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Abstract

This paper presents ReasonFormer, a unified
reasoning framework for mirroring the mod-
ular and compositional reasoning process of
humans in complex decision-making. Inspired
by dual-process theory in cognitive science, the
representation module (automatic thinking) and
reasoning modules (controlled thinking) are de-
coupled to capture different levels of cognition.
Upon the top of the representation module, the
pre-trained reasoning modules are modular and
professional in specific and fundamental rea-
soning skills (e.g., logic, simple QA, etc). To
mimic the controlled compositional thinking
process, different reasoning modules are dy-
namically activated and composed in both par-
allel and cascaded manners to control what rea-
soning skills are activated and how deep the
reasoning process will be reached to solve the
current problems. The unified reasoning frame-
work solves multiple tasks with a single model,
and is trained and inferred in an end-to-end
manner. Evaluated on 11 datasets requiring dif-
ferent reasoning skills and complexity, Reason-
Former demonstrates substantial performance
boosts, revealing the compositional reasoning
ability. Few-shot experiments exhibit better
generalization ability by learning to compose
pre-trained skills for new tasks with limited
data, and decoupling the representation module
and the reasoning modules. Further analysis
shows the modularity of reasoning modules as
different tasks activate distinct reasoning skills
at different reasoning depths. 1

1 Introduction

Prevailing language models (LMs) (Devlin et al.,
2018; Brown et al., 2020) demonstrate impressive
performance in natural language processing tasks,

∗ Equal contributions during internship at Microsoft.
1Code and model are available at https:

//github.com/microsoft/KC/tree/main/
papers/ReasonFormer.

Question: What cause car accident?

Semantic Understanding

(Intuitive) System 1

(Controlled) System 2

Step 1: Memorizing Fact Knowledge
Driving relates to {speed, attention, rule following}

Alcohol hurts attention …

Step 2: Logical Deduction
alcohol → affect attention → driving accident  …

Step 3: Answering Question
alcohol, over-speeding, distraction … 

Figure 1: Compositional reasoning process of humans in
complex decision-making. Humans solve the problems
by cascaded executions of fundamental skills.

and have ushered in a new trend in AI research. De-
spite the emerging fervor, the homogeneous LMs
relying on a single call of the model are less mod-
ular and are hard to explicitly model the complex
reasoning process (Helwe et al., 2021) like humans.

In the dual-process theory (Daniel, 2017) in cog-
nitive psychology, there are two cognitive systems
interacted to form a whole reasoning process. Sys-
tem 1 (automatic thinking) generates intuitive pat-
terns of ideas, and System 2 (controlled thinking)
constructs reasoning in an orderly logical series
of compositional reasoning processes. Besides, in
the process of System 2, different functional brain
areas could be modular and interact with each other.
System 2 can decide how to compose different rea-
soning skills and when to stop thinking. As the
example shown in Fig. 1, when finding the cause
of a car accident, humans intuitively comprehend
the question (System 1), and then conduct com-
positional reasoning (System 2: recalling fact →
logical deduction → answering question).

We would like to incorporate this mechanism
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into AI models in decision-making, and make the
following assumptions: (1) the representation mod-
ule (System 1) and reasoning module (System 2)
can be decoupled and (2) the “complicated" rea-
soning process can be disentangled into multi-step
executions of compositional “fundamental" reason-
ing modules, whose compositionality can be learnt
with limited data. Also, the “fundamental" nature
of basic reasoning skills allows them to have rich
training instances for reliable skill pre-training.

Under these motivations, this paper proposes the
modular and compositional reasoning framework -
ReasonFormer, to mirror human’s compositional
reasoning process, with the following characteris-
tics: (1) the representation module and reasoning
modules are decoupled; (2) reasoning modules are
modular and professional in fundamental reason-
ing skills; (3) reasoning modules are compositional
in parallel and cascaded manner, to dynamically
decide the activated reasoning skills and the reason-
ing complexity; (4) the general-purpose reasoning
framework is end-to-end and unified in solving
multiple tasks with one model.

Specifically, the representation module learns
contextual representations of problems. Upon the
top of the it, there are cascaded reasoning mod-
ules to perform compositional multi-step reasoning.
The reasoning modules are pre-trained to expert
in specific reasoning skills (e.g., logic, QA, fact,
etc.). These pre-trained reasoning skills are con-
sidered relatively fundamental and have rich re-
sources. Two additional blocks complete the whole
framework: the reasoning router and the reason-
ing adapter. The reasoning router decides which
reasoning skills are activated in each reasoning
step, and when to stop the reasoning process. The
adapter adapts the reused reasoning modules to
different steps of the reasoning process.

