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Abstract

Morphological analysis is an important re-
search issue in the field of natural lan-
guage processing. In this study, we propose
a context-free morphological analysis task,
namely word-level prefix/suffix sense detec-
tion, which deals with the ambiguity of sense
expressed by prefix/suffix. To research this
novel task, we first annotate a corpus with
prefixes/suffixes expressing negation (e.g., il-
, un-, -less) and then propose a novel few-
shot learning approach that applies an input-
augmentation prompt to a token-replaced de-
tection pre-training model. Empirical studies
demonstrate the effectiveness of the proposed
approach to word-level prefix/suffix negation
sense detection.1

1 Introduction

Morphological analysis mainly refers to process-
ing a word into a lemma (root) and a well-defined
morphological tag (Anglin et al., 1993; Haspel-
math and Sims, 2013; Morita et al., 2015; Nicolai
and Kondrak, 2017; Deacon et al., 2017; Ganesh
et al., 2019). For instance, through morphologi-
cal analysis, the word “unhappy” will be divided
into a lemma “happy” and a negation sense pre-
fix tag “un-”. Morphological analysis has played
an important role in natural language processing
(NLP) and it has been applied to many down-
stream tasks such as spelling checking (Aduriz
et al., 1993; Oflazer, 1995; Sénéchal and Kearnan,
2007; Levesque et al., 2021) and machine transla-
tion (Lee, 2004; Habash, 2007; Toutanova et al.,
2008; Belinkov et al., 2017).

One major challenge in morphological analy-
sis is that prefixes/suffixes are sometimes ambigu-
ous. For instance, in English, the prefix “un-
” often means a meaning “not”, i.e., a negation

∗*Corresponding author
1https://github.com/mengmeng233/Word-level-Prefix-

Suffix-Sense-Detection

sense. However, not all words with the prefix “un-
” have a negation sense, such as “unanimous”
and “unpick”. Besides, the substring “un-” some-
times does not appear as a prefix in some words,
such as “universe” and “unique”. In this study,
we directly address the above challenge by propos-
ing a novel morphological analysis task, namely
word-level prefix/suffix negation sense detection,
which aims to detect whether a substring in a word
is a prefix/suffix and meanwhile takes a specific
pre-defined morphological sense. As a prelimi-
nary study, we focus on negative prefixes/suffixes.
In many languages, one way to make a negative
expression is to add a negative prefix/suffix to a
word. For instance, in English, il-, im-, un-, and
-less are some popular negative prefixes/suffixes.

One straightforward approach to prefix/suffix
negation sense detection is to build a dictionary
that covers all words with the prefixes/suffixes ex-
pressing such a sense. However, this is unrealistic
because there are always many newly-emerging
words due to non-standard language usage or in-
correct spelling in some informal texts like Twit-
ter. Therefore, we address the task of word-level
prefix/suffix negation sense detection in a compu-
tational way.

Specifically, to further reduce the annotation
cost, we propose a few-shot learning approach by
employing the token-replaced detection model as
our basic prompt-learning model due to its excel-
lent performance in few-shot learning (Li et al.,
2022). Furthermore, we propose a novel prompt,
namely input-augmentation prompt, which relies
only on the input word. As illustrated in Fig.1(c),
for the input word is “unhappy”, the prompt, “
unhappy It is not happy”, is used to predict
whether the word “not” is original or replaced
so as to determine whether the input word is
a negation word or not, where the substring
“happy” is generated by removing the potential
prefix (i.e., un-) from the input word. The de-
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Template 
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predict 

predict

P(original|“negative”)>P(original|“positive”) (label: negative) 

P(original|“negative”)<P(original|“positive”) (label: positive)

Figure 1: Different few-shot learners for prefix/suffix sense detection on negation.

sign of our input-augmentation prompt can avoid
one major shortcoming of existing few-shot learn-
ing approaches, i.e., the selection of labels (e.g.,
two labels, “positive” and “negative” in Fig.1a)
or the selection of label description words (e.g.,
“negative positive” in Fig.1b) has a big impact
on learner performance (Jiang et al., 2020; Gao
et al., 2020; Li et al., 2022). Moreover, our em-
pirical studies also demonstrate that our approach
achieves much better performances than the exist-
ing few-shot learning approaches.

2 Related work

Morphological analysis aims to learn about the
morphological structure of a given word form,
and in general, there are four specific tasks:
morphological tagging (i.e., assigning some
pre-defined morphological tags to a word in a
sentence) (Müller et al., 2013; Labeau et al.,
2015; Cotterell and Heigold, 2017; Conforti et al.,
2018; Malaviya et al., 2019), lemmatization
(i.e., converting a word in a sentence into
the normalized form) (Plisson et al., 2004;
Chrupała, 2006; Jongejan and Dalianis, 2009;
Straková et al., 2014; Bergmanis and Goldwater,
2018), morphological segmentation (i.e., judg-
ing whether the substring in a word could be
segmented as a prefix/suffix) (Ruokolainen et al.,

2013, 2016; Goldsmith et al., 2017; Cotterell et al.,
2019), and morphological disambiguation (i.e.,
assigning a correct morphological segmentation to
a word by leveraging the context) (Hakkani-Tür
et al., 2002; Yildiz et al., 2016; Cotterell et al.,
2018; Wiedemann et al., 2019).

