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Abstract
Multi-Task Learning used with pre-trained
models has been quite popular in the field of
Natural Language Processing in recent years.
This framework remains still challenging due to
the complexity of the tasks and the challenges
associated with fine-tuning large pre-trained
models. In this paper, we propose a new ap-
proach for Multi-task learning which is based
on stacking the weights of Neural Networks as
a tensor. We show that low-rank updates in the
canonical polyadic tensor decomposition of this
tensor of weights lead to a simple, yet efficient
algorithm, which without loss of performance
allows to reduce considerably the model param-
eters. We investigate the interactions between
tasks inside the model as well as the inclusion
of sparsity to find the best tensor rank and to
increase the compression rate. Our strategy is
consistent with recent efforts that attempt to
use constraints to fine-tune some model com-
ponents. More precisely, we achieve equiva-
lent performance as the state-of-the-art on the
General Language Understanding Evaluation
benchmark by training only 0.3% of the param-
eters per task while not modifying the baseline
weights.

1 Introduction

Multi-task learning (MTL) aims in exploiting si-
multaneously similarities and differences between
related tasks (Caruana, 1997). Compared to train-
ing the models separately, this can lead to enhance
learning efficiency and prediction accuracy for the
task-specific models.

In addition to certain similarities to transfer
learning and data augmentation, MTL has a regular-
izing effect in practice (Caruana, 1997). MTL also
has the advantage of storage efficiency, which is
advantageous for devices with less memory. On the
other hand, MTL performance may be impacted
by task covariance (Wu et al., 2020), various loss
functions, and difference between dataset sizes (Pi-
lault et al., 2021). Additionally, there are still some

MTL-related limitations, including negative trans-
fer, in which learning two tasks at once lowers
the model’s performance on both tasks (Crawshaw,
2020; Wu et al., 2020), and catastrophic forgetting
in which one some tasks features can be overlooked
during the training process (Serra et al., 2018).

In this study, we aim to decrease the amount of
language model trainable parameters in the MTL
framework. To achieve this, we suggest stacking
weight matrices corresponding to several tasks in
a 3-way tensor and performing a tensor low-rank
update, which is similar to the LoRA technique in
the single-task case (Hu et al., 2021). One of the
main advantages of the tensor approach is that it
allows for splitting the weight updates into shared
and task-specific parts. Moreover we extend our
approach to the bias term which showed remark-
able results in Ben Zaken et al. (2022). We test our
method using the General Language Understanding
Evaluation (GLUE) Benchmark. Thus we demon-
strate that low-rank update for both matrix and bias
successfully strikes a balance between preserving
positive transfer and minimizing negative transfer
by only training 0.3% of the initial parameters per
task. We also look into how different model factors
affect the way tasks interact with one another.

2 Related Work

Multi-Task Learning for NLP. Training the Bidi-
rectional Encoder Representations from Transform-
ers (BERT) (Devlin et al., 2018) in hard-sharing
Multi-Task Learning may be subject to negative
transfer (Liu et al., 2019; Glover and Hokamp,
2019). To tackle this problem, some studies pro-
pose to use a shared hyper-network or to do con-
ditional learning (Pilault et al., 2021; Mahabadi
et al., 2021; He et al., 2022). This method con-
sists in creating a task embedding which is used
to build model’s layers. Another approach to cir-
cumvent the negative transfer problem, consists to
use Knowledge Distillation (KD) where single-task
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teachers transfer their knowledge to one multi-task
student (Clark et al., 2019; Wei et al., 2021).
Tensor methods. The use of tensor methods
mainly focused on applying tensor approximations
for compression of pretrained models (compres-
sion of fully-connected (Oseledets, 2011) and con-
volutional networks Lebedev et al. (2014); Kim
et al. (2015)). Ren et al. (2022) utilized tensor de-
composition for compressing Pre-trained Language
Models and presented a formal framework with de-
fined nomenclature to thoroughly explore tensor de-
composition approaches to compress Transformer-
based language models. In multi-task learning, ten-
sor methods have been used to introduce sharing
between weights across different tasks (Romera-
Paredes et al., 2013; Wimalawarne et al., 2014;
Yang and Hospedales, 2017). Recent work consid-
ered splitting in task-agnostic (shared) and task-
specific parts. However, the cited works were
mostly focused on learning compressed represen-
tation or tensor completion, mostly with so-called
Tucker tensor decomposition. The weight repre-
sentation in our work is much simpler and more
efficient in terms of parameters: the same frozen
weight matrix is shared and task-specific updates
use canonical polyadic decomposition (CPD). It is
compact and have an additional interpretation with
shared and task-specific factors. We can even do it
with tucker (see more details on CPD in Appendix
A.1.

