 or references
for more introductions to these tasks.

Cross-lingual Embedding We attempt MUSE⋄
(Lample et al., 2018a) tasks that measure similar-
ities between two paired words to generally eval-
uate the degree of the isomorphism of languages’
embedding spaces. As discussed in Lample and
Conneau (2019); Wang et al. (2020) and our pre-
liminary experiment, the performance of the iso-
morphism is potentially proportional to the per-
formance of cross-lingual transfer. We treat this
experiment as our dev experiment to search for n.

UNMT UNMT (unsupervised neural machine
translation) (Lample and Conneau, 2019; Lample
et al., 2018b; Song et al., 2019; Liu et al., 2020)
tackles bilingual translation (Bahdanau et al., 2015;
Vaswani et al., 2017) on non-parallel bilingual cor-
pora without any cross-lingual signal.
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MUSE
# Model cosine
1 MUSE 0.38
2 XLM (reported on 15 languages) 0.55

12-layer Transformer encoder, 60K BPE and Wikipedia dumps in {De,En}.
3 XLM (reimplemented on 2 languages) 0.55
4 XLM + OURS n = 2 (default) 0.60
5 XLM + OURS n = 1 0.58
6 XLM + OURS n = 3 0.60
7 XLM + OURS n = 4 0.59

Table 2: Results on MUSE tasks. This is our dev experi-
ment for n.

Cross-lingual Classification We test XNLI⋄
(Conneau et al., 2020b) on 15 languages (including
English) under the cross-lingual transfer setting.
The model is pre-trained on multilingual corpora
and fine-tuned on the English dataset, aiming at
zero-shot classification for other languages.

Cross-lingual Question Answering MLQA⋄
(Lewis et al., 2020b) on 7 languages (including
English) requires identifying the answer to a ques-
tion as a span in the corresponding paragraph. We
pre-train the model on multilingual corpora and
fine-tune it on the English dataset, and then we
attempt zero-shot prediction for other languages.

4.3 Secondary Monolingual Task
Recall that, as presented in Eq.2, H[M]t is the con-
textualized representation or the final hidden state.
Therefore, MLM-GC pre-training is general and
can work for other MLM instances such as BERT
(Devlin et al., 2019), mBART (Liu et al., 2020),
SpanBERT (Joshi et al., 2020), BART (Lewis et al.,
2020a), and ALBERT (Lan et al., 2020). Mean-
while, MLM-GC pre-training is substantially bet-
ter than MLM pre-training beyond multilingual
tasks. We provide further experiments on mono-
lingual tasks including SQuAD v1&v2 (Rajpurkar
et al., 2016) in Appendix §B, using ALBERT as
the MLM instance.

5 Result

5.1 Cross-lingual Embedding and
Understanding Co-occurrence

Setup We configure an identical MLM instance
to XLM with a 12-layer Transformer encoder.
However, instead of 80K BPE and 15 languages
in the original work, we learn 60K BPE and pre-
train the model on Wikipedia dumps⋄ of the 2 lan-
guages. After 400K pre-training steps, we extract
the embeddings required by the test set from the
embedding space of the model. For words split
into 2+ sub-tokens, we average all the sub-token

embeddings. See details in Appendix A.2.1. As
mentioned early, this is our dev experiment.

Performance We follow the instruction to com-
pute the cosine similarity for the MUSE task, re-
porting the result in Table 2 for En ↔ De test
sets. MLM-GC pre-training outperforms the base-
line model with different n. A large n does not
consistently improve performance. We suspect that
a large n may impact the capacity of the contextu-
alized representation, which makes the model hard
to be trained. Furthermore, n = 2 shows the best
performance, and we may explain that in our com-
parison of co-occurrence counts (Figure 1), n = 2
has slightly smaller absolute difference avg and the
ratio avg and narrower confidence (95%) intervals
in large-count bins (> log(1e7)) contributing to
over 45% co-occurrence counts on the multilingual
corpora. Since we do not inject any cross-lingual
supervision into the embedding space, this test can
quantitatively report how MLM-GC refines the lan-
guage spaces from co-occurrence counts for the
isomorphic space and multilinguality.