We comprehensively evaluate the framework on
11 datasets emphasizing different reasoning skills
and complexity, and highlight the following find-
ings: (1) Substantial performance boosts demon-
strate models’ harvest of compositional reasoning
ability, and both the reasoning-centric pre-training
and reasoning adapter bring compounding perfor-
mance gains. (2) Results of few-shot experiments
show that specialized modules enables better gener-
alization by learning to compose pre-trained skills
for low-resource tasks, and decoupling of repre-
sentation module and reasoning modules. (3) Fur-
ther analysis reveals the distinct reasoning skills

required for different tasks at different reasoning
depths, shoring up the modularity of reasoning
modules.

2 Reasoning Skills Formulation

The compositional reasoning process of LMs’ re-
lies on the pre-training of several fundamental rea-
soning skills and their compositionality. Hence, the
selection of skills is critical.

Selection Principles. There are two major prin-
ciples in selecting skills: (1) Fundamental: Com-
plex problems can be decomposed and solved by
simpler basic skills. So the basic skills should be
more fundamental, well-defined, and can be cov-
ered in the required skill set of as many tasks as pos-
sible; (2) Resourceful: Reliable skill pre-training
requires large-scale pre-training data. However, in
the real-world scenario, the annotated data is ex-
pensive to obtain for most reasoning tasks. So it is
expected that there are already rich resource or data
can be collected via self(semi)-supervised manner.

Basic Skills Selection. Humans always solve
complex problem with fundamental skills, like un-
derstanding key information (e.g., entity and its
type) of events, recalling related facts, understand-
ing causal relations between events, and extracting
answers for the question. This motivates us to se-
lect the following basic skills: the logic ability
to logically deduce the cause or consequence of
events; simple question answering (QA) to un-
derstand the context and answer simple questions;
named entity recognition (NER) to identify im-
portant entities in the context; natural language
inference (NLI) to identify semantic relevance of
two sentences and factual knowledge to memo-
rize commonsense knowledge and understand daily
events. There is an additional general skill to learn
the commonly shared knowledge across selected
skills. We keep this setting in our paper as they are
relatively well defined and resourceful 2.

We adopt self-supervised methods to construct
pre-training corpus for {logic ability, factual knowl-
edge, NER}, semi-supervised method to construct
pre-training corpus for simple QA, and large-scale
supervised data for NLI. Further details are given
in § 4.2 and examples are given in Appendix A.

2It is worth noting that this selection is tentative. There
are plausible ways for selecting basic skills or knowledge
domains, which also inspire future directions.
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What cause car 
accident? Please 
give the answer:
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Figure 2: ReasonFormer framework. The representation module (§ 3.1) and reasoning modules (RMs) (§ 3.2) are
decoupled to form the compositional reasoning process. The RMs are pre-trained with different reasoning skills
Rskill (§ 2). The reasoning adapter (§ 3.2.1) adapts the shared RMs to different reasoning steps. Router decides
activated skills. Stop gate decides when to stop reasoning (§ 3.2.2). Red lines indicate cascaded reasoning process.

3 ReasonFormer Framework

As shown in Fig. 2, the general-purpose reason-
ing framework is built based on encoder-decoder
architecture to process multiple tasks (i.e., all pre-
training tasks and downstream tasks) with a unified
model, where all tasks are tackled as unified text-to-
text generation tasks. We first reformat all the tasks
into the same format using hard prompts (Sanh
et al., 2021). For example, the question-answering
task input can be prompted with the template: The
question is {Question}. Please give the answer:",
and the expected output is the answer text.

Given the prompted task inputs, the modular and
compositional framework consists of two compo-
nents in its encoder: the representation module
(System 1) and the reasoning modules (System 2).

The representation module (§ 3.1) captures the
intuitive understanding of problems by calculating
initial contextual representations. Upon the top of
the representation module, there are several pre-
trained reasoning modules (§ 3.2) with different
reasoning skills, waiting for interaction to form a
compositional reasoning process. For reasoning
process organization, there are reasoning routers
(§ 3.2.2) to decide the (parallel) activated skills and
when to stop the (cascaded) reasoning process.

3.1 Representation Module

Similar to the perceptive function of System 1,
the representation module targets basic contex-
tual understanding, and builds the foundation of
the following-up reasoning process. As LMs ex-
hibit impressive ability on contextual understand-
ing, we build the representation module with cas-
caded Transformer layers. Given the tokenized
input X with length m, the initial representations
learnt from representation module are denoted as:

H0 = {h0
[CLS],h

0
1,h

0
2...,h

0
m} (1)

where [CLS] is a special token.

3.2 Reasoning Modules

To simulate the cognitive process (System 2)
formed by controlled interaction between various
functional areas in human brains, the reasoning
modules are modular and compositional. Reason-
ing modules (RMs) learn different reasoning skills
specified during pre-training, and are automatically
composed during downstream adaptation (§ 3.3)
with reasoning router (§ 3.2.2). Compositionality
is not only at the parallel level (different skills), but
also at the cascaded level (multi-step reasoning)
Since different reasoning steps intuitively model
different levels of information, there are additional
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reasoning adapters to adapt the reused modules
to different reasoning steps.

