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Abstract

Multilingual Knowledge Graph Completion
(mKGC) aim at solving queries like (h, r, ?)
in different languages by reasoning a tail en-
tity t thus improving multilingual knowledge
graphs. Previous studies leverage multilingual
pretrained language models (PLMs) and the
generative paradigm to achieve mKGC. Al-
though multilingual pretrained language mod-
els contain extensive knowledge of different
languages, its pretraining tasks cannot be di-
rectly aligned with the mKGC tasks. More-
over, the majority of KGs and PLMs currently
available exhibit a pronounced English-centric
bias. This makes it difficult for mKGC to
achieve good results, particularly in the con-
text of low-resource languages. To overcome
previous problems, this paper introduces global
and local knowledge constraints for mKGC.
The former is used to constrain the reasoning
of answer entities, while the latter is used to
enhance the representation of query contexts.
The proposed method makes the pretrained
model better adapt to the mKGC task. Ex-
perimental results on public datasets demon-
strate that our method outperforms the previous
SOTA on Hits@1 and Hits@10 by an average
of 12.32% and 16.03%, which indicates that
our proposed method has significant enhance-
ment on mKGC.

1 Introduction

Knowledge graphs are collections of entities and
facts, and utilized as a valuable resource in a va-
riety of natural language processing (NLP) tasks,
such as Question Answering and Recommender
Systems (Shah et al., 2019; Du et al., 2021; Wang
et al., 2019). The language-specific nature of many
NLP tasks necessitates to consider the knowledge
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Query: (第86回全日本サッカー選手権大会,  スタジアム, ?)
86th All Japan Football Championship Stadium

Golden Anwser: 鳥取市営サッカー
Axis Bird Stadium

鳥取市営サッカー場 (A Japanese Stadium)

Query: (HK UCP, Feuerarten, ?)

貴陽市  (A Chinese City)
Guiyang City

筑波大学蹴球部  (A University Club)
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Figure 1: The top part introduces unbalance language
distribution for DBpedia. The low part shows the sam-
pling comparison results of Prix-LM model and our
method. The type of prediction entity and the correct
answer are shown in brackets and red font, respectively.
Our approach exhibits superior consistency and accu-
racy in generating answers.

expressed in a particular language. For example,
multilingual question answering needs multilingual
knowledge graphs (Zhou et al., 2021). The uti-
lization of multilingual knowledge graphs (mKGs)
with a vast amount of knowledge in multiple lan-
guages, such as DBpedia (Lehmann et al., 2015),
Wikidata (Vrandečić and Krötzsch, 2014), can be
advantageous in plenty of NLP tasks (Zhou et al.,
2021; Fang et al., 2022).

There is a significant amount of potential facts
that have not been captured in current knowledge
graphs, resulting in their incompleteness (Chen
et al., 2020). To address this issue, various stud-
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ies have proposed for Knowledge Graph Comple-
tion (KGC) to automatically discovery potential
facts through observed facts (Bordes et al., 2013),
rules (Meilicke et al., 2019) and language mod-
els (Lv et al., 2022).

In fact, as shown in Figure 1, there is more
English-centric knowledge than other languages,
so that it is difficult to leverage knowledge graphs
on non-English tasks. For example, English-centric
commonsense reasoning tasks obtain better devel-
opment and performance than other languages (Lin
et al., 2021a). And the knowledge coverage of non-
English knowledge graphs is even worse, it will
poses challenges for traditional KGC methods to
achieve superior performance.

Nowadays, pretrained language models (PLMs)
learn various knowledge modeling capabili-
ties (Petroni et al., 2019; Jiang et al., 2020) from
massive unlabeled data. And most studies have
demonstrated that the knowledge contained within
PLMs can significantly improve the performance
of downstream tasks (Li et al., 2021; Lin et al.,
2021b). Most recently, Prix-LM (Zhou et al., 2022)
approached mKGC as an end-to-end generative
task using multilingual PLMs. For example, for
predicting the missing entity of the query (86th All
Japan Football Championship, Stadium, ?) (see
Figure 1), Prix-LM converts the query into a se-
quence with pre-defined template, which is then
processed by an encoder to generate a query repre-
sentation. The decoder then uses this representation
to generate the final answer Axis Bird Stadium.