Visualization and Multilingual Word Analogy
We visualize all the words from the MUSE test
sets. Since the task is originally designed for word
translation including nouns, verbs, and other mean-
ingful words, analogical words should be clustered
and aligned in isomorphic spaces. As reported in
Google’s NMT (Johnson et al., 2017), the t-SNE
can visualize isomorphic spaces across languages.
Then, we employ the t-SNE visualization 3 to ob-
serve the isomorphic space. Figure 2 shows that
MLM-GC pre-training help the model learn to form
a better isomorphic space than MLM pre-training.
Another insight is from the classic analogy test:
"English: King - Man + Woman = Queen and Ger-
man: König-Mann+Frau = Königin", and we show
results in Table 3. MLM-GC pre-training consis-
tently improves the performance on monolingual
tests (only English or German) and multilingual
tests (mixing English with German). Then, we can
further observe the effectiveness of our method in
improving the quality of isomorphic spaces across
languages.

5.2 UNMT
Setup&Training We consider two similar lan-
guage pairs {De,Ro} ↔ En from WMT⋄ (Bo-
jar et al., 2018) and a dissimilar language pair

3We reduce the dimension of embeddings to 3 by using
PCA and then configure the t-SNE visualization.
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(a) XLM

(b) XLM + OURS

Figure 2: T-SNE visualization for words of the MUSE
task. Each point is a word instance.

En ↔ Ne (Nepali) from FLoRes⋄ (Guzmán et al.,
2019). Transformer, configurations, corpora, and
BLEU scripts are identical to XLM and MASS. We
pre-train the model around 400K iterations on only
monolingual corpora of the two languages. After
MLM-GC pre-training, we follow XLM and MASS
to train the model for translation from pre-trained
weights. In the training phase, we use Adam op-
timizer with parameters β1 = 0.9, β2 = 0.997
and ϵ = 10−9, and a dynamic learning rate with
warm_up = 8000 (learning_rate ∈ (0, 7e−4])
is employed. We set dropout with rate = 0.1 and
label smoothing with gamma = 0.1. After around

X cos (X , Queen) cos(X , Königin)
XLM XLM+OURS XLM XLM+OURS

mono: King-Man+Woman 0.44 0.46 0.35 0.39
mono: König-Mann+Frau 0.33 0.42 0.45 0.52
multi: King-Man+Frau 0.34 0.41 0.33 0.37
multi: King-Mann+Woman 0.45 0.48 0.33 0.38
multi: King-Mann+Frau 0.42 0.49 0.35 0.40
multi: König-Man+Woman 0.35 0.39 0.44 0.49
multi: König-Man+Frau 0.25 0.34 0.40 0.46
multi: König-Mann+Woman 0.38 0.42 0.43 0.49

Table 3: Word analogy: King - Man + Woman = Queen
(German: König-Mann+Frau = Königin).

6-layer Transformer encoder-decoder, 60K BPE for each bilingual UNMT.
Language pair De ↔ En Ro ↔ En Ne ↔ En
Test set newstest2016 FLoRes⋄
Corpora News Crawl ⋄ from 2007 to 2017 FLoRes⋄

default multi-BLEU.perl⋄
XLM 34.3 26.4 31.8 33.3 0.5 0.1
XLM + PMI-Masking ⋆ 35.2 27.1 33.4 34.2 3.1 2.0
XLM + OURS 35.8 27.8 34.1 35.0 4.8 2.9
MASS 35.2 28.3 33.1 35.2
MASS + OURS 36.5 28.7 34.6 36.4 5.5 3.0

default sacreBleu⋄:nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.0.0
mBART + CC25 corpora 34.0 29.8 30.5 35.0 10.0 4.4
XLM + OURS 35.6 27.7 33.8 34.8 4.7 2.8
MASS +OURS 36.3 28.5 34.4 36.2 5.3 2.9

Table 4: Results of UNMT. ⋆ is reimplemented.

400K iterations, we report results. See details in
Appendix A.2.2.

Performance In Table 4, we report multi-
BLEU.perl⋄ to compare with XLM and MASS and
sacreBleu⋄ to compare with mBART (Liu et al.,
2020) so that the evaluation is based on the same
BLEU script. MLG-GC pre-training consistently
improves the performance of baseline models on
all the similar language pairs by 3% ∼ 7% and
on the dissimilar pair by 2.5 ∼ 5.0 BLEU. The
performance on the dissimilar pair is competitive
to SOTA: mBART and is better than mBART on
similar language pairs. However, mBART uses
CC25 (Wenzek et al., 2020) for pre-training and ob-
tains benefits from more languages (25 languages)
and samples. The global co-occurrence informa-
tion across languages is general and abstract for
isomorphic spaces, which allows for cross-lingual
representations. It eventually helps the model un-
derstand translation knowledge. Meanwhile, we
observe substantial gains on MASS + OURS (and
ALBERT (Lan et al., 2020) in Appendix B), where
MASS (ALBERT) is based on span masking. As
discussed in §Related Work and Introduction, span-
based masking (also including Whole Word Mask-
ing (Devlin et al., 2019) and PMI-Masking (Levine
et al., 2021) ) implicitly leverages co-occurrence in-
formation for improving context understanding. In
addition to the empirical study in Figure 1, the gain
further confirms that global co-occurrence infor-
mation significantly injects some signals for cross-
lingual transfer beyond improving context under-
standing.