3.2.1 Reasoning Modules Architecture
Each reasoning module is implemented by sev-
eral Transformer layers. As shown in Fig.2(b),
the shared reasoning modules with the same skill at
different reasoning depths have shared parameters
(excluding the reasoning adapter). For example,
Fact modules at steps {0, 1, ..., n} share major pa-
rameters. The output from the last reasoning step
will be recursively taken as the inputs of the reused
reasoning modules with step-specific adapters.

Reasoning Adapter. To adapt the reused reason-
ing module to different depths of the reasoning
process, we add step-specific reasoning adapters
to the reasoning modules. Inspired by Houlsby
et al. (2019) on domain adaptation, as shown in
Fig. 2, we add two reasoning adapters following
the multi-head attention layer and FFN layer in
the Transformer layer of reasoning modules. Be-
sides, the reasoning adapters for different skills and
different reasoning depths are non-shared.

3.2.2 Reasoning Router
To compose the reasoning process, the reasoning
router is critical in deciding which skills are acti-
vated per step, and how many reasoning steps are
required for problem-solving. As the example in
Fig. 1, problem-solving needs to recall facts, and
make logical deductions, then answer questions.
Therefore, the activated skills and reasoning depths
may varied for every instance.

At the parallel level of each step, the skill router
calculates activating scores for reasoning modules.
After each reasoning step, the stop gate decides
whether executed reasoning steps are sufficient in
problem-solving through a stop gating mechanism.

Unlike Mixture-of-Experts (MoE) (Shazeer
et al., 2017) that uses token-wise routing, we adopt
an instance-level routing strategy, which can cap-
ture more comprehensive semantics of problems.

Skill Router. Since the ith reasoning step has
n reasoning modules: {R1, · · · , Rn} and a skill
router Si, the output H i of the ith reasoning step
can be calculated by router-weighted averaged out-
puts from the k activated reasoning modules:

H i =
k∑

j=1

Si(H̃ i−1)jRj(H̃
i−1) (2)

where Si(H̃ i−1)j (scalar weight) and Rj(H̃
i−1)

(updated hidden vectors) are the outputs from the
router and the jth reasoning module, respectively.

Since deciding the skills is a non-trivial task,
we adopt a relatively complex router for deeper
understanding. We use one Transformer layer T
to project the original output for routing weight
calculation. Then, we use an FFN layer followed by
a Softmax function for weighted score calculation:

Si(H̃ i−1) = Softmax(FFN(T (H̃ i−1))) (3)

Afterwards, we sparsely activate (Shazeer et al.,
2017) k reasoning modules with top-k skill routing
scores at each reasoning step. The router training
objectives are detailed in § 3.3.

Stop Gate. After each reasoning step, the stop
gate decides whether the current reasoning depth
is sufficient to solve the problem. Taking H i as
the input, the stop gate uses a residual gating mech-
anism Gi

stop to control the information flow from
executed reasoning steps and calculate the final
output H̃ i for the ith reasoning step by:

H̃ i = H i−1 +Gi
stop(H

i) (4)

An FFN layer is used as the stop gate Gi
stop. When

the reasoning process is sufficient, the following-up
process will be softly stopped by Gi

stop.

3.3 Pre-training and Adaptation

The unified model enables multi-task learning for
both pre-training and downstream tasks. The ma-
jor difference between pre-training and adaptation
is that only in the pre-training stage we have the
supervision for the activated skills.

Pre-training. Before reasoning pre-training, the
model weights of ReasonFormer are initialized
with pre-trained weights from T5 (Raffel et al.,
2020). The details of model initialization and pre-
training corpus collection are introduced in § 4.3.1
and § 4.2, respectively. Since model acknowledges
which skill it is learning, we add skill routing loss
Lr in addition to the teacher-forcing loss, to guide
the routers in activating skills. For example, if the
current instance focuses on logic ability, it should
activate {logic ability, general} skills. Lr can be
set as the cross-entropy loss for the multi-skill clas-
sification, where the activated skill has label 1 and
0 otherwise. During pre-training, all the reasoning
steps activate the same skill for one instance.
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Adaptation. During downstream adaptation, we
have no prior knowledge about the required skills
for different tasks, so we expect the model can
automatically learn which skills are essential for
each specific task. Therefore, we adopt standard
teacher-forcing loss for generative training.

