Joint Speech Transcription and Translation: Pseudo-Labeling with Out-of-Distribution Data

Mozhdeh Gheini⋄∗, Tatiana Likhomanenko†, Matthias Sperber†, Hendra Setiawan†

⋄ Information Sciences Institute, University of Southern California
† Apple
gheini@isi.edu, {antares,sperber,hendra}@apple.com

Abstract

Self-training has been shown to be helpful in addressing data scarcity for many domains, including vision, speech, and language. Specifically, self-training, or pseudo-labeling, labels unsupervised data and adds that to the training pool. In this work, we investigate and use pseudo-labeling for a recently proposed novel setup: joint transcription and translation of speech, which suffers from an absence of sufficient parallel data resources. We show that under such data-deficient circumstances, the unlabeled data can significantly vary in domain from the supervised data, which results in pseudo-label quality degradation. We investigate two categories of remedies that require no additional supervision and target the domain mismatch: pseudo-label filtering and data augmentation. We show that pseudo-label analysis and processing in this way results in additional gains on top of the vanilla pseudo-labeling setup providing a total improvement of up to 0.4% absolute WER and 2.1 BLEU points for En–De and 0.6% absolute WER and 2.2 BLEU points for En–Zh.

1 Introduction

Semi-supervised learning methods have been a cornerstone in addressing annotated data scarcity by taking advantage of and incorporating the relatively larger amounts of unlabeled data in the training process. Self-training is a relatively early instance of such methods (Scudder, 1965). Conceptually, self-training is simple: first, a base model is trained using limited labeled data. The base model is then used to predict labels for the unlabeled data. The generated labels are termed “pseudo-labels” (PLs) to signify their predicted nature, as opposed to gold supervised data. Finally, the pseudo-labels are combined with the initial seed supervised data to train a new model, and this process is repeated until no further improvement in performance is observed.

Self-training, or pseudo-labeling interchangeably, has been shown to be effective to improve upon fully supervised baselines in low-resource settings for several sequence-to-sequence (seq2seq) tasks, such as machine translation (MT) (Zhang et al., 2018; He et al., 2020; Jiao et al., 2021), end-to-end speech recognition (ASR) (Xu et al., 2020; Park et al., 2020; Kahn et al., 2020; Likhomanenko et al., 2021), end-to-end speech translation (ST) (Pino et al., 2020), and more recently speech-to-speech translation (Dong et al., 2022). In this work, we study pseudo-labeling for a recently proposed new setup, joint speech transcription and translation (STT) (Anastasopoulos and Chiang, 2018; Sperber et al., 2020): a setup that is of interest in use cases where both the transcript and translation of a speech signal are returned to the user. As we describe in detail later in §2.1, the fully supervised data for modeling end-to-end joint transcription and translation is triples of form \((s, tc, tl)\) where \(s\) is the speech signal, \(tc\) is the transcript, and \(tl\) is the translation. As that is especially costly to come by, STT also seems to have the potential to benefit from pseudo-labeling.

Our investigations show that while pseudo-labeling (PL) is indeed helpful, the quality of pseudo-labels that bring about the benefits is subpar. Upon inspecting the supervised and unsupervised sets, that proves to be not surprising: with limited amounts of supervised data, it is likely that the supervised and unsupervised sets differ in domain, impacting the quality of pseudo-labels. Specifically, in our case, we identify two causes leading to domain mismatch with out-of-distribution unlabeled data: difference between the sequence length ranges and vocabulary sets of the supervised and unsupervised sets. In this work, we ask if we can specifically counteract the domain mismatch to reach a set of pseudo-labels of higher quality,
and if that higher quality, in turn, translates into a better overall performance of pseudo-labeling.

First, we propose PLs filtering based on simple data-centric criteria inspired by Likhomanenko et al. (2021). While PLs filtering is a common component of PL algorithms, it is usually based on the model prediction scores (Kahn et al., 2020; Park et al., 2020; Zhang et al., 2021, 2022), which may not directly target the identified domain mismatch aspects, e.g., different sequence length ranges, as our proposed filtering does. Second, we propose augmenting the supervised data by concatenating randomly-picked samples to create new ones and adding them to the supervised set. These two are essentially different in nature: while filtering increases the overall quality by removing samples with PLs that are likely to be faulty, augmentation does so by extending the supervised set and generating better labels in the first place. Our results confirm that indeed this distinction in nature gets reflected in different ways filtering and augmentation improve the performance of pseudo-labeling.