5.3 Cross-lingual Classification
Setup&Fine-tuning The model configuration,
preprocessing, and corpora are identical to XLM4.
For the classification objective, we deploy a lin-
ear classification layer on top of the encoder. Af-

4In the literature, this setup also refers to XLM-15.
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Model en fr es de el bg ru tr ar vi th zh hi sw ur Avg
baseline 73.7 67.7 68.7 67.7 68.9 67.9 65.4 64.2 64.8 66.4 64.1 65.8 64.1 55.7 58.4 65.6
mBERT 82.1 73.8 74.3 71.1 66.4 68.9 69.0 61.6 64.9 69.5 55.8 69.3 60.0 50.4 58.0 66.3

12-layer Transformer encoder, 80K BPE, and 15 XNLI languages from Wikipedia dumps downloaded by WikiExtractor⋄.
XLM 83.2 76.5 76.3 74.2 73.1 74.0 73.1 67.8 68.5 71.2 69.2 71.9 65.7 64.6 63.4 71.5
XLM + PMI-Masking ⋆ 84.1 78.4 77.8 76.6 75.1 75.5 74.9 69.7 70.8 73.0 70.7 73.4 68.1 66.1 65.3 73.3
XLM + OURS 84.9 78.6 78.7 77.5 76.2 77.1 74.8 71.5 72.6 75.7 72.6 76.2 68.2 67.5 66.5 74.6

+ Parallel Sentences from OPUS⋄
XLM + TLM 85.0 78.7 78.9 77.8 76.6 77.4 75.3 72.5 73.1 76.1 73.2 76.5 69.6 68.4 67.3 75.1
XLM + TLM + OURS 85.0 79.5 79.4 78.5 77.3 78.0 76.2 73.1 74.0 76.8 74.0 77.1 70.5 70.0 68.5 75.9

Table 5: Results of cross-lingual classification on XNLI. ⋆ is reimplemented.

Model en es de ar hi vi zh Avg
mBERT-102 77.7 / 65.2 64.3 / 46.6 57.9 / 44.3 45.7 / 29.8 43.8 / 29.7 57.1 / 38.6 57.5 / 37.3 57.7 / 41.6

12-layer Transformer encoder, 80K BPE, and and 15 XNLI languages from Wikipedia dumps downloaded by WikiExtractor⋄.
XLM 74.9 / 62.4 68.0 / 49.8 62.2 / 47.6 54.8 / 36.3 48.8 / 27.3 61.4 / 41.8 61.1 / 39.6 61.6 / 43.5
XLM + PMI-Masking ⋆ 76.0 / 63.9 69.2 / 50.2 64.1 / 48.0 55.8 / 38.0 49.8 / 28.5 62.9 / 42.2 63.3 / 40.5 63.1 / 44.4
XLM + OURS 77.7 / 65.9 71.5 / 51.1 65. 7 / 48.9 57.4 / 40.0 51.5 / 30.3 64.5 / 43.2 64.7 / 41.9 64.7 / 45.9

Table 6: Results of cross-lingual question answering on MLQA. We report the F1 and EM (exact match) scores for
zero-shot prediction. ⋆ is reimplemented.

ter pre-training, we deploy the randomly initial-
ized linear classifier and fine-tune the encoder and
the linear classifier on the En NLI dataset with
mini-batch size 16. We use Adam optimizer with
lr = 5 × 10−4 and linear decay of lr. After fine-
tuning, we make zero-shot prediction for the other
14 languages. See details in Appendix A.2.3.