4 Experiment Setup

4.1 Datasets

To verify the effectiveness of ReasonFormer, we
extensively conduct experiments on 11 datasets em-
phasizing different reasoning types and complexity.
Specifically, ReClor (Yu et al., 2020) emphasizes
on logical reasoning. Commonsense QA (CSQA)
(Talmor et al., 2018), ARC (Clark et al., 2018),
PIQA (Bisk et al., 2020) and HellaSwag (Zellers
et al., 2019) stress commonsense knowledge. Ab-
ductive NLI (aNLI) (Bhagavatula et al., 2019) is
a natural language inference dataset. HotpotQA
(Yang et al., 2018a) and WikiHop (Welbl et al.,
2018) focus on multi-hop question answering. Mu-
Tual (Cui et al., 2020), DREAM (Sun et al., 2019)
focus on reasoning over dialogue. RACE (Lai et al.,
2017) is a general QA dataset. These datasets are
related to the fundamental reasoning skills (§ 2)
and fit nicely for analyzing the compositional rea-
soning process modeled by ReasonFormer.

During Evaluation, the Hotpot QA adopts Ex-
act Match (EM) as the metric, while the rest tasks
use accuracy as the metric. The answer for multi-
choice QA and classification tasks are selected by
the highest log-likelihood scores of options.

4.2 Pre-training Corpus

To reduce the manual efforts in data collection,
we mainly select self(semi)-supervised pre-training
corpus construction methods.

To improve LMs’ logic ability, we adopt the
self-supervised logical pre-training corpus built by
LogiGAN (Pi et al., 2022), which uses logical in-
dicators to identify logical phenomena in a gen-
eral text corpus. For QA-centric pre-training, we
adopt the semi-supervised pre-training corpus con-
struction method from ProQA (Lewis et al., 2021;
Zhong et al., 2022a), which adopts a generation-
filtering pipeline to build QA-centric corpus. To
help the model in identifying entities from text,
we use the self-supervised NER corpus (Chen et al.,
2022) built from Wikidata and Wikipedia anchor
link. To learn factual knowledge, we use Wikidata
as a commonsense knowledge base to construct

self-supervised pre-training corpus. Specifically,
we sample 1 million fact triples from Wikidata and
construct the KG completion task (Moiseev et al.,
2022) by recovering the masked tailed entities with
the head entities and relations given as inputs.

Furthermore, since natural language inference
task already have rich supervised data, we directly
use MNLI (Williams et al., 2018) and SNLI (Bow-
man et al., 2015) datasets as the pre-training corpus.

Finally, 1 million instances are collected for each
reasoning skill, and there are 5 millions pre-training
instances in total for 5 reasoning skills. The exam-
ples and prompts for constructing inputs/outputs of
the pre-training corpus are given in Appendix A.

4.3 Models
4.3.1 Model Initialization
We adopt encoder-decoder framework. In the
encoder, the representation module has 9 Trans-
former layers, each shared reasoning module has
3 Transformer layers and the maximum reasoning
depths is 3. We initialize the major model param-
eters from pre-trained T5base (Raffel et al., 2020).
Thus, the representation module is initialized by
the 1th → 9th layers of T5 encoder, and the reason-
ing module is initialized by 9th → 12th layers of
T5 encoder. The decoder is the same with T5.

4.3.2 Compared Methods
The major focuses of the experiment are to ex-
plore the effectiveness of ReasonFormer, and ver-
ify our hypotheses that complex problems can be
disentangled and solved by compositional reason-
ing modules, and the decoupling of representation
module and reasoning modules. We compare Rea-
sonFormer with two series of methods.

T5 series. (1) Vanilla T5 is the released T5
model (Raffel et al., 2020) (google/t5-v1_1-base)
pre-trained with C4 corpus excluding other super-
vised data; (2) Reasoning Pre-Trained T5 (RPT-
T5) is the T5 model continually pre-trained with
our reasoning-centric pre-training corpus (§ 4.2).

MoRM series. Inspired by Mixture-of-Experts
(MoE) methods (Shazeer et al., 2017; Lepikhin
et al., 2020a), we develop Mixture-of-Reasoning
Modules (MoRM) methods for comparison. Un-
like MoE that builds parallel experts in the FFN
layer of Transformer Layers, MoRM builds par-
allel reasoning modules (RMs) on the top of the
representation module, and sparsely activate these
RMs. Specifically, after initialized with T5, the last
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Datasets Reasoning
T5 Series MoRM ReasonFormer

T5 RPT-T5 w/o RPT (S) RPT (S) RPT (F) S F

Activated Paramters (M) 248 248 272 272 357 294 407

ReClor Logic 35.2 36.8 35.4 36.8 35.4 39 39.4
ARC Commonsense 31.4 32.7 25.4 34.1 31.1 35.1 34.1

CSQA Commonsense 56.5 65.1 57.2 63 64.7 66.9 68.2
RACE General 63.8 67.4 66.4 68.8 70.9 72.5 73.5