Despite the successes achieved through the com-
bination of PLMs and the generative paradigm,
there remain limitations for mKGC. On the one
hand, the gap between the pretraining task and the
KGC task may contribute to the limitations. It arise
that the answers generated by Prix-LM are ambigu-
ous in type. On the other hand, languages and
tokens that occur more frequently in the pretrain-
ing data have richer representations. Linguistic
bias for KGs and PLMs would arise that entities
in low-resource languages are difficult to be repre-
sented, resulting answer incorrect. As illustrated in
Figure 1, the query (86th All Japan Football Cham-
pionship, stadium, ?) expects a response of the type
stadium, but the top-ranked answers from Prix-LM
are diverse, and the top answer is incorrect.

We argue that the incorporation of knowledge
constraints into the generation process can increase
PLMs suitability for mKGC tasks. We categorize

knowledge effective for mKGC into global and lo-
cal knowledge. Global Knowledge limit the types
of answers based on building the relationship of
entity and relation representations. This helps to
ensure that the generated answers are semantically
and logically consistent with the intent of query.
On the other hand, local knowledge in PLMs can
enhance the ability to comprehend the interconnec-
tions between the sub-tokens within the query. This
helps the model to better understand the context of
query and generate more accurate answers. Incor-
porating knowledge constraints into the generative
process brings two advantages for mKGC: 1) It
makes PLMs to better adapt to mKGC task. 2) It
enables PLMs to learn more effective representa-
tions from low-resource data.

In this paper, we propose to incorporate the
global and local knowledge into the answer
generation process through two knowledgeable
tasks. To learn global knowledge, special tokens
([H],[R],[T]) are introduced as semantic represen-
tations of head entity, relation, and tail entity in a
triple. A scoring function measures the plausibil-
ity of the resulting facts, such as ||h[H] + h[R] −
h[T ]||L1/2

. Since the same special token is used
in each triple in different languages, trained mod-
els are able to learn knowledge reasoning abil-
ity beyond language boundaries. To capture lo-
cal knowledge, we consider the representation of
answer and each word of query as two separate
distributions P (Hq) and P (H[T ]), and then use
an estimator to estimate and maximize the mutual
information between them I(Hq;H[T ]). The lo-
cal knowledge serves to augment the query rep-
resentations for trained model through the utiliza-
tion of minimal amounts of data. The experimen-
tal results on seven language knowledge graph
from DBpedia show that our proposed method
achieves significant improvement as compared to
Prix-LM and translated-based methods. We publi-
cize the dataset and code of our work at https:
//github.com/Maxpa1n/gcplm-kgc.

In short, our main contributions are as follows:

• We attempt to utilize diverse knowledge con-
straints to enhance the performance of PLM-
based mKGC. It effectively addresses the in-
consistency of PLM and mKGC task, and alle-
viates language and data bias from PLMs and
KGs.

• Our proposed method can enrich query repre-
sentation and enhance answer generation by
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Figure 2: This figure illustrates the architecture of the complete model, which is composed of four main components:
a query encoder, a global knowledge constraint, a local knowledge constraint, and an answer generation module.
The global knowledge learn from representations of head and relation (navy blue). The local knowledge learn from
representations of query words (light blue). We use different colors to represent entities and relation in each module
for a triple.

introducing global knowledge constraints for
entity placeholders and mutual information
constraints for other contextual symbols.

• Our proposed method outperforms the Prix-
LM (Zhou et al., 2022) in both mKGC and
cross-lingual entity alignment, as shown by
experiments on a public dataset. The perfor-
mance of our method on Hits@1, Hits@3, and
Hits@10 shows an average improvement of
12.32%, 11.39%, and 16.03%, respectively.

2 Basic Model

A knowledge graph G = (R, E) is a collection of
connected information about entities, often repre-
sented using triples (h, r, t) where r ∈ R is rela-
tion and h, t ∈ E are entities. Prix-LM is an impor-
tant work of mKGC and is also used as the basic
model in this paper. Prix-LM transfer link predic-
tion from discriminative task to generative task for
mKGC. The goal of mKGC is to generate the miss-
ing tail entity, which may contain multiple tokens,
for the query (h, r, ?) of different languages. The
use of template is employed as a means of trans-
forming queries into textual sequences that can be
encoded by PLMs. The template includes special
tokens, which serve to identify the specific role of
each element within the query triple:

<s>[H]Xh</s></s>[R]Xr</s></s>[T]Xt[E]

where <s> is beginning token of sentence and </s>
is the separator, both are applied in PLMs, as
known as [CLS] and [SPE]. [H], [R] and [E] are
additional special tokens for the representation of
head, relation and tail. [E] is the end-of-sequence
token. Xh ∈ {xh