Performance We report the result in Table 5.
Our method consistently improves baseline models
by 3.5% (Avg). As discussed in previous models
(Conneau et al., 2020b; Karthikeyan et al., 2020;
Wu and Dredze, 2019; Pires et al., 2019; Dufter
and Schütze, 2020), multilinguality is essential for
this task. Then, we confirm the effectiveness of
MLM-GC pre-training. Furthermore, our method
outperforms XLM + PMI-Masking (span-based).
Similar to the comparison in UNMT, MLM-GC
pre-training uses co-occurrence information for bet-
ter context understanding and cross-lingual trans-
fer, whereas XLM + PMI-Masking leverages co-
occurrence information for context understanding
but performs worse for cross-lingual transfer be-
cause of the lack of a mechanism to help cross-
lingual transfer. We also include XLM + TLM
(Lample and Conneau, 2019) for comparison. In
this experiment, XLM + TLM using parallel sen-
tences in pre-training slightly outperforms MLM-
GC, which indicates the knowledge gap between
co-occurrence information and parallel sentences
for cross-lingual supervision. Besides, when ap-
plying MLM-GC pre-training for XLM + TLM,
we still observe gains. We attribute the additional
gains to the contextualized representations that are
further refined by co-occurrence information to rep-
resent similar abstractions for cross-lingual transfer.

Intuitively, the co-occurrence information gives
extra cross-lingual supervision beyond a limited
amount of parallel sentences.

5.4 Cross-lingual Question Answering

Setup&Fine-tuning The setup is similar to
§Cross-lingual Classification. We follow the in-
struction of SQuAD from BERT, fine-tuning the
model with a span extraction loss on the English
dataset. We use Adam optimizer with lr = 5 ×
10−5 and linear decay of lr. As suggested, we fine-
tune the model on SQuAD v1.1 (Rajpurkar et al.,
2016) and then make zero-shot prediction for the
7 languages of MLQA. See details in Appendix
A.2.4.

Performance In Table 6, MLM-GC pre-training
substantially improves the performance (Avg) in
both F1 and EM metrics by 4.8 % and 5.0 % respec-
tively. Meanwhile, MLM-GC pre-training yields
more improvements for low-resource languages.
We attribute all the improvements to the global co-
occurrence objective the model learns in MLM-GC
pre-training. Intuitively, spans (groups of words) of
answers across languages are most likely to consist
of nouns and terms and can be easily represented,
clustered, and aligned in the improved isomorphic
space because they are analogical and might have
similar co-occurrence counts as discussed in the
empirical study (Figure 1).

6 Conclusion

In this work, we leverage the global co-occurrence
information from multilingual corpora. The result
is MLM-GC pre-training with a combined objec-
tive of MLM and global co-occurrence modeling.
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Figure 3: Word distributions of De and En on Wikipedia after applying BPE.

Our experiments show that MLM-GC pre-training
can substantially improve the performance of naive
MLM pre-training for 4 multilingual tasks, and
additional experiments show that it can work for
monolingual tasks. The isomorphic space across
languages benefits from co-occurrence informa-
tion, which allows for cross-lingual transfer. Mean-
while, the model is encouraged to distinguish rele-
vant information from irrelevant information and
to discriminate between the two relevant informa-
tion across languages from co-occurrence counts
(normalized) and refine contextualized representa-
tions accordingly. We believe that leveraging co-
occurrence information for cross-lingual transfer is
an interesting avenue in multilingual pre-training.

7 Limitation

Theoretically, our method might benefit from com-
parable corpora across languages, where words and
compound words might have similar distribution
because Zipf’s law might be satisfied only for simi-
lar domains. For instance, as presented in Figure 3,
word distributions of De and En on Wikipedia are
similar after applying BPE. In our experiments, we
only confirm the effectiveness of our methods on
Wikipedia corpora in different languages, which
are comparable across languages. This might limit
the scope of our method. However, multilingual
models are commonly pre-trained on comparable
corpora, e.g., Wikipedia and CC.

Another limitation is about the combined ob-
jective in Eq. 4. In our experiments, we try to

eliminate the MLM objective, only considering
global regression modeling LGC . The result is not
promising, and it seems that LGC can not work
well without the help of the MLM objective. How-
ever, our experiment is very simple. This might be
further confirmed or designed in future work.
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A Experiment

A.1 MLM Instance

We adapt our method to two MLM instances:
XLM (Lample and Conneau, 2019) and MASS
(Song et al., 2019). We follow the instruc-
tions of BERT (Devlin et al., 2019) that each
selected token is replaced with the probabil-
ities (p[unchanged], p[random], p[mask]) =
(0.1, 0.1, 0.8).