DREAM General 59.3 64.5 56.6 61.8 67.7 70.5 70.5
aNLI NLI 66.9 66.3 68.2 68.8 69.8 69.6 69.5

MuTual Dialog 67.3 70.2 66.8 69.5 70.5 72.2 72.5
WikiHop MultiHop 63.6 66.1 63.5 66.1 66.9 67.1 67.4

HotpotQA MultiHop 61.1 63.3 63.1 63.3 63.8 65.2 65.5
Hellaswag Commonsense 31.5 33.7 34.2 37.9 43 53.9 54.9

PIQA Commonsense 61.4 63.3 64.6 65.4 67.6 67.5 67.9

Avg. 54.3 57.2 54.6 57.7 59.2 61.8 62.1

Table 1: Main results on 11 reasoning tasks. RPT indicates reasoning-centric pre-training introduced in § 2 &
§ 4.2. S indicates sparse activation (top 2) of RMs, while F denotes full activation of all RMs.

3 Transformer layers in the encoder are duplicated
parallelly for Ns (numbers of skills) times, and
the outputs of them are weighted average by the
routing scores of the activated RMs. It increases
the model size in the similar way with Reason-
Former, so it can verify whether the improvements
are brought by the increased parameters. Besides,
the major differences between ReasonFormer and
MoRM are (1) MoRM involves no cascaded reason-
ing steps (depth=1); (2) Like MoE, RMs in MoRM
are jointly trained for all instances without skill
routing loss (§ 3.3), emphasizing no expertise of
RMs. We also report the results of MoRM after
reasoning-centric pre-training (RPT-MoRM).

5 Experiment Analysis

5.1 Main Results

As presented in Table 1, ReasonFormer outper-
form T5 series and MoRM series across all tasks
emphasizing the wide scope of different reasoning
skills. Thus, we have the following findings:

ReasonFormer > MoRM & T5: Reason-
Former surpasses other methods (even with more
activated parameters) by a large margin, giving evi-
dence to our primary hypothesis that the expertise
of reasoning modules and the cascaded composi-
tional reasoning process essentially help the model
in solving complex reasoning problems.

RPT-T5 > T5: The substantial performance
boosts brought by RPT demonstrate that reasoning-
targeted pre-training is essential in injecting various
reasoning abilities into LMs.

Sparse v.s. Full: Sparse activation of RMs leads
to slightly reduced but comparable performance

compared with full activation. It suggests that al-
though activating more skills is beneficial, the most
essential RM still plays the key role in problem-
solving. The modularity of RMs can reduce the
computation burden while keeping performance.

These positive findings manifest that Reason-
Former can model compositional reasoning and
verify our primary hypothesis that the complex
problem can be decomposed and well solved with
pre-trained basic skills, and the representation mod-
ule can be decoupled with the reasoning modules.

5.2 Ablation Study

We explore the truly functional components of Rea-
sonFormer through ablation studies on 7 datasets.
We evaluate the effectiveness of the following com-
ponents: (1) reasoning pre-training; (2) cascaded
reasoning mechanism; (3) expertise of reasoning
skills (skill gating loss) and (4) reasoning adapter.

Reasoning Pre-training. We assume that the
first factor contributing to the improvements is the
multi-task reasoning-centric pre-training. Since
vanilla LMs mainly focus on learning contextual
semantics, and don’t emphasize higher-level rea-
soning ability (Pi et al., 2022; Helwe et al., 2021),
it is intuitive that reasoning-driven pre-training can
enhance the model in solving complex problems.
Results in Table 2 suggest that the ablation of
pre-training from all models leads to a substan-
tial performance drop, showing the importance of
reasoning-centric pre-training in helping the rea-
soning modules to learn fundamental skills.

Cascaded Reasoning Mechanism. The second
hypothesis is that the cascaded reasoning mech-
anism facilitates problem-solving with different
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Modules Models/Dataset ARC CSQA DREAM WikiHop HotpotQA Hellaswag PIQA Avg.

Cascaded (S)
ReasonFormer 35.1 66.9 70.5 67.1 65.2 53.9 67.5 60.9

w/o RPT 24.1 56.9 59.5 64.2 64.4 34.7 65.6 52.8
w/o adapter 33.1 64.2 68.4 66.8 64.8 47.1 67.4 58.8

Single (S)
ReasonFormer 34.8 63.7 65.9 66.6 63.9 39.7 66.3 57.3

w/o RPT 25.4 57.3 56.7 63.6 63.1 34.3 64.6 52.1
w/o modularity 34.1 63.1 61.8 66.1 63.4 37.9 65.4 55.9

Table 2: Ablation study on 7 datasets. RPT denotes reasoning pre-training (§ 2). Modularity denotes skill gating
loss (§ 3.2.2), and adapter is reasoning adapter (§ 3.2.1). Cascaded and Single are different in the cascaded steps.