Compared to the above tasks, our work has
at least three different aspects. First, our task
is a combination of morphological tagging and
morphological segmentation. Second, our task
is word-level, i.e., the input contains only a single
word without context, which leads to the inapplica-
bility of previous approaches based on contextual
information. Third, we propose a novel few-shot
learning approach to our task. To the best of our
knowledge, this is the first attempt of studying few-
shot learning in morphological analysis.

3 Corpus Generation

We use six prefixes, i.e., un-, im-, in-, il-, ir-
and dis- as negation prefixes and two suffixes,
i.e., -less and -free as negation suffixes to collect
words from two resources, i.e., the ninth edition
of Oxford Advanced Learner′s Dictionary
(AS et al., 2005) and 1.6 million English Tweeter
data collected by Go et al. (2015). In summary,
we obtain 2,717 and 6,671 words with negation
prefixes/suffixes from the Oxford dictionary and
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tweeter data, respectively. Then, we randomly
select 3,000 words and annotates such words as
our corpus. Specifically, we assign two annota-
tors to annotate each word into two categories,
i.e., positive and negative. The Kappa consis-
tency check value of the human annotation is 0.87.
Moreover, for words with different sense annota-
tions, we assign another annotator to make a final
decision. Table 1 shows the data statistics of the
corpus.

Neg. Pos. Neg. Pos.

un- 482 186 il- 20 59
in- 372 858 dis- 172 256
im- 100 194 -less 163 24
ir- 48 53 -free 9 4

ALL: Neg. 1634 Pos. 1366

Table 1: Statistics of the annotated corpus.

4 Methodology

Problem statement: The prefix/suffix negation
sense detection task can be formulated as follows.
Let Dl = {w, y} be labeled data, where w is the in-
put word and y is a label in {positive, negative}.
Our approach aims to provide a few-shot learner
for such a detection task.
Approach overview: As shown in Figure 1(c),

a prompt-based learner, which is based on a pre-
trained token-replaced detection model and an
input-augmentation prompt, is built for the pre-
fix/suffix negation sense detection task. The goal
of a pre-trained token-replaced detection model
(e.g., ELECTRA) is to predict whether a token in
the input string is replaced or not.

Approach specification: First, an input-
augmentation prompt xprompt is constructed for an
input word w, as follows.

xprompt = w It is not w, (1)

where “It is not” is a template, and w is a sub-
string of the input word w without the prefix/suffix,
such as w = “happy” for w = “unhappy”.

Second, prompt x = [w1, w2, ..., wn] is fed into
the encoder in the discriminator of the pre-trained
token-replaced detection model to obtain an out-
put sequence y = [y1, y2, ..., yn], where wi is
the ith word in the prompt, and yi is the predic-
tion label (either original or replaced) for word
wi, indicating whether the word is original or
replaced.

Finally, we map the label set of the pre-trained
token-replaced detection model to the label set of
our task, with the following formulas.

P (“negative”|xprompt) = P (y“not” = original)
(2)

and

P (“positive”|xprompt) = P (y“not” = replaced),
(3)

where y“not” denotes the label corresponding
to the word “not” in the input-augmentation
prompt as shown in formula (1). For in-
stance, suppose that the input word is “unhappy”,
we first obtain the input-augmentation prompt
“unhappy It is not happy” and then use the pre-
trained token-replaced model to predict whether
the word “not” in the prompt is original or
replaced. If the prediction result is original, we
conclude that the input word “unhappy” is a neg-
ative word.

In the training phase of our few-shot learning
setting, only a few prompt samples, together with
their labels are used to update the parameters in
the discriminator of the pre-trained token-replaced
detection model. It is important to note that our ap-
proach reuses the pre-trained parameters in the pre-
trained token-replaced detection model and does
not use any other new parameters.

5 Experiments

Data setting: 2,000 samples are randomly se-
lected from the human-annotated corpus. First,
400 samples are selected as test data, including
200 for each class. Then, we follow the evaluation
protocol of Li et al. (2022) by running 5 experi-
ments with 5 different training and development
splits. In each split, 16 training samples (i.e., 8
samples in each class) and 16 development sam-
ples (i.e., 8 samples in each class) are selected
in few-shot learning. In fully-supervised learning,
1,400 training samples and 200 development sam-
ples are used.
Evaluation Metrics: Standard Macro-F1, Accu-
racy, F1 for negative samples (1-F1), and F1 for
positive samples (0-F1) are used to evaluate the
performance.
Model Settings: We employ ELECTRA as the
pre-trained token-replaced detection model. The
weight_decay is 2e-3, the maximum length is set
to 64, and the remaining hyper-parameters are ob-
tained by searching.
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Approach Basic model 0-F1 1-F1 Macro-F1 Acc.
Finetuning-RoBERTa RoBERTa-large 73.3(4.3) 75.2(3.6) 74.3(3.9) 74.3(3.9)
Finetuning-ELECTRA ELECTRA-large 70.8(4.0) 75.1(4.5) 73.0(3.4) 73.4(3.3)