XLM XLM is similar to BERT (Devlin et al.,
2019) but uses text streams of an arbitrary num-
ber of sentences. Following the instruction, we
randomly select 15% of the tokens from the input
sentence for replacing.

MASS MASS is different from XLM and BERT
but similar to SpanBERT (Joshi et al., 2020), us-
ing spans to replace consecutive tokens. Given an
input sentence with length N , we randomly select
consecutive tokens with length N/2 for replacing.

A.2 Multilingual Task

A.2.1 Cross-lingual Embedding
We are interested in the isomorphism of languages’
embedding spaces. To investigate, we attempt
MUSE⋄ tasks (Lample et al., 2018a) that measure
similarities between two paired words. This test
can generally evaluate the degree of the isomor-
phism of languages’ embedding spaces. Mean-
while, as discussed in Lample and Conneau (2019);
Wang et al. (2020) and our preliminary experiment,
the performance of the isomorphism is potentially
proportional to the performance of cross-lingual
transfer learning tasks. Therefore, we treat this
experiment as our dev experiment to search for n.

Setup We configure a 12-layer Transformer en-
coder and use Moses tokenizer⋄ with default rules
for tokenization, identical to XLM (Lample and
Conneau, 2019). For fast dev experiment, we em-
ploy fastBPE⋄ to learn 60K BPE (Sennrich et al.,
2016b) from concatenated corpora with a sampling
criterion from (Lample and Conneau, 2019) and
pre-train the model on 2 languages instead of 80K
BPE and 15 languages in the reported work.

Training In the pre-training phase, we pre-train
the model on Wikipedia dumps⋄ of the two lan-
guages for 400K steps. After pre-training, we ex-
tract the words’ embeddings required by the test
set from the embedding space of the model. For
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words split into 2+ sub-tokens, we average all the
extracted embeddings of sub-tokens. We then eval-
uate paired embeddings in cosine similarity.

A.2.2 UNMT
UNMT (unsupervised neural machine translation)
(Lample and Conneau, 2019; Lample et al., 2018b;
Song et al., 2019; Liu et al., 2020) tackles bilingual
translation (Bahdanau et al., 2015; Vaswani et al.,
2017) on non-parallel bilingual corpora without
having access to any parallel sentence. In other
words, there is no supervision for translation. The
model requires pre-training to obtain some initial
multilingual knowledge for decent performance.

Setup We configure an identical Transformer
model to XLM (Lample and Conneau, 2019) and
MASS (Song et al., 2019), which has 6 layers
in both the encoder and decoder using default
configurations. We consider multiple families of
languages. Specifically, we consider similar lan-
guage pairs {De,Ro} ↔ En, using the same
dataset as previous works (Lample and Conneau,
2019). The dataset consists of monolingual cor-
pora {De,En} from WMT 2018⋄ (Bojar et al.,
2018) including all available NewsCrawl datasets
from 2007 through 2017 and monolingual cor-
pora Ro from WMT 2016⋄ (Bojar et al., 2016)
including NewsCrawl 2016. We report the per-
formance for {De,Ro} ↔ En on newstest2016.
Meanwhile, we share the FLoRes⋄ (Guzmán et al.,
2019) task to evaluate a dissimilar language pair
Ne ↔ English (Nepali). For tokenization, we
use the Moses tokenizer⋄ developed by Koehn
et al. (2007) with default rules except for Ne that
is tokenized by Indic-NLP Library⋄. We employ
fastBPE⋄ to learn 60K BPE (Sennrich et al., 2016b)
from concatenated corpora of paired languages,
using the same sampling criteria in Lample and
Conneau (2019). We use learnable language em-
beddings and position embeddings.

Training In MLM-GC pre-training, the model is
pre-trained around 400K iterations on only mono-
lingual corpora of different languages. In the train-
ing phase, we use Adam optimizer (Kingma and
Ba, 2015) with parameters β1 = 0.9,β2 = 0.997
and ϵ = e − 9, and a dynamic learning rate with
warm_up = 8000 and learning_rate ∈ (0, 7e−
4]) (Vaswani et al., 2017) is employed. We set
dropout regularization with a drop rate rate = 0.1
and label smoothing with gamma = 0.1 (Mezzini,
2018). On-the-fly back-translation (Sennrich et al.,

2016a) (the inference mode of the model) performs
to generate synthetic parallel sentences that can
be used for training of translation as NMT (neural
machine translation) is trained on genuine paral-
lel sentences in a supervised manner. Meanwhile,
UNMT learns an objective of denoising language
modeling (Vincent, 2010) to maintain language
knowledge in the training phase except for MASS.
After around 400K iterations, we report BLEU
computed by multi-BLEU.perl⋄ and scareBLEU⋄
with default rules, according to baseline models. In
conclusion, in pre-training, we only have the ob-
jective of MLM-GC, and in training, we have the
two objectives: 1) denoising language modeling
for XLM or MASS itself and 2) translation (i.e.,
NMT), where the translation objective is finished
by using synthetic pairs sentences from on-the-fly
back-translation.