1 ,x
h
2 ,x

h
3 , ...,x

h
n} are text words

of head entity, Xr and Xt in the same way.
The training goal is to generate the tail entity Xt

by giving the sequence containing the head entity
Xh and relation Xr. For example, for the query (Le-
Bron James, team member of, ?), the constructed se-
quence is <s>[H] LeBron James</s></s>[R] team
member of </s></s>[T], and the target of mKGC is
generate Los Angeles Lakers [E]. The process is as
follows:

Pθ(Xt|Xh, Xr) =

xi∏

xi∈Xt

p(xi|x<i, θ) (1)

where θ is the pretrained model parameter. Accord-
ing to the mechanism of causal language model,
the probability of i-th token depend on previous
token representation hi−1:

p(xi|X<i) = softmax(Whi−1) (2)

where W is causal language model decoder from
PLMs.

The utilization of PLMs for generating answers
directly can be subject to language bias, resulting
in ambiguous and incorrect answers. The represen-
tation of the special token [T ] is a crucial factor in
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determining the quality of the generated answers.
To improve the representation of the [T ] token, we
have implemented two supplementary strategies
aimed at incorporating additional knowledge into
its representation.

3 The Proposed Model

In this section, we describe the components of our
proposed approach. The architecture of the model
is depicted in Figure 2. Our approach comprises
four key components: a query encoder, a global
knowledge constraint, a local knowledge constraint,
and an answer generation module. These compo-
nents operate in tandem to generate accurate and
coherent answers for given queries.

3.1 Triple Encoder
We leverage the PLM to encode the triple and an
attention mask to control the access to each subto-
ken in the sequence during training process. We
use previous template to convert a triple (h, r, t) to
a sequence S(h,r,t) ∈ {Xh, Xr, Xt, Xa}, and Xa

is special token. The attention mask mechanism
allows the query sequence to be seen as the source
text and the answer entity as the target text. The
process as following:

PLM(S(h,r,t)) = H (3)

where hidden representation of triple is H ∈
{h[H],hh

1 , ..,h
[R],hr

1, ...,h
[T ],ht

1, ...,h
[E]}. The

attention mask is a matrix that specifies whether
each subtoken should be attended or ignored, as
illustrated in Figure 3. By making special tokens
only visible to their own subtokens, model can ef-
fectively separate each role in a triple. And the
mask matrix M add in attention score calculated
by query Q, key K, value V:

M =

{
0, allow to attend

−∞, prevent from attending
(4)

A = softmax(
QKT

√
d

+M)V (5)

where Q, K, V ∈ Rl×d, l is length of the input
sequence, and d is the hidden size.

3.2 Global Knowledge Constraint
To bridge the gap between the pretraining task and
the KGC task, we introduce the global knowledge
build logical relationship between entities. Unlike

previous approaches such as Prix-LM, our method
does not rely on cross-lingual links for equivalent
entities to learn shared knowledge in different lan-
guages. Instead, shared knowledge between lan-
guages is learned through the global knowledge
constraint, which is inspired by embedding-based
methods. We leverage the TransE framework in
our model, and methods such as CompleX, RotatE
are also applicable. The goal of the global knowl-
edge constraint is to represent entities and relation
in a semantic space and enforce the translational
principle: h+ r ≈ t:

∥h[H] + h[R]∥ = ∥h[T ]∥ (6)

where h[H], h[R], h[T ] are special tokens represen-
tation, and ∥.∥ is L1 norm. And a triple global
knowledge score is described by:

score(h, r, t) = ∥h[H] + h[R] − h[T ]∥ (7)

We use the same special tokens for different lan-
guages. The following loss function is used to
optimize the model.

Lp =

gj∑

gj∈G

(h,r,t)i∑

(h,r,t)i∈gj
(score(hi, ri, ti) + γ) (8)

where G is all language knowledge graphs set, and
γ is correction factor.

<s>

<s>

[H]

[H]

�1
ℎ �2

ℎ �3
ℎ [R] �1

� �2
� �3

� [T] �1
� �2

� [E]

�1
ℎ

�2
ℎ

�3
ℎ

�1
�

�2
�

�3
�

[R]

[T]

�1
�

�2
�

[E]

Figure 3: The operation mechanism of mask matrix
during training process. The darker squares indicate that
attention is allowed, while the lighter squares indicate
that attention is suppressed.