Prompt-RoBERTa RoBERTa-large 75.6(1.8) 79.0(1.0) 77.3(1.1) 77.5(1.1)
Prompt-ELECTRA ELECTRA-large 78.2(1.6) 79.6(3.1) 78.8(2.3) 78.8(2.3)

Warp RoBERTa-large 69.8(3.4) 73.2(5.7) 71.5(4.3) 71.8(4.4)
DART RoBERTa-large 70.6(2.1) 71.2(7.6) 70.9(4.8) 71.2(4.9)

P-tuning-v2 RoBERTa-large 70.7(1.3) 75.2(2.8) 73.0(1.5) 73.2(1.8)
Our Approach ELECTRA-large 87.4(2.9) 87.4(3.6) 87.4(3.2) 87.4(3.2)

Fully-supervised Learning ELECTRA-large 87.1 87.9 87.5 87.5

Table 2: The performances of different methods for prefix/suffix negation sense detection (k=16).

We implement the following approaches for
comparison:
(1) Finetuning-RoBERTa (Liu et al., 2019):
Based on the fine-tuning approach and RoBERTa-
large model, the prediction label is obtained by
mapping the “[CLS]” token to label space.
(2) Finetuning-ELECTRA (Clark et al., 2020): It
is similar to finetuning-RoBERTa except that the
ELECTRA-large model is used.
(3) Prompt-RoBERTa (Gao et al., 2020): It is
a discrete prompt learning approach based on
RoBERTa-large, as shown in Figure 1(a), where
the prompt is “ w it is [mask] ”, and the prediction
label is obtained by the filling of “[mask]” (either
“negative” or “positive”).
(4) Prompt-ELECTRA (Li et al., 2022): It is
a discrete prompt learning approach based on
ELECTRA-large, as shown in Figure 1(b), where
the prompt is “ w is a negative positive word ”.
(5) Warp (Hambardzumyan et al., 2021): It is
a continuous prompt learning approach, in which
the best prompt template is obtained by searching
in the (continuous) embedding space. Moreover,
the template is learned using adversarial refactor-
ing.
(6) DART (Zhang et al., 2021): It is a continuous
prompt learning approach, in which the search for
the best prompt template is based on backpropaga-
tion.
(7) P-tuning-v2 (Liu et al., 2021): It is a continu-
ous prompt learning approach, in which the search
for the best prompt is based on a prefixed-tuned
multi-layer prompt.
(8) Fully-supervised Learning: 1,400 training
and 200 development samples are used to re-train
the ELECTRA-large model.

Table 2 shows the performances of different
approaches, from which we can see that : (1)

Our approach significantly outperforms the fully-
supervised learning and fine-tuning approaches,
which proves the effectiveness of our few-shot
learner. (2) Our approach performs much bet-
ter than other prompt-based learners, e.g., obtain-
ing 8.6% increase on Macro-F1 when compared
with Prompt-ELECTRA. The improvement con-
firms the effectiveness of our input-augmentation
prompt. (3) Our approach, using only 16 train-
ing and 16 development samples, almost per-
forms equivalent to the fully-supervised learning
approach with 1,400 training and 200 develop-
ment samples.

An error analysis is made for our approach,
which shows two main error causes: (1) the
input word w or its substring w has multiple
meanings, such as “hapless” vs. “hap”, and
“disembarkation” vs. “embarkation”. (2)
the meaning of w and w is irrelevant, such as
“dispossession” vs. “possession”, and “ingot”
vs. “got”. This indicates that more efforts are
needed for our prefix/suffix negation sense detec-
tion.

6 Conclusion

In this study, we propose a novel word-level
morphological analysis task, namely prefix/suffix
sense detection, and make a case study on negation
sense. We provide an annotated corpus for the pre-
fix/suffix negation sense detection, and then pro-
pose a novel few-shot learning approach, which
uses an input-augmentation prompt and a pre-
trained token-replaced detection model to effec-
tively make the negation sense detection. Empiri-
cal studies show that our approach performs much
better than other approaches in the few-shot sce-
nario, such as using only 16 training samples.
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Limitations

The limiation of this work is that we only con-
sider one type of prefixes/suffixes, i.e., negative
prefixes/suffixes. In our future work, we would
like to work on other types of prefix/suffix sense
detection tasks, such as prefix/suffix sense detec-
tion on occupation. For instance, in English, there
are many suffixes such as -or, -er, and -ee, which
mean a person with a certain occupation.
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you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
5

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

7658