A.2.3 Cross-lingual Classification
We experiment with XNLI⋄ (Conneau et al.,
2020b), a general cross-lingual classification task
on 15 languages (including English) under the
cross-lingual transfer setting. The model takes in
two input sentences and is required to classify into
one of the three labels: entailment, contradiction,
and neutral. The model is fine-tuned on the English
dataset and then attempts zero-shot classification
for other languages.

Setup Following the previous work5 (Lample
and Conneau, 2019), we use raw sentences includ-
ing 15 XNLI languages from Wikipedia dumps
downloaded by WikiExtractor⋄. Sentences in dif-
ferent languages are sampled with the method of
Lample and Conneau (2019). The model config-
uration and preprocessing are identical to XLM
that we use a 12-layer transformer encoder and
80K BPE. For the classification objective, we de-
ploy a linear classification layer on top of the en-
coder. To tokenize {zh, th}, we use Stanford Word
Segmenter⋄ and PyThaiNLP⋄ respectively. For
the others, we use the Moses tokenizer⋄ with de-
fault rules. Similar to the Cross-lingual Embedding
experiment, we use fastBPE⋄ and the sampling
strategy to learn BPE.

Fine-tuning After pre-training on the corpora,
we deploy a randomly initialized linear classifier
and fine-tune the encoder and the linear classifier
on the En NLI dataset with mini-batch size 16. We

5In the literature, this setup also refers to XLM-15.
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use Adam optimizer (Kingma and Ba, 2015) with
lr = 5e − 4 and linear decay of lr. After fine-
tuning, we make zero-shot prediction for the other
14 languages. We use categorical cross-entropy
with three labels: entailment, contradiction, and
neutral.

A.2.4 Cross-lingual Question Answering
We consider the MLQA⋄ (Lewis et al., 2020b)
dataset for a cross-lingual question answering task.
Given a question and a passage containing the an-
swers, the aim is to predict the answer text span
in the passage. This task requires identifying the
answer to a question as a span in the corresponding
paragraph. The evaluation data for English and
6 other languages are obtained by automatically
mining target language sentences that are parallel
to sentences in English from Wikipedia, crowd-
sourcing annotations in English, and translating the
question and aligning the answer spans in the target
languages. Similar to the cross-lingual classifica-
tion task, the model is fine-tuned on the English
dataset and then attempts zero-shot prediction for
other languages.

Setup The setup is similar to the experiment of
cross-lingual classification.

Fine-tuning We follow the instruction of
SQuAD from BERT (Devlin et al., 2019), fine-
tuning the model with a span extraction loss on the
English dataset. We use Adam optimizer (Kingma
and Ba, 2015) with lr = 5e − 5 and linear de-
cay of lr. Meanwhile, as suggested, we fine-tune
the model on the SQuAD v1.1 (Rajpurkar et al.,
2016) dataset and then make zero-shot prediction
for the 7 languages of MLQA. Given a sequence
T , we only have a start vector S ∈ Rhidden and an
end vector E ∈ Rhidden during fine-tuning. The
probability of word i being the start of the answer
span is computed as a dot product Ti and S d by
a softmax over all of the words in the sequence
pi =

eSTi∑
k∈T eETk

. Similarly, we can compute the
end of the span. The score of a candidate span from
position i to position j is defined as STi+ETj and
the maximum scoring span where j ≥ i is used as
a prediction.