Models
Freezed #Tuned ReClor CSQA RACE ARC MuTual WikiHop Avg.
Modules Para. (M) Acc Acc Acc Acc Acc Acc

T5 no 248 28.2 23.2 26.2 25.1 32.6 18.3 25.6

ReasonFormer

no 294 29.0 39.2 29.2 30.1 40.3 26.4 32.4
RM 251 29.4 39.1 29.2 31.1 38.7 26.9 32.4
rep. 230 29.2 38.9 29.2 30.1 38.0 26.5 32.0

RM+rep. 188 29.2 37.8 28.4 28.8 31.6 25.4 30.2

Table 3: Few-shot experiments after freezing different modules. The representation module is abbreviated as rep.

complexity and composition orders. Single is an
ablated version of ReasonFormer in which the
reasoning modules are not cascaded horizontally
(depth=1) and the adapter is also eliminated. Com-
parison between performances of Cascaded and
Single version of ReasonFormer (Line 1 v.s. Line
4) demonstrates that the cascaded reasoning mech-
anism brings notable improvements and reveals the
effectiveness of multi-step reasoning process.

Expertise of RMs. We assume that modularity
and expertise of reasoning modules enables them
to be flexibly composed. We ablate it from the
Single version of ReasonFormer (Line 6) by pre-
training all the RMs jointly without skill routing
loss (§ 3.3) using the whole pre-training corpus.
The apparent performance drop suggests that the
expertise of RMs enables the model to discriminate
the functionality of various skills and selectively
compose them to form a whole reasoning process.

Reasoning Adapter. The reasoning adapters
adapt the shared RMs to different reasoning steps.
It is intuitively important as different levels of cog-
nition focus on the information at different gran-
ularity. From Table 2, eliminating the reasoning
adapter (Line 3) from ReasonFormer (Cascaded)
harms the overall performance, testifying the dis-
tinct mechanisms at different levels of reasoning
and the importance of reasoning-centric adaptation.

5.3 Low-resource Experiments

It is interesting to know whether the fundamental
skills of RMs can be easily composed to solve new
tasks with limited training data, and whether the

representation module and RMs can be decoupled
during adaptation. If the answer is true, then the
model’s generalization ability will be greatly en-
hanced with easy composition of pre-trained skills.

Under these motivations, we conduct few-shot
experiments. We first examine the generalization
of ReasonFormerand examine the decoupling of
modules in ReasonFormer by freezing different
modules during learning. We freeze the RMs (Line
3) to testify whether the skills can be directly reused
without further fine-tuning. Then we freeze the
representation module (Line 4) to verify the de-
coupling of representation and RMs. From Table 3,
we highlight the following findings.

(1) ReasonFormer outperforms T5, showing
that the generalization ability of ReasonFormer is
enhanced by reasoning pre-training and explicit
modeling of the compositional reasoning process.

(2) Freezing RMs (Line 3) achieves comparable
and even slightly better performance than its fully
tuned version, demonstrating that the learned skills
can be easily composed with limited training data
without further tuning RMs.

(3) Freezing the representation module (Line 4)
also leads to comparable performance, proving that
the representation module and RMs can be decou-
pled in adaptation. It suggests that it is feasible to
reduce computation burden during few-shot adap-
tation by freezing the well-trained representation
module and only tuning the RMs for tasks, which
is more efficient when the representation module
(e.g., gigantic LM) is extremely large for tuning.

(4) Freezing both modules (Line 5) hurts per-
formance, showing that model adaptation to data
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Commonsense QA aNLI Hotpot QA

Question: Where would you find 
magazines along side other works?

Options: 
A.  Doctor    B. Bookstore
C.  Market    D. Train station
E. Mortuary

Activated Skills: Activated Skills: Activated Skills:

Premise: Julie had a coworker named 
Barry who loved to make trouble for 
others. Julie was embarrassed.

Hypothesis Choices:
A. Barry didn’t tell anyone that Julie farted
B. Barry laughed at Julie’s unzipped pants

Question: What is the name of the 
fight song of the university whose 
main campus is in Lawrence

Passages: Kansas Song is a fight song 
of the University of Kansa, which is a 
public research university in the U.S.. 
The main campus in Lawrence …

𝑮𝒆𝒏𝒆𝒓𝒂𝒍
(0.99)

𝑵𝑬𝑹 (0.3)
𝑮𝒆𝒏𝒆𝒓𝒂𝒍 (0.7) 𝑮𝒆𝒏𝒆𝒓𝒂𝒍 (0.7)

𝑵𝑳𝑰 (0.3)