The outline of this paper is as follows. We provide some background in §2 and detail the experimental setup in §3. Then, in §4, we report and discuss the results from vanilla pseudo-labeling, the observation of domain mismatch, and the gains brought about by filtering and augmentation.

Our contributions are: 1) We specifically focus on PL in the face of domain mismatch between the supervised and unsupervised sets; 2) We investigate the mitigation of the effect of domain mismatch through two approaches: PLs filtering and augmentation by concatenation and demonstrate how they improve PL in different ways. These approaches can be repurposed wherever PL is considered as a solution; 3) We apply PL modified with those approaches specifically to a novel setup, joint speech transcription and translation, and report gains on top of the vanilla PL for STT.

2 Background

Our work studies a pseudo-labeling solution for end-to-end joint speech transcription and translation. In this section, we provide the background for these two components involved in the study, namely speech transcription and translation and pseudo-labeling.

2.1 Speech Transcription and Translation

Our task of speech transcription and translation (STT) is closely related to script recognition (ASR) and speech translation (ST). ASR is the task of generating the text equivalent to an audio speech signal. Meanwhile, ST aims to generate the text equivalent to the signal in a target language other than the language of the speaker. In contrast, STT generates both the transcript and the translation jointly in an end-to-end fashion. STT is particularly appealing in cases where both the transcript and translation are to be displayed to the user.

Formally, STT can be modeled as follows: given a speech signal \(s\), the model generates the transcript \(tc\) and translation \(tl\) concatenated together in the output as one single sequence: \(s \rightarrow tc, tl\) (Sperber et al., 2020). This formulation is simple to implement as it casts STT as an instance of the well-known seq2seq modeling and results in a single end-to-end model to be stored on device. Furthermore, as reported by Sperber et al. (2020), this formulation results in a reasonably consistent transcripts and translations as the coupled inference ensures that translations are conditioned on the transcripts. In our experiments, we use this STT formulation as it offers a good trade-off between accuracy, computational efficiency, and consistency.

However, the major challenge that such modeling presents is insufficient data resources: three-way parallel samples of form \((s, tc, tl)\) are expensive to annotate. Annotation would require multilingual annotators and would be time-consuming. To alleviate this limitation, we study how pseudo-labeling can be employed effectively to combat data scarcity in this setting. We provide a background on pseudo-labeling in the next section.

2.2 Pseudo-labeling

Pseudo-labeling (PL), often referred to as self-training in the literature, addresses the data insufficiency issue by taking advantage of much larger amounts of unsupervised data. More precisely, assume a labeled set \(L = \{x_i, y_i\}\) and an unlabeled set \(U = \{x_j\}\), where \(|U| \geq |L|\), are available (note that in the case of STT, \(y_i\) is actually a tuple consisting of the transcript and the translation: \(y_i = (tc_i, tl_i)\). PL starts with training an initial model \(M\) in a supervised manner using \(L\). Then, using \(M\), it generates pseudo-labels (predictions) for \(U\). It then incorporates the pseudo-labels (PLs) to create a new model \(M^+\), which hopefully super-
Algorithm 1 Pseudo-labeling

Require: \(L = \{x_i, y_i\} \) and \(U = \{x_j\} \)

1: Train a base model \(M \) on \(L \)
2: while The desired number of rounds or convergence has not been reached do
3: Generate the pseudo-labeled set: \(P = \{x_j, M(x_j) \mid x_j \in U\} \)
4: Obtain \(M^+ \) by fine-tuning \(M \) on \(L \cup P \)
5: Replace \(M \) with \(M^+ \)
6: end while
7: return \(M \)

3 Experimental Setup

3.1 Data

In this work, we use two publicly available multilingual speech translation datasets which, thanks to the nature of their creation, include transcripts: CoVoST V2 (Wang et al., 2020) and MuST-C (Cattoni et al., 2021). CoVoST V2 is created by amending the validated audio clips and transcripts from the Common Voice crowd-sourced ASR corpus (Ardila et al., 2020) with professional translations. It covers translations from English into 15 languages and from 21 languages into English. MuST-C is created by automatically aligning the audio segments from TED talks to corresponding manual transcripts and translations (available from the TED website), which are also aligned. It covers translations from English into 14 languages.