3 MORRIS: Multi-task learning based on
lOw-Rank updates of pRe-trained
weIghtS

In the following, we designate vectors, matrices,
and tensors, respectively, with bold lowercase let-
ters, bold capital letters, and calligraphy letters.

We assume that there are T tasks and T as-
sociated datasets Di = {(x(i)j , y

(i)
j ) | j ∈

{1, . . . , Ni}} where Ni is the size of the ith col-
lection. We denote by li the loss function, ϕi the
specific parameters of the ith task, and Θ the shared
parameters between tasks. The Multi-Task Learn-
ing objective function is:

min
Θ,{ϕi}Ti=1

L(Θ, {ϕi}Ti=1, {Di}Ti=1) =

T∑

i=1

∑

(x
(i)
j ,y

(i)
j )∈Di

li(f(Θ, ϕi, x
(i)
j ), y

(i)
j )

(1)

By adopting a low-rank tensor update for the

x

W

B[i,:]C⊤ A

b

E[i,:]

D

+
Oi

Frozen weights

Shared weights

Task specific
weights

Figure 1: Tensor representation for multi-task learning
in Morris.

weights tensor and a low-rank matrix update for
the biases, we suggest extending the approaches
proposed by Hu et al. (2021) and Ben Zaken et al.
(2022) to multi-task learning and updating the
weights and biases for several tasks concurrently.

3.1 The proposed framework

Our proposal is to update the output of the trans-
former layer for the ith task as follows: if the
dense layer is the query or value matrix; Oi =
(W + Qi)X + b + bi, otherwise we have Oi =
WX+b+bi; where W and b are frozen weights
of BERT, Qi and bi are the updates and X, Oi

are respectively the input, output of the layer (Fig-
ure 1).

Weights assumption. The weight updates for T
tasks can be stacked in a single d× T × d tensor,
so each matrix is a slice is Q[:,i,:] = Qi of the
tensor. Then our assumption is that Q has low-
rank;Q =

∑rw
r=1 A[:,r]⊗B[:,r]⊗C[:,r], where A, C

∈ Rd×Rw , B ∈ RT×Rw and rw represents the rank.

Bias assumption. The variation of the original
bias for each task can be represented by a matrix
B̂ ∈ Rd×T where the ith column bi represents the
bias of the task i ∈ {1, . . . , T}. We assume that the
matrix B̂ is a low-rank matrix and can be written
by the product of two matrices D ∈ Rd×rb and

7545



E ∈ Rrb×T where rb represented the rank, i.e.,

bi =

rb∑

t=1

D[:,t] × E[t,i] (2)

3.2 Motivation

The straightforward MTL extension of LoRA (Hu
et al., 2021) combined with BitFit (Ben Zaken et al.,
2022) would be to train the same low-rank matrix
Qi and bias bi for all tasks. This approach will
be called LoRA_Bitfit_MTL in the rest of the
paper. However we argue that our approach is
more flexible than LoRA_Bitfit_MTL because it
is a particular case of MORRIS where the entries
of matrices B, E are all set to 1. Moreover our
approach is quite natural because the concatenation
of low rank matrices creates a tensor with a rank at
most equal to the sum of the rank of the matrices.

3.3 Interpretation as shared and task-specific
weights

The underlying assumptions allow the following
interpretations. The slices of the weight tensor
with low-rank tensor structure factorize as follows;
Qi = A× diag(B[i,:])× C⊤, where diag() is the
diagonal matrix built from a given vector. The ma-
trix A and C are then shared between task whereas
rows of B are task specific parameters. Similarly,
for biases the matrix D is shared between each task
and the column of E are task-specific (Figure 1).