𝑹𝒆𝒂𝒔𝒐𝒏𝒊𝒏𝒈 𝑺𝒕𝒆𝒑𝒔

𝑮𝒆𝒏𝒆𝒓𝒂𝒍
(0.99)

𝑭𝒂𝒄𝒕
(0.97) 𝑮𝒆𝒏𝒆𝒓𝒂𝒍 (0.65)

𝑸𝑨 (0.35)

𝑹𝒆𝒂𝒔𝒐𝒏𝒊𝒏𝒈 𝑺𝒕𝒆𝒑𝒔

𝑮𝒆𝒏𝒆𝒓𝒂𝒍
(0.97)

𝑸𝑨 (0.7)
𝑮𝒆𝒏𝒆𝒓𝒂𝒍 (0.3) 𝑮𝒆𝒏𝒆𝒓𝒂𝒍 (0.6)

𝑸𝑨 (0.4)

𝑹𝒆𝒂𝒔𝒐𝒏𝒊𝒏𝒈 𝑺𝒕𝒆𝒑𝒔

Figure 3: Case study for activated skills analysis on 3 datasets. The answer is marked with orange.

distribution of specific tasks is still essential.

5.4 Reasoning Skills Analysis

Qualitative analyses are conducted to explore how
the pre-trained skills are composed to solve differ-
ent reasoning tasks, and how the skills changed at
different reasoning depths. Therefore, we calculate
the skill routing weights at every reasoning step (up
to 3) for three tasks (i.e., {Commonsense QA, aNLI,
Hotpot QA}. The case study provides examples and
corresponding (top 2) activated skills at each step.
As shown in Fig. 3, the activated skills are varied
for different tasks, and are dynamically composed
to form a series of reasoning steps. For common-
sense reasoning, it emphasizes {fact, QA}. For NLI
task, it emphasize {NER, NLI}. For multi-hop QA
task, it executes the QA module for multiple steps.
The statistical analysis of averaged routing scores
on the whole evaluation set also demonstrate the
same trend. These observations show improved in-
terpretability of decision-making and give evidence
to the hypothesis that the compositional cognitive
process of humans can be transferred to AI model.

6 Related Works

Multi-step Reasoning. Multi-step reasoning is
a characteristic of human thinking. Multi-hop rea-
soning (Yang et al., 2018b; Yu et al., 2021) asks
the system to logically switch attention to different
contexts (Zhong et al., 2022b) or make a multi-
step deduction for a new conclusion (Dalvi et al.,
2019; Zhong et al., 2021). Recently, chain-of-
thought prompting (Wei et al., 2022) provides the
model with manual prompts about the intermediate
reasoning steps. Creswell and Shanahan (2022)
use LMs to iteratively select evidence and gener-
ate inferences. However, they always require dis-
crete manual-written reasoning traces. Dohan et al.
(2022) is a position paper raising interest in mod-

eling these cascaded inference processes of LMs
with a probabilistic program.

LM Modularity. Since human brains have vari-
ous functional areas, it is inspiring to explore the
modularity of LMs. Mixture-of-Experts (MoE)
(Shazeer et al., 2017; Lepikhin et al., 2020b) use
experts in FFN layers for sparse learning. However,
their major motivation is to increase the model ca-
pacity while keeping efficiency, without emphasis
on the speciality of expert. Recent works begin
to explore domain-specific experts (Gururangan
et al., 2021) and modality-specific experts (Wang
et al., 2021). SkillNet proposes skill-specific ex-
perts (Zhang et al., 2022). However, the activated
skills need to be manually specified, and do not
explicitly model the cascaded reasoning process
and disentangling of perception and cognition.

Considering these directions in the whole pic-
ture, this paper targets to explore the modeling of
modular and the compositional multi-step reason-
ing process of AI models in an end-to-end manner.

7 Conclusion

This paper stimulates the compositional reason-
ing process of humans in decision-making, and
makes the following hypotheses: (1) the intuitive
perception system (System 1) and cognitive reason-
ing system (System 2) can be decoupled and (2)
the complex decision-making can be disentangled
into multi-step execution of fundamental reason-
ing skills. Correspondingly, we propose Reason-
Former, a compositional general-purpose reason-
ing framework. ReasonFormer decouples the rep-
resentation module and reasoning modules, which
are pre-trained to expert in fundamental reason-
ing skills. The reasoning modules are dynamically
composed in parallel and cascaded manner to form
a whole reasoning process. ReasonFormer is end-
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to-end and unified in solving multiple tasks with
one model. Extensive experiments on 11 tasks re-
veal the compositional reasoning ability of Reason-
Former and disentangling of representation and
reasoning modules.