We conduct our experiments across two language pairs: English–German (En–De) and English–Chinese (En–Zh), which are available in both CoVoST and MuST-C. In all our experiments, we designate CoVoST as the supervised set, and MuST-C as the unsupervised set. Note that this means our objective is to reach the best performance possible on the CoVoST evaluation set. While we also have the gold transcripts and translations (labels in the STT problem) for MuST-C, we do not use them and practically treat MuST-C as an unlabeled set. We only use MuST-C gold labels for analysis and pseudo-label quality assessment. We provide the statistics of our data in Table 1.

3.2 Model

To extract speech representations, we first use pre-trained wav2vec 2.0 BASE (Baevski et al., 2020)\(^2\) which results in 20ms per frame. On top of this extractor, we use a stack of three convolutional layers...

\(^2\)We use a model provided by Hugging Face Transformers (Wolf et al., 2020): facebook/wav2vec2-base-960h.
Table 1: Amount of data available (number of sentences), per language pair and corpus.

<table>
<thead>
<tr>
<th>Language Pair</th>
<th>CoVoST</th>
<th>Must-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>En–De</td>
<td>233k</td>
<td>15.5k</td>
</tr>
<tr>
<td>En–Zh</td>
<td>233k</td>
<td>15.5k</td>
</tr>
</tbody>
</table>

ers to downsample the input further, resulting in 160ms per frame: each layer has a kernel of 3 and a stride of 2. Next we attach encoder-decoder Transformer (Vaswani et al., 2017) with pre-layer normalization, a hidden dimension of 1024, dropout of 0.1, and five and three layers of encoder and decoder, respectively, following Sperber et al. (2020). Positional embeddings (absolute sinusoidal) are only added on the decoder side. The whole model is trained in an end-to-end manner, including the wav2vec 2.0 feature extractor. On the output side, as described in §2.1, the decoder generates one sequence consisting of the transcript and the translation concatenated together.

In terms of input preprocessing, we remove instances where speech is either shorter than 0.5s or longer than 15s, or either the transcript or the translation is longer than 50 words. After that, we use SentencePiece (Kudo and Richardson, 2018) for subword tokenization. The vocabulary is created using only the supervised set. We use a vocabulary size of 1020 and 8188 in the case of En–De and En–Zh, respectively. The transcription and translation vocabulary is shared in both cases.

The objective function during optimization is a weighted sum of the CTC loss (Graves et al., 2006) on the encoder side and the cross-entropy loss on the decoder side. For both training a base model and fine-tuning an existing checkpoint on the union of the labeled set and the pseudo-labeled set, we use Adam optimizer (Kingma and Ba, 2015) with peak learning rate of 0.0005 after 500 warmup steps, coupled with inverse square root learning rate scheduling. We train for a total of 100 epochs and use SpecAugment (Park et al., 2019) in the same way and with the same parameters as wav2vec 2.0. After training, pseudo-labels are generated with a beam size of five.

For both language pairs, we use the dev sets provided by the corpora as the held-out evaluation set. For scoring (and only for scoring), we remove diacritics and punctuation, and report our performance in terms of word error rate (WER) of transcripts and BLEU of translations using beam size of five with SACREBLEU.\

Our implementation is built upon PyTorch (Paszke et al., 2019), xnmt (Neubig et al., 2018), and Lightning (Falcon and The PyTorch Lightning team, 2019).

4 Results and Discussion

We present our results in this section in the following order: §4.1 establishes vanilla pseudo-labeling performance, which leads to our analysis of the domain mismatch between the supervised and unsupervised sets. §4.2 and §4.3 then describe the two categories of remedies we devise to mitigate the effect of domain discrepancies on pseudo-labeling.

As mentioned in §2.2, this is all using the best setting we were able to establish during our pilot experiments: at each pseudo-labeling round, we 1) label only the unsupervised data, and 2) fine-tune the existing checkpoint on the combination of supervised and pseudo-labeled data. We conduct our pilot experiments on En–De. We were able to confirm that the aforementioned setting consistently beats the rest over several rounds of pseudo-labeling. Figure 1 illustrates the lead of the best setting over others in the last round of our experiments. The same pattern holds across all rounds.