B Additional and Supportive Result

B.1 Pre-training for Monolingual Task
Although we derive our method from the observa-
tion of multilingual models, MLM-GC pre-training

Model SQuAD1.1 SQuAD2.0
(F1) (F1)

12-base-ALBERT (Lan et al., 2020) 89.3 80.0
⋆12-base-ALBERT 89.4 80.0
12-base-ALBERT + OURS 89.8 80.9

Table 7: MLM-GC pre-training for ALBERT. ⋆ denotes
the baseline model that is reimplemented.

is substantially better than MLM pre-training. We
provide further experiments on monolingual tasks
including SQuAD v1&v2 (Rajpurkar et al., 2016).

setup For this monolingual task, our configura-
tion is identical to 12-base-ALBERT (Lan et al.,
2020). Specifically, We set the model dimension,
word embedding dimension, and the maximum
number of layers to 768, 128, and 12. As rec-
ommended, we generate a masked span for the
MLM targets using the random strategy from Joshi
et al. (2020), and we use LAMB optimizer⋄ with a
learning rate of 0.00176 (You et al., 2020) instead
of Adam optimizer. Following the instructions,
we pre-train models on BooksCorpus⋄ (Zhu et al.,
2015) and English Wikipedia⋄ (Devlin et al., 2019)
for 140k steps.

Fine-tuning Similar to the cross-lingual question
answering task, we fine-tune the pre-trained model
on SQuAD(v1.1 and v2.0)⋄ (Rajpurkar et al., 2016,
2018).

Result Table 7 shows that MLM-GC pre-training
is substantially better than MLM pre-training when
pre-training 12-base-ALBERT for monolingual
tasks. These observations confirm the effectiveness
of MLM-GC pre-training on monolingual tasks.

B.2 Impact of Tokenization Method
We are interested in how the tokenization method
affects the performance because it potentially af-
fects the token-token co-occurrence counts. For
evaluation, we use all the configurations in UNMT
and additionally configure a word-level vocabulary
for the model. The word-level vocabulary has the
same number of tokens as the BPE vocabulary. Ta-
ble 8 shows that our method can work with different
tokenization methods. Our method can generally
improve the performance, regardless of the differ-
ence between the two baseline models in the same
configuration.

C Reimplementation

We compare our reimplementation with reported
results in Table 9.

7539



Model De ↔ En
baseline (BPE-based) ⋆ 33.8 26.3
+ OURS 35.8 27.8
baseline (Word-level) ⋆ 33.0 25.8
+ OURS 35.2 27.2

Table 8: Impact of Tokenization Method. ⋆ denotes
reimplemented models.

Language pair De ↔ En
multi-BLEU.perl⋄ with default rules

XLM(Lample et al., 2018b) reported 34.3 26.4
XLM(Lample et al., 2018b) ⋆ 33.9 26.3
XLM + OURS 35.8 27.8

multi-BLEU.perl⋄ with default rules
MASS(Song et al., 2019) reported 35.2 28.3
MASS(Song et al., 2019)⋆ 35.0 28.0
MASS + OURS 36.5 28.7

Table 9: Performance of UNMT. Baseline models (⋆)
are reimplemented with our configurations.

D Alternative

In MLM pre-training, when wt at the position t is
replaced by the artificial masking token [M]t, the
output distribution for wt is obtained by applying a
pre-softmax linear transformation O ∈ Rd×V from
the final hidden state or the contextualized repre-
sentation H[M]t to the output vocabulary size V ,
followed by a softmax operation which generates
an output matrix normalized over its rows. Specifi-

cally, Q[M]twt
=

exp(HT
[M]t

Owt )∑V
k=1 exp(H

T
[M]t

Owk
)

is the model

for the probability of wt in the context of H[M]t ,
where Owt and Owk

are vectors factorized from O,
i.e., self-recognizing. In this way, the probability
of wn in the context H[M]t is similar to Q[M]twt

in
the global regression model. Specifically, for wn,
Q[M]twt

could be extended to:

Q[M]twn
=

exp(HT
[M]t

Own)
∑V

k=1 exp(H
T
[M]t

Owk
)
. (5)

For all the neighboring tokens wt±n of the input
sentence at position [t−n, ..., t)∪(t, ..., t+n], i.e.,
excluding position t, we have the model Q[M]twt±n

.
Then, we employ the new global log-bilinear re-
gression model in MLM pre-training. Formally,
given the factorized Owt±n and Xwtwt±n from O
and X respectively, we have the model:

LGC =
1

2n

∑

n

f(Xwtwt±n)

(
HT

[M]t
Owt±n√
d

− logXwtwt±n)
2,

(6)

where d is the model dimension.

In Table 10 and Table 11, we show the exper-
imental results (also see our previous revision
https://openreview.net/forum?id=DswOSXvLfuy).
In conclusion, the presented method Eq. 3 slightly
outperforms the alternative Eq. 6 on sentence-level
tasks. We explain that the alternative involves
neighboring embeddings in the objective, which
directly improves the quality of cross-lingual
embeddings. Compared to that, the presented
method of the main paper considers contextual-
ized representations of the masked tokens and
their neighboring tokens, which is better for
cross-lingual transfer.