Limitations

As mentioned in Sec. 2, the current selection of
fundamental reasoning skills for language models
is limited by the availability of well-defined tasks
and clear definitions of those tasks, as well as the
availability of sufficient training data. As a result,
some skills may overlap or may not be fundamental
enough. For example, simple QA skill may over-
lap with NER skill to some extent. In the future,
it would be worthwhile to explore self-supervised
training tasks that can inject more fundamental
abilities into language models. Additionally, the
selection and combination of fundamental reason-
ing skills can be further explored. For example, the
inclusion of numerical reasoning ability to solve
mathematical problems. Additionally, methods for
skill-centric pre-training corpus construction can
also be explored to improve the effectiveness of
these skills.
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A Example of Pre-training Tasks

For the basic question answering skill, QA-centric
pre-training uses a generation-filtering pipeline to
build semi-supervised large-scale corpus (Lewis
et al., 2021; Zhong et al., 2022a): (1) use anno-
tated QA data to train a passage-to-question-answer
generator (2) taking the wikipedia passages as in-
puts, and generates corresponding pseudo ques-
tions and answers (3) filtering passage, question,
answer pairs with a QA model.

For logic skill, we use the automatically con-
structed data from LogicGAN (Pi et al., 2022).It
uses logical indicators (e.g., Therefore, as a re-
sult) to automatically identify logical inference phe-
nomenon presented via natural language, and mask
corresponding causes/results of events, and ask the
pre-trained model to recover them to learn logical
reasoning ability.

For the natural language inference, we the pub-
lic annotated corpus SNLI (Bowman et al., 2015)
and MNLI (Williams et al., 2018). Given a sen-
tence as premise, the model is expected to predict
whether the premise sentence entails the hypothesis
sentence.

For the named entity recognition skill, we use
weakly-annotated data (Chen et al., 2022) obtained
from Wikipedia and Wikidata. The mentions are
the text with anchorlink and the types are obtained
from Wikidata “instance of” or “subclass of” prop-
erties. We design three pretrain tasks similar to
Chen et al. (2022): 1) given the sentence, identify
all mentions in the sentence 2) given the sentence
and interested types, output all mentions with these
types in the sentence 3) given the sentence and
mentions, predict all types of the mentions.

For the fact skill, we use fact triples from Wiki-
data, and design a task that predict the tail entity
given the head entity and relation as Moiseev et al.
(2022).

A summary of the examples for each tasks is
presented in Fig 4.

B Implementation Details

Pretraining Details We use “google/t5-v1_1-
base” from HuggingFace (Wolf et al., 2020) im-
plementation as base model for all our experiments.
We use a learning rate of 5e-5 and train all models
with 5 epochs. The warmup ratio is set to 0.1. The
total batch size is set to 72 for shared model and
64 for private model. The down projection hidden
size of adapter is set to 256. We use 8 V100 GPUs
for model training.

Downstream Adaptation Details For all the full
data experiments, we use a learning rate of 1e-4
and training epoch of 10 with a batch size of 48 for
our models. The model is validated at the end of
each epoch. For all the few-shot experiments, we
use a learning rate of 1e-5 and training epochs of
200 with a batch size of 8. The model is validated
per 200 steps.
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Skill Corpus Example Prompt

QA Wikipedia Context: …appeared to Saint Bernadette Soubirous in 1858. At the end…
Question:To whom did the Virgin Mary allegedly appear in 1858 in Lourdes 
France?
Answer:  Saint Bernadette Soubirous

Input: {context} [SEP] give me the answer of 
{question}
Output: {answer}

Logic BookCorpus Context: All men are mortal, and Socrates is a man. Therefore, [MASK], ….
MASK: Socrates is mortal

Input: {context} [SEP] give me the missing 
statement
Output: {mask}

NLI SNLI, MNLI Premise:Conceptually cream skimming has two basic dimensions - product 
and geography.
Hypothesis:Product and geography are what make cream skimming work.  
Label:Neutral

Input: {premise} [SEP] {hypothesis} give me 
the relation between the first and second 
sentences
Output: {label}

NER
Wikipedia,
Wikidata

Context: …whose family had originally migrated from the state of Mysore.
Type_str:city
Mention_str: Mysore is city.

Input: {context} [SEP] give me the mentions 
with types {type_str}
Output: {mention_str}

Context:… nationalist, communist and anarchist who was among the 
founding members of the Communist Party of India (Tashkent group).
Mention_str:India, nationalist, Tashkent

Input: {context} [SEP] give me all mentions
Output: {mention_str}

Context: …whose family had originally migrated from the state of Mysore.
Mention_str: Mysore
Type_str: Mysore is city.

Input: {context} [SEP] give me the types of 
mentions {mention_str}
Output: {type_str}

Fact Wikidata Head:      Knut Wijkmark
Relation: child
Tail: Nils Wijkmark

Input:    {head} {relation} [SEP] give me the 
missing entity:
Output: {tail}

Figure 4: Examples of pre-training tasks.
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