4.1 Vanilla Pseudo-Labeling

In Table 2, we include the results of vanilla PL, as in Algorithm 1, with no modifications. We report

\[\text{Hash: case.lc+numrefs.1+smooth.4.0+tok.\{13a,zh\}\ for }\{\text{En–De, En–Zh}\}.\]
WER and BLEU for En–De and En–Zh across both corpora. To reiterate, CoVoST (distinguished by the magnifying glass symbol \mathcal{Q}) is our designated supervised set, and hence, what we are trying to boost performance on. MuST-C scores, on the other hand, are reported for the sake of analysis; the metrics are to assess the quality of PLs.

We report the performance of the initial model (the fully supervised baseline, Model M on line 1 of the Algorithm 1) in the “Base Model” column. Scores from each pseudo-labeling round, thereafter, appear on the corresponding “R” column. To have an upper bound of what is possible with the collective data if pseudo-labels were predicted perfectly, we train a single model using both corpora in a supervised manner. Those numbers are provided in the “Bound” column. Note that this is the only case for which MuST-C gold labels are used.

First and foremost, in confirmation with the literature, vanilla pseudo-labeling is effective. On \mathcal{Q}CoVoST, it is able to improve the base model by 0.4% absolute WER and 1.7 BLEU points on En–De, and 0.2% absolute WER and 2.0 BLEU points on En–Zh. However, with a closer look at the quality of pseudo-labels at each round (i.e., MuST-C scores), it is evident that the generated labels are far from ideal quality.

Our investigation into the reasons as to why that is the case points to two root causes that indicate \mathcal{Q}CoVoST and MuST-C are significantly different in domain in the following aspects:

Length mismatch between corpora. As shown in Figure 2, MuST-C speech sequences are generally longer, which also results in longer transcripts and translations.

Vocabulary mismatch between corpora. We were also able to identify discrepancies between the vocabulary of words between the two corpora.

For instance, on the English side, MuST-C and CoVoST each have roughly 64k and 121k unique types, respectively. Of those, only 38k types are in common, with CoVoST having more probability mass on rare (tail-end of the Zipfian distribution) vocabulary types. Specifically, even if we train plain machine translation systems on \mathcal{Q}CoVoST transcripts and translations (and take the audio out of the picture), the En–De system scores only 12.4 BLEU on MuST-C En–De, and the En–Zh system scores only 9.6 BLEU on MuST-C En–Zh.

Following these observations, we next demonstrate that it is possible to counteract the domain mismatch and enhance the quality of labels to boost the effectiveness of pseudo-labeling.

4.2 Direction #1: Data-Centric Filtering

Per §2.2, in vanilla PL, we use all the generated labels to update the model. Alternatively, PLs can be filtered to remove predictions of less quality. Recent works (Park et al., 2020) rely on confidence scores from the model to filter the pseudo-labels, which require careful and proper normalization. Kahn et al. (2020) use a combination of heuristic- and confidence-based filtering. In our case, similar to Likhomanenko et al. (2021), we propose...
<table>
<thead>
<tr>
<th>Bound</th>
<th>WER ↓</th>
<th>BLEU ↑</th>
<th>WER ↓</th>
<th>BLEU ↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vanilla PL</td>
<td>15.4</td>
<td>25.5</td>
<td>13.7</td>
<td>31.9</td>
</tr>
<tr>
<td>Ratio to Gold</td>
<td>15.3</td>
<td>24.1</td>
<td>22.8</td>
<td>15.8</td>
</tr>
<tr>
<td>Ratio KDE</td>
<td>15.1</td>
<td>24.2</td>
<td>30.5</td>
<td>27.1</td>
</tr>
<tr>
<td>LASER</td>
<td>15.2</td>
<td>24.1</td>
<td>34.7</td>
<td>27.6</td>
</tr>
<tr>
<td>Augmentation</td>
<td>15.3</td>
<td>24.9</td>
<td>33.8</td>
<td>22.2</td>
</tr>
<tr>
<td></td>
<td>14.6/14.6</td>
<td>29.4/30.7</td>
<td>46.2/37.2</td>
<td>9.9/9.9</td>
</tr>
</tbody>
</table>

Table 3: Improved results using remedies recommended. Each cell includes the performance obtained from the first round and the best performance obtained using the corresponding method (R1/Best). We also include bounds from Table 2 for CoVoST for comparison. We use bold font to mark the best performance on CoVoST.

and only rely on data-centric metrics to specifically target domain-mismatch and select a subset of pseudo-labels to use in the next round: transcript length to audio length ratio and transcript and translation LASER embeddings cosine similarity.