3.4 Apply L0 to find the optimal rank

The rank of the tensor must be at most the sum of
the ranks of the preceding matrices. Decreasing
this rank will reduce the number of model parame-
ters, however there is no straightforward manner to
fix this rank, as well as the bias rank which is simi-
larly tough to be defined. Following, Louizos et al.
(2018)’s work, we propose to use L0 regularisation
on the rows and columns of respectively B and E
to define the ranks. In this case, the binary mask
associated to α called z can estimated as:

u ∼ U(0, 1)

sj = σ(log(u)− log(1− u) + αj)

s̄j = j · (r − l) + l

zj = min(1,max(0, s̄j))

(3)

Based on this definition, Equation (1) can then
be written in the following form:

min
Θ,{ϕi}Ti=1,α

L(Θ, {ϕi}Ti=1, {Di}Ti=1) =

E(u)
u∼U [0,1]

T∑

i=1

∑

(x
(i)
j ,y

(i)
j )∈Di

li(f(Θ, ϕi ◦ z, x(i)j ), y
(i)
j )

+λ

d∑

j=0

σ(αj − log(
−l
d
))

(4)

Where l and d are two stretching constants, λ
controls the strength of the L0 regularisation and
σ is the the sigmoid function. More details of this
regularisation can be found in Louizos et al. (2018);
Guo et al. (2021).

4 Experiments and Analyse

We shall now present our experimental results.

4.1 Implementation details
We use BERT as the base model in Morris, that
we implemented using Pytorch1. Furthermore,
We use a fully connected layer on the [CLS] to-
ken as decoder for each task; with the cross en-
tropy loss and the mean squared error for respec-
tively the classification and the regression tasks.
The values of the hyperparameters were fixed
as the ones in LoRA (Hu et al., 2021). We se-
lect a batch size of 32 for all experiments, learn-
ing rate in {4e−4, 1e−4, 5e−5} for single task ap-
proaches, {1e−3, 4e−4, 1e−4, 5e−5} for Multi-task
approaches and dropout equal to 0.1 with AdamW
(Loshchilov and Hutter, 2017) as the optimizer.
For single task approaches the rank was set to 8,
and, {8, 16, 32, 64} for LoRA_BitFit_MTL. For
Morris the rank of the bias was set to 4 in all exper-
iments and the rank of the tensor corresponding to
the weights to 64. For the L0 regularisation, λ was
found in the interval {1e−5, 5e−6, 2e−6 which cor-
responds to a rate of sparsity equals to {60%, 40%,
20%}. In Multi-Task learning one of the major in-
fluencing factor is the choice of the data sampling
policy (Glover and Hokamp, 2019). We picked the
same as Mahabadi et al. (2021) and the same num-
ber of training steps equal to 218 since our objective
is not to research the impacts of sampling policy.
In our experiments, we did a short pre-training of
10000 step with a learning rate equals to 4e−4, after
that all αj lower than 0.5 were pushed to 0 and the

1https://pytorch.org
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Model
Total
Params

Trained
params/
task

QNLI RTE QQP
MNLI-
m

MNLI-
mm

SST-2 MRPC COLA
STS-
B

Avg

Single Task
BERT[a] x9 100% 90.5 66.4 71.2 84.6 83.4 93.5 88.9 52.1 85.8 79.6
Bitfit[b] x1.008 0.09% 89.7 65.5 67.8 80.8 80.9 92.4 87.4 47.2 87.6 77.7

Multi-task
BERT MTL[c] x1 11.1% 90.5 74.5 70.4 83.5 83.1 93.1 88.0 48.5 80.6 79.1
BERT MTL[d] x1 11.1% 89.3 76.6 70.8 84.0 83.4 93.4 86.7 51.2 83.6 79.9

PALs[d] x1.13 12.5% 90.0 76.0 71.5 84.3 83.5 92.6 88.7 51.2 85.8 80.4
CA-MTL[d] x1.12 5.6% 90.5 76.4 69.2 85.9 85.8 93.2 88.6 53.1 85.3 80.9