E Source

We list all the links of dataset, tools, and other
sources in Table 12. Note that for multilin-
gual tasks, datasets can be downloaded from
the XTREME link except for UNMT and cross-
embeddings.
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Model en fr es de el bg ru tr ar vi th zh hi sw ur Avg
baseline 73.7 67.7 68.7 67.7 68.9 67.9 65.4 64.2 64.8 66.4 64.1 65.8 64.1 55.7 58.4 65.6
mBERT 82.1 73.8 74.3 71.1 66.4 68.9 69.0 61.6 64.9 69.5 55.8 69.3 60.0 50.4 58.0 66.3

12-layer Transformer encoder, 80K BPE, and 15 XNLI languages from Wikipedia dumps downloaded by WikiExtractor⋄.
XLM 83.2 76.5 76.3 74.2 73.1 74.0 73.1 67.8 68.5 71.2 69.2 71.9 65.7 64.6 63.4 71.5
XLM + PMI-Masking ⋆ 84.1 78.4 77.8 76.6 75.1 75.5 74.9 69.7 70.8 73.0 70.7 73.4 68.1 66.1 65.3 73.3
XLM + OURSv2 84.9 78.6 78.7 77.1 76.2 77.0 75.2 72.5 72.6 75.1 73.0 74.2 68.2 67.2 67.1 74.5

+ Parallel Sentences from OPUS⋄
XLM + TLM 85.0 78.7 78.9 77.8 76.6 77.4 75.3 72.5 73.1 76.1 73.2 76.5 69.6 68.4 67.3 75.1
XLM + TLM + OURSv2 85.0 79.9 79.2 78.5 77.1 78.0 76.4 73.1 74.0 76.7 73.9 76.8 70.2 68.8 67.9 75.5

Table 10: Results of cross-lingual classification on XNLI. ⋆ is reimplemented.

Table 11: Results of cross-lingual question answering on MLQA. We report the F1 and EM (exact match) scores for
zero-shot prediction. ⋆ is reimplemented.

Model en es de ar hi vi zh Avg
mBERT-102 77.7 / 65.2 64.3 / 46.6 57.9 / 44.3 45.7 / 29.8 43.8 / 29.7 57.1 / 38.6 57.5 / 37.3 57.7 / 41.6

12-layer Transformer encoder, 80K BPE, and and 15 XNLI languages from Wikipedia dumps downloaded by WikiExtractor⋄.
XLM 74.9 / 62.4 68.0 / 49.8 62.2 / 47.6 54.8 / 36.3 48.8 / 27.3 61.4 / 41.8 61.1 / 39.6 61.6 / 43.5
XLM + PMI-Masking ⋆ 76.0 / 63.9 69.2 / 50.2 64.1 / 48.0 55.8 / 38.0 49.8 / 28.5 62.9 / 42.2 63.3 / 40.5 63.1 / 44.4
XLM + OURSv2 77.5 / 65.6 71.4 / 50.9 65.3 / 48.6 57.1 / 39.6 51.1 / 29.9 64.1 / 43.0 64.5 / 41.7 64.4 / 45.7

Table 12: Links of source.

Item Links
WMT 2016 http://www.statmt.org/wmt16/translation-task.html
WMT 2018 http://www.statmt.org/wmt18/translation-task.html
FLoRes https://github.com/facebookresearch/flores
Indic-NLP Library https://github.com/anoopkunchukuttan/indic_nlp_library
XLM https://github.com/facebookresearch/XLM
multi-BLEU.perl https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-BLEU.perl
Moses tokenizer https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
Kytea http://www.phontron.com/kytea/
XTREME https://github.com/google-research/xtreme
fastBPE https://github.com/glample/fastBPE
MUSE https://github.com/facebookresearch/MUSE
Cambridge Dictionary https://dictionary.cambridge.org/
SemEval’17 https://alt.qcri.org/semeval2017/task2/
WikiExtractor https://github.com/attardi/wikiextractor
PyThaiNLP https://github.com/PyThaiNLP/pythainlp
Stanford Word Segmenter Chang et al. (2008) https://nlp.stanford.edu/software/segmenter.html
Tensor2Tensor https://github.com/tensorflow
HuggingFace https://huggingface.co
ORPUS, Wikipedia v1.0 https://opus.nlpl.eu
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