4.2.1 Length Ratio Distribution

A sign of flawed inference and faulty output in seq2seq models has been known to be looping (Chorowski and Jaitly, 2017): the model generates the same n-gram repeatedly. We were also able to identify looping occurring frequently in the PLs and resulting in long transcripts. While the supposed lengths of the correct transcripts are unknown, the length of the input audio can be used as an indicator: heuristically, the shorter the input audio, the shorter the transcript.

To take advantage of this signal with no supervision overhead, we estimate the probability density function (PDF) of the joint probability distribution over the input audio lengths and predicted transcripts lengths using kernel density estimation (KDE). At each PL round then, we only keep the top 90% (found empirically) of the most probable transcripts. Figure 3 visualizes the effect of such filtering. Instances that have the highest PDF values, have a similar ratio of transcript length to audio length to that of gold transcripts. Hence, this can be a useful metric that needs no additional supervision.

To gauge the maximum potential effectiveness of length ratio-based filtering, we also conduct experiments with filtering based on the ratio of the generated transcript length to the gold transcript length, where we only keep those with the length within $0.9 \times$ and $1.1 \times$ the length of the corresponding gold transcript. Note that this only has discussion purposes, as it uses supervision in the form of access to the length of the gold transcripts.

Table 3 (rows “Ratio to Gold” and “Ratio KDE”) shows how our length ratio-based filtering methods compare against plain vanilla pseudo-labeling. For each method, we run the same number of rounds as we did for vanilla pseudo-labeling in Table 2. We report the performance of the first round and the best round (first round/best round in table cells) of each method. Results from each separate round are comprehensively provided in Appendix A.

On CoVoST, “Ratio KDE” speeds up gains relative to vanilla pseudo-labeling despite incorporating fewer labels (only 90%): 15.1 vs. 15.4 WER and 24.2 vs. 23.8 BLEU at the first round in the case of En–De. The same pattern holds for En–Zh. Looking at the scores on MuST-C, it is evident that moderating the quality of pseudo-labels in this way, does indeed translate into better pseudo-labels for future rounds and improved performance on the supervised set. Also, “Ratio to Gold”, benefiting from a form of supervision, expectedly results in better quality on the unsupervised set. However, on the supervised set, it performs similarly to “Ratio KDE”, demonstrating that “Ratio KDE” is effective enough at removing detrimental pseudo-labels.

While “Ratio KDE” performs clearly better at earlier rounds, it saturates at the same performance as vanilla pseudo-labeling, which uses all the labels (with being better only in the case of En–Zh WER by 0.4% absolute WER). So it is especially beneficial when available resources can only cover a small number of pseudo-labeling rounds.
4.2.2 LASER Score

Our second filtering method relies on the relationship between the generated translations and transcripts (this is in contrast to the previous method, which relied on the relationship between the generated transcripts and audio signals). For this, we use the pretrained LASER model (Artetxe and Schwenk, 2019), a multilingual sentence encoder, to embed the generated transcripts and translations in a multilingual space to rank pairs based on the cosine similarity and hold onto only the top 90%. Given that LASER lies at the center of this, the quality of representations of different languages in its multilingual space can affect the degree of gains it can bring about.

Per Table 3, row “LASER”, LASER-based filtering improves performance on the unsupervised set (and hence, the quality of the PLs) all across the board. Those improvements translate into better performance on the supervised set for both En–De and En–Zh. Importantly, the improvement pattern is similar to that of length ratio-based filtering: more gains at earlier rounds, saturating at the same performance as the vanilla PL. However, as opposed to ratio-based filtering, which needs no additional supervision, the LASER model is trained using a massive amount of bitext and benefits from supervision in that way. But that does not result in enhanced performance compared to ratio-based filtering. So while LASER scores present a second avenue for pseudo-label filtering, "Ratio KDE" incurs strictly no supervision overhead, is simple, and is the best-performing filtering method.