Our approach
Morris† x1.024 0.27% 91.1 73.7 70.6 83.8 83.5 92.8 90.2 52.0 85.8 80.4

Morris L0† x1.014 0.16% 91.6 73.7 70.5 84.1 83.1 92.1 89.6 49.9 86.3 80.1

Table 1: Experimental results on the test set. The best result on each column is in bold face. Results of [a] are from
(Devlin et al., 2018); [b] are from (Fu et al., 2022); [c] are from (Glover and Hokamp, 2019); [d] are from (Pilault
et al., 2021); † are results obtained with the best checkpoint in our settings.

others were set to pushed to 1. The pseudo-code of
our approach is provided in the Appendix A.6).

4.2 Metrics and Baselines

We considered the General Language Understand-
ing Evaluation (GLUE) benchmark in our experi-
ments (benchmark details are given in Appendix
A.4). As metrics, we considered standard mea-
sures that are Matthews Correlation for COLA
and Spearman Correlation for STS-B, F1 score
for MRPC/QQP, as well as accuracy. As baselines,
we compared Morris to our implementations of
the following approaches: LoRA (Hu et al., 2021),
Lora_BitFit which combines LoRA and BitFit in
(Hu et al., 2021; Ben Zaken et al., 2022), as well as
LoRA_BitFit_MTL presented above. All experi-
ments are done on 3 seeds and the results are the
average value of the performances. For this part,
we chose to not use the test online but we split each
dev set into dev/test set.

We also compared Morris to single task models:
BERT (Devlin et al., 2018), Bitfit (Ben Zaken
et al., 2022), as well as, Multi-task models which
are two extensions of BERT to this case (Glover
and Hokamp, 2019), PALs (Stickland and Murray,
2019) and CA-MTL (Pilault et al., 2021). This
comparison is done on the online test set, the best
model on three seeds was kept for the comparison.

4.3 Results

We first begin to compare our approach with LoRA
and its extensions. Performances are shown in Ta-
ble 2. As a result, the average performance appears
to be improved by a factor of 0.5 when the LoRA
and Bitfit techniques are combined. Moreover,

this approach seems to be efficient in a Multi-task
Learning setting, as LoRA_BitFit_MTL increases
the general performance by 0.6. Finally, Morris
outperforms all our baseline. In addition, the use
of the L0 regularisation enables the model to de-
crease the number of parameters by a factor of 0.6
with no loss of performance. Given that all ap-
proaches employ training parameters of the same
order of magnitude, comparisons in this situation
are straightforward.

Model
Total
Params

Trained
params/
task

Avg

Single Task
LoRA x1.024 0.27% 80.7

Lora_BitFit x1.03 0.34% 81.2
Multi Task

LoRA_BitFit_MTL x1.022 0.246% 81.8
Morris x1.024 0.27% 82.2

Morris L0 x1.014 0.16% 82.4

Table 2: Experimental results on our build test set. The
best result on each column is in bold face. The results
are obtained by compute the mean of three Seeds

In a more general case, when Morrisis com-
pared to the other methods in Table 1, this is not
the case. We first notice that Morris performs bet-
ter than all single task approaches. Furthermore,
our approach trains the model with less parame-
ters than the other approaches by a higher factor in
the multi-target case. Only the CA-MTL (Pilault
et al., 2021) seems to be competitive with Morris.
We justify this by pointing out that, in contrast to
our sampling approach, the sampling strategy used
in (Pilault et al., 2021) is highly extensive. In the
general case, our approach is equivalent or better
than the most of the baselines in term of average
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Figure 2: Sweight for wq with L0 regularisation without and with L0 regularisation

performance or the number of parameters used in
training.