4.3 Direction #2: Data Augmentation

Our previous filtering methods remove PLs so that the remaining subset has a higher quality. However, if we can generate better labels, to begin with, we can discard none and retain all the labels. Here, to improve the quality of the labels generated by the base model at no extra supervision cost, we use data augmentation by concatenation to directly target the reported length mismatch between corpora in §4.1. To do so, we create an augmented set from our supervised set by randomly selecting a pair of samples and constructing a new sample by concatenating the audio signals as the input and concatenating corresponding transcripts and translations as output. In our experiments, we build a set of 20k augmented samples as such using the original QCovST data. After training the base model, before generating PLs, we first further fine-tune the base model on the union of the original supervised set and the augmented set. We then proceed as in vanilla PL with the union of the original data and the augmented set as our supervised training set.

As shown in Table 3, row “Augmentation”, although no generated labels are thrown away, the quality of PLs is indeed increased in the subsequent round. This is especially pronounced in the case...
It means reduce your carbon dioxide emissions with the full range of choices that you make, and then purchase or acquire offsets for the remainder that you have not completely reduced.

<table>
<thead>
<tr>
<th>Ref. Transcription</th>
<th>It means reduce your carbon dioxide emissions with the full range of choices that you make, and then purchase or acquire offsets for the remainder that you have not completely reduced.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio KDE</td>
<td>It means reduce your carbon dioxide emissions, with the full range of choices that you make, and then purchase or purchase or purchase.</td>
</tr>
<tr>
<td>Augmentation</td>
<td>It means reduce your carbon dioxide emissions. With the full range of choices that you make. And then purchase or acquire offsets for the remainder that you have not completely reduced.</td>
</tr>
</tbody>
</table>

Table 4: Pseudo-labels generated by “Ratio KDE” and “Augmentation”. The reference is also provided. The label in the case of “Ratio KDE” gets filtered. But “Augmentation” gets to learn from it in the next round.

of translations. We provide an example evidencing this in Table 4. Here we compare the PLs generated by “Ratio KDE” and “Augmentation” for an utterance in MuST-C against each other. For a longer input, “Ratio KDE” suffers from looping and inadequate generation, and this instance actually gets filtered. However, “Augmentation” gets it right and retains it for training in the subsequent round. The fact that it also generates the output as sentences separated with periods indicates that this is indeed learned as a consequence of augmented samples.

With retaining all pseudo-labels, not only does bootstrapping the supervised set using concatenation expedite the gains from pseudo-labeling, but it is also the most effective in terms of the final performance before saturation by improving the score in three cases: it improves the performance of vanilla pseudo-labeling on QCoVoST by 0.4 and 0.2 BLEU points on En–De and En–Zh, respectively, and by 0.3% absolute WER on En–Zh. Therefore, it further closes the gap between pseudo-labeling and the upper bounds.

To conclude our discussion on how domain mismatch can be addressed, we find filtering methods, which discard labels, to be only effective when due to any resource limitation, only a few rounds of pseudo-labeling can be run. This finding also echoes insights from Bansal et al. (2022) that studies data scaling laws for MT and shows while filtering may benefit computational efficiency, more unfiltered data can replace filtered data. As an alternative to filtering, we show that improving the quality of all generated labels through augmentation so that all can be kept, is the most effective, especially when as many rounds as needed can be run to reach saturation.

5 Related Work

The two paradigms often considered in low-resource data scenarios are self-training and pre-training. Self-training, or pseudo-labeling, has long been studied for a variety of seq2seq tasks (He et al., 2020; Xu et al., 2020; Park et al., 2020; Kahn et al., 2020; Chen et al., 2020; Likhomanenko et al., 2021; Pino et al., 2020; Dong et al., 2022). Regarding the relationship between pretraining and self-training, Xu et al. (2021) and Wang et al. (2021) show that self-training and unsupervised pretraining are complimentary and can be combined to boost performance on speech recognition and speech translation, respectively. In the case of supervised pretraining, however, Zoph et al. (2020) show in the vision domain that as the size of the labeled data available grows, self-training remains helpful, whereas the benefits of supervised pretraining start to diminish.