4.4 Interaction between tasks
We assume that tasks are similar if their weight
variations are similar. As a measure, we compare
biases and slices using the cosine similarity:

Sbias
[i,j] =

⟨B̂[i,:]B̂[j,:]⟩
∥B̂[i,:]∥∥B̂[j,:]∥

, Sweight
[i,j] =

⟨Q[:,i,:]Q[:,j,:]⟩
∥Q[:,i,:]∥∥Q[:,j,:]∥

(5)

We will explore the weights (wq) and (bm2) due
to their significant variance in light of prior works
(Ben Zaken et al., 2022; Hu et al., 2021). For this,
we examine the relationship between Morris and
Morris with the L0 regularization. In order to
analyze more broad interactions, we often create
NB similarity matrices by using Equation (5). We
then decide to average these NB similarity matrices.
These findings are presented in Figure 2 where it
is clear that the diagonal block reflecting the kind
of task has the greatest similarity score. Addition-
ally, the coefficients are not close to 1, indicating
that task-specific weights enable successful task
differentiation. The bias similarity seeks to distin-
guish the CoLA and SST-2 tasks from the other
tasks, which are known to be uncorrelated one from
another and regularization reduces task similarity.

5 Conclusion

In this paper we presented, a novel method for
multi-task learning that relies on stacking the neu-
ral network weights into a tensor. We demonstrated
that low-rank updates in the conventional polyadic
tensor decomposition of this tensor of weights re-
sult in an efficient technique that allows for a signif-
icant reduction in model parameters without sacri-
ficing performance. On the GLUE Benchmark, we

showed that our proposed approach successfully
achieves a compromise between maintaining posi-
tive transfer and reducing negative transfer by only
using 0.3% of the initial model’s parameters.

6 Limitations

The drawbacks of our method are the same as those
of LoRA: it is tricky to batch inputs to many tasks
with varying A and B in a single forward pass, and
the rank may be greater for tasks that are more
challenging. Moreover, we believe that weights
obtained during a single task may be used for a
better initialisation. Finally, the use of a different
sampling policy on a different dataset may also be
appropriate, however this choice is not obvious.
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A Appendix

A.1 CP decomposition
Tensor compression can be carried out using the
potent technique of canonical polyadic (CP) de-
composition.

The aim here is to approximate an N-way ten-
sor where N ⩾ 3 by low-rank tensor, that can be
written as a sum of rank-one tensors. For the sake
of presentation and without loss of generality, let
N = 3 andX ∈ RI1×I2×I3 be a 3-way tensor. This
tensor has rank one if and only if there exists three
vectors a ∈ RI1 , b ∈ RI2 and c ∈ RI3 such that:

Xones = a⊗ b⊗ c (6)

where ⊗ is the tensor (outer) product operation. A
general CP representation of a 3-way tensor X is
of the form:

X =
R∑

r=1

a(r) ⊗ b(r) ⊗ c(r), (7)

where R is an integer. The smallest R such
that Equation: 7 is verified, is called the rank of
the tensor X . For convenience, the vectors in the
previous expression (7) can be stacked into the
factor matrix A ∈ RI1×R, B ∈ RI2×R and C ∈
RI3×R such as the ith columns of A is the vector
a(i) (same reasoning for B and C).

In the sequel, the goal is to approximate neural
network tensors by low-rank tensors of the form.

X =
R∑

r=1

A[:,r] ⊗ B[:,r] ⊗ C[:,r] (8)

A.2 Training and initialisation
A crucial aspect of deep learning is initialization.
Inspired by general approach, our adding part has
to be equal to zero at the beginning of our training.
The natural choice is to initialize the specific task
matrix of each layer B and E at zero. The rest of
our adding parameters are initialized randomly.

A.3 Parameter Efficiency
In this section, we investigate the number of
training parameters. We note θ⋆ the parame-
ters of the frozen BERT, and we note the set
of our adding matrix index by the number of
blocks NB, and by the number of bias per block

nbbias: {Aj ,Bj ,Cj}2×NB
j=1 , {Dj ,Ej}nbbias×NB

j=1 .
In this case the model parameters are: Θ =
(θ⋆, {Aj}2×NB

j=1 , {Cj}2×NB
j=1 , {Dj}nbbias×NB

j=1 ) and
{ϕi}Ti=1 = ({Bj

[i,:]}
2×NB
j=1 , {Ej

[:,i]}NB
j=1).

The number of trainable shared parameters is
equal to |Θ\θ⋆| = NB × d× (4rw + rb × nbbias)
and the number of specific task parameters is equal
to |{ϕi}Ti=1| = NB × T (2rw + rb × nbbias). In
the case where the regularisation L0 is applied,
we considered that these parameters are negligible.
The number of added parameters depends linearly
on the number of tasks but does not depend on the
dimension of the hidden space d which makes our
approach efficient in terms of parameters.

A.4 Dataset
We considered the General Language Understand-
ing Evaluation (GLUE) benchmark in our exper-
iments. This benchmark is composed of a large
variety of task like Single-Sentence Classifica-
tion: CoLA (Warstadt et al., 2018), SST-2(Socher
et al., 2013), Similarity and Paraphrase tasks:
MRPC (Dolan and Brockett, 2005), STS-B (Cer
et al., 2017), QPP (Iyer et al., 2017) and Inference
Tasks: MNLI (Williams et al., 2018), QNLI (Ra-
jpurkar et al., 2016), RTE (Dagan et al., 2005) and
WNLI(Levesque et al., 2012).

Following other studies, we did not take into ac-
count WNLI (Levesque et al., 2012) and we consid-
ered MNLI to be composed of two different tasks:
MNLI-m (matched) and Mnli-mm (mismatched)
more details can be found in Table 3.

A.5 Interaction between task
When it comes to mode-2 unfolding, the cosine
similarity between slices is comparable. With our
tensor representation, the following may be effi-
ciently computed:

Sweight = normalize(Q(2)QT
(2)) (9)

Sweight = normalize(B(C⊙ A)T (C⊙ A)BT )
(10)

Sweight = normalize(B(CTC ∗ATA)BT ) (11)
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Tasks Corpus |Train| |Test|
CoLA (Warstadt et al., 2018) Corpus of Linguistic Acceptability 8.5K 1K
SST-2 (Socher et al., 2013) Stanford Sentiment Treebank 67K 1.8K

MRPC (Dolan and Brockett, 2005) Microsoft Research Paraphrase Corpus 3.7K 1.7K
STS-B (Cer et al., 2017) Semantic Textual Similarity Benchmark 7K 1.4K
QQP (Iyer et al., 2017) Quora Question Pairs 364K 391K

MNLI (Williams et al., 2018) Multi-Genre NLI 393K 20K
QNLI (Rajpurkar et al., 2016) Question NLI 105K 5.4K

RTE (Dagan et al., 2005) Recognition Textual Entailment 2.5K 3K
WNLI (Levesque et al., 2012) Winograd NLI 634 146

Table 3: Presentation of tasks in GLUE (Wang et al., 2018) with their corresponding training and test sets sizes.

Algorithm 1: Training of Morris

Input: Dataset {Di}Ti=1;
Loss function per task {li}Ti=1

Task sampling policy: P;

if Apply Regularisation L0 then
for step← 1 to 104 do

Select one task ’t’ according to P;
Select one batch bt = (Xt, Yt) ∈ Dt;
Compute the loss lt(f(Θ, ϕt ◦ z,Xt), YT );
Update Θ, ϕt and α;

end
Threshold on α:;
α[α < 0.5] = −10;
α[α > 0.5] = 10

end
for step← 1 to 218 do

Select one task ’t’ according to P;
Select one batch bt = (Xt, Yt) ∈ Dt;
Compute the loss lt(f(Θ, ϕt, Xt), YT );
Update Θ and ϕt;

end

Output: Trained Parameters Θ and {ϕi}Ti=1

A.6 Implementation details
We utilized the pre-trained BERT base uncased of-
fered by Hugging Face2. For the optimizer AdamW
Loshchilov and Hutter (2017), we use a linear de-
cay with a warmup of 0.06 and gradient clipping
for all experiments. Our model is evaluated each
2000 steps for a total of 218 training steps. Only
the best checkpoint on average is kept. For LoRA
approach we choose a rank equal to eight which
seems to be very efficient, for number of epochs
we also followed the instruction in LoRA (Hu et al.,
2021) used for the Roberta model. Our model is

2https://huggingface.co/bert-base-uncased
training like in (Liu et al., 2019) .
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