For applying self-training to the unvisited setup of joint speech transcription and translation (Sperber et al., 2020), we focus on domain mismatch, a matter which can get overlooked when gains from vanilla pseudo-labeling are observed. As solutions, we study pseudo-label filtering and augmentation by concatenation. In contrast to conventional filtering, which relies on normalized model confidence scores (Park et al., 2020; Kahn et al., 2020), or recently, the agreement between several forward passes of the model run with dropout (Khurana et al., 2021), we define and use data-centric factors that are attuned to the domain differences we observe and directly target them.

Concatenation as an effective augmentation method has been studied in the context of machine translation (Agrawal et al., 2018; Kondo et al., 2021; Nguyen et al., 2021; Gowda et al., 2022) and speech-to-text (Lam et al., 2022). In our case, we use it to expose our base model to sequences of higher length to improve the quality of generated pseudo-labels.
6 Conclusion

We study pseudo-labeling for joint speech transcription and translation. We show that while vanilla pseudo-labeling is helpful, additional improvements are obtained by addressing the low quality of generated pseudo-labels due to domain mismatch between the supervised and unsupervised sets.

We find that our proposed solutions help in two different ways, as they are in distinct nature: pseudo-label filtering, which discards low-quality labels, is mostly helpful by expediting gains in earlier rounds, especially for transcriptions. Augmentation by concatenation, on the other hand, does not discard any of the labels. As a result, it is able to maintain an edge over vanilla pseudo-labeling in the late rounds as well.

Limitations

We would like to acknowledge the following limitations of this work.

Our study setup only takes advantage of supervised data in the form of triples of <speech, transcriptions, translations>. This is because we first and foremost want to investigate the effectiveness of pseudo-labeling in the most extreme case. However, the setup can be extended to be able to also rely on ASR-only (<speech, transcription>) and ST-only (<speech, translation>) pairs. We leave incorporating ASR and ST data as a future work as well as incorporating external language and machine translation models.

We identified two sources of domain mismatch: input length ranges and vocabulary mismatch. However, the solutions that we investigate directly target the length mismatch, without explicitly addressing the vocabulary mismatch. The latter is indeed more challenging to address, especially without incurring additional supervision. In fact, circling back to the previous item as a future direction, incorporating supervision in the form of ASR or ST can expand the vocabulary set, also addressing vocabulary mismatch.

Acknowledgements

We would like to thank Qin Gao, Amittai Axelrod, Boliang Zhang, Barry Theobald, David Grangier, Jiatao Gu and the rest of machine translation and machine learning research teammates for fruitful discussions and constructive feedback on the manuscript.

References

Qianqian Dong, Fengpeng Yue, Tom Ko, Mingxuan Wang, Qibing Bai, and Yu Zhang. 2022. Leveraging

A Extended Results

<table>
<thead>
<tr>
<th></th>
<th>CoVoST</th>
<th>MuST-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>WER ↓</td>
<td>14.4</td>
<td>25.5</td>
</tr>
<tr>
<td>BLEU ↑</td>
<td>25.5</td>
<td>14.4</td>
</tr>
</tbody>
</table>

Bound

<table>
<thead>
<tr>
<th>Method</th>
<th>WER</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Model</td>
<td>15.4</td>
<td>22.8</td>
</tr>
<tr>
<td>Vanilla PL</td>
<td>15.0</td>
<td>24.5</td>
</tr>
<tr>
<td></td>
<td>15.0</td>
<td>24.5</td>
</tr>
</tbody>
</table>

Ratio to Gold

<table>
<thead>
<tr>
<th>Method</th>
<th>WER</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.3</td>
<td>24.1</td>
<td>22.8</td>
</tr>
<tr>
<td>15.0</td>
<td>24.5</td>
<td>18.5</td>
</tr>
<tr>
<td>15.1</td>
<td>24.7</td>
<td>15.8</td>
</tr>
</tbody>
</table>

Ratio KDE

<table>
<thead>
<tr>
<th>Method</th>
<th>WER</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1</td>
<td>24.2</td>
<td>30.5</td>
</tr>
<tr>
<td>15.0</td>
<td>24.5</td>
<td>27.7</td>
</tr>
<tr>
<td>15.1</td>
<td>24.4</td>
<td>27.1</td>
</tr>
</tbody>
</table>

LASER

<table>
<thead>
<tr>
<th>Method</th>
<th>WER</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.2</td>
<td>24.1</td>
<td>34.7</td>
</tr>
<tr>
<td>15.0</td>
<td>24.5</td>
<td>29.1</td>
</tr>
<tr>
<td>15.3</td>
<td>24.5</td>
<td>27.6</td>
</tr>
</tbody>
</table>

Augmentation

<table>
<thead>
<tr>
<th>Method</th>
<th>WER</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.3</td>
<td>24.9</td>
<td>33.8</td>
</tr>
<tr>
<td>15.3</td>
<td>24.9</td>
<td>22.2</td>
</tr>
</tbody>
</table>

Table 5: Extended results on En–De. All run until saturation. Each row represents one round of pseudo-labeling with the respective method.

B Responsible NLP Research

B.1 Computing Infrastructure

Our experiments are each run using 32 NVIDIA V100 GPUs (4 8-GPU nodes).

B.2 Licenses of Artifacts Used

We use the following artifacts in compliance with their terms of use:

- CoVoST V2 dataset (Wang et al., 2020) under CC BY-NC 4.0
- MuST-C dataset (Cattoni et al., 2021) under CC BY-NC-ND 4.0
- wav2vec 2.0 under Apache License 2.0
- LASER (Artetxe and Schwenk, 2019) under BSD
- Transformers (Wolf et al., 2020) under Apache License 2.0
- xnmt (Neubig et al., 2018) under Apache License 2.0
- Lightning (Falcon and The PyTorch Lightning team, 2019) under Apache License 2.0
ACL 2023 Responsible NLP Checklist

A For every submission:

✔️ A1. Did you describe the limitations of your work?
 Section "Limitations" after "Conclusion"

☐ A2. Did you discuss any potential risks of your work?
 Not applicable. Left blank.

✔️ A3. Do the abstract and introduction summarize the paper’s main claims?
 Abstract and Section 1

☒ A4. Have you used AI writing assistants when working on this paper?
 Left blank.

B ✔️ Did you use or create scientific artifacts?

 Section 3 and Appendix B.2

✔️ B1. Did you cite the creators of artifacts you used?
 Section 3 and Appendix B.2

✔️ B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
 Appendix B.2

✔️ B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided that it was specified? For the artifacts you create, do you specify intended use and whether that is compatible with the original access conditions (in particular, derivatives of data accessed for research purposes should not be used outside of research contexts)?
 Appendix B.2

☐ B4. Did you discuss the steps taken to check whether the data that was collected / used contains any information that names or uniquely identifies individual people or offensive content, and the steps taken to protect / anonymize it?
 Not applicable. Left blank.

✔️ B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and linguistic phenomena, demographic groups represented, etc.?
 Section 3.1

✔️ B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits, etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the number of examples in train / validation / test splits, as these provide necessary context for a reader to understand experimental results. For example, small differences in accuracy on large test sets may be significant, while on small test sets they may not be.
 Section 3.1

C ✔️ Did you run computational experiments?

 Section 3 and Section 4

✔️ C1. Did you report the number of parameters in the models used, the total computational budget (e.g., GPU hours), and computing infrastructure used?
 Section 3.2 and Appendix B.1

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing assistance.
C2. Did you discuss the experimental setup, including hyperparameter search and best-found hyperparameter values?
 Section 3.2

C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary statistics from sets of experiments), and is it transparent whether you are reporting the max, mean, etc. or just a single run?
 Section 4

C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE, etc.)?
 Section 3.2

D X Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

D1. Did you report the full text of instructions given to participants, including e.g., screenshots, disclaimers of any risks to participants or annotators, etc.?
 No response.

D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students) and paid participants, and discuss if such payment is adequate given the participants’ demographic (e.g., country of residence)?
 No response.

D3. Did you discuss whether and how consent was obtained from people whose data you’re using/curating? For example, if you collected data via crowdsourcing, did your instructions to crowdworkers explain how the data would be used?
 No response.

D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
 No response.

D5. Did you report the basic demographic and geographic characteristics of the annotator population that is the source of the data?
 No response.