3.3 Local Knowledge Constraint
The local knowledge enables the model to learn
more accurately for generated answers with low-
resource data. Therefore, we consider establish-
ing the connection between query and answer in
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a triple. Specifically, we view the the representa-
tion of query words Hq and tail entity H[T ] as two
distributions and maximizing the mutual informa-
tion between them I(Hq, H[T ]). The theoretical
foundation for this idea is provided by MIEN (Bel-
ghazi et al., 2018), which demonstrates that mutual
information follows a parametric lower-bound:

I(Hq;H[T ]) ≥ Îθ(Hq;H[T ]) (9)

Inspired from previous Mutual Information Max-
imization (Tschannen et al., 2019; Zhang et al.,
2020) (MIM) method in unsupervised learning, we
take the local features, represented by Hq, and
the global features, represented by H[T ], as the
inputs for MIM. Benefit from the mask mechanism
and PLM’s powerful learning capability, we do
not strictly distinguish the parameter of encoder
and decoder different from previous works. In this
work, we select a Jensen-Shannon MI estimator to
parameterize Mutual Information:

Î
(JSD)
θ (Hq, H[T ]) :=

EP[−sp(Tθ(Hq, H[T ]))]

−EPXP̃[sp(Tθ(H
′
q, H[T ]))]

(10)

where Hq ∈ {hh
1 , . . . ,h

h
m,hr

1, . . . ,h
r
n} is query

words representation, m is head entity length, n is
relation length. H[T ] ∈ {h[T ]} is tail entity repre-
sentation. Tθ is a discriminator function support
by the PLM parameters. H

′
q is representation sam-

pled from other query in the same min batch. And
P = P̃ make guarantee the expectation easy to
calculated. sp(x) = log(1 + ex) is the softplus
activation function. The learning object is to make
PLM estimate and maximize the Mutual Informa-
tion:

θ = argmax
θ

1

|G|

bj∑

bj∈G
Î
(JSD)
θ (Hj

q , H
j
[T ]) (11)

where bj is mini batch from training dataset. To
optimize model by gradient descent, we set loss
function as following:

LE =

bj∑

bj∈G
(Ej

P̃
− Ej

P) (12)

where the Ej
P is expectation for query and tail en-

tity. The local knowledge constraint within PLM
enhance its capacity to obtain rich representations
of queries and tail entities, particularly in situations
where training data is limited.

3.4 Answer Generation Module

Follow the paradigm that given a serialized query
and generate answer token, we use the casual lan-
guage model with PLM. The generation loss func-
tion as Cross Entropy Loss function:

LG =
i∑

(h,r,t)i∈G

xj∑

xj∈Xt
i

xjlog(f(x<j)) (13)

where the f(·) is like Formula 2, xj is subtoken of
tail entity.

In training process, the model would generate
answer with global and local knowledge, we define
the loss for model as:

L = LG + αLP + βLE (14)

where α and β are hyperparameter. The mask
mechanism achieved that all subtokens of tail entity
be trained in one round.

3.5 Inference

During the inference phase of our model, we utilize
an autoregressive approach to generate the tokens
of tail entity for given query. This autoregressive
approach involves predicting the next token based
on the previous tokens. The query (h, r, ?) be trans-
ferred to a sequence Xq and generating the answer
entity by trained model. The process as following:

xi = argmax
xi

P (xi|Xq ∩ x1 · · · ∩ xi−1) (15)

where xi ∈ Xt. Additionally, we assume a closed-
world setting and utilize constrained beam search
to restrict the final output to a predefined set of
possibilities, in order to ensure the validity of the
generated answer.

4 Experiments

In this section, we evaluate the effectiveness of
our approach on tasks related to mKGC and En-
tity Alignment for mKGs. To further understand
the role of the various knowledge-gathering strate-
gies in our method, we also conduct ablation ex-
periments. Additionally, we provide case studies
to demonstrate the superior performance of our
method on specific examples. These experiments
and analyses provide insight into the strengths and
limitations of our approach for addressing chal-
lenges in mKGC for sparse knowledge graphs.
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MODEL DE FI FR HU IT JA TR AVG
H

its
@

1
TransE 0.00 0.01 0.02 0.03 0.04 0.02 s 0.06 0.02
ComplEx 4.09 2.45 2.50 3.28 2.87 2.41 1.00 2.65
RotatE 6.72 5.87 8.40 16.27 6.91 6.21 6.85 8.17
Prix-LM (Single) 12.86 19.81 18.01 28.72 16.21 19.81 23.79 19.88
Prix-LM 14.32 18.78 16.47 29.68 14.32 18.19 21.57 19.04
Ours 17.54 20.74 18.34 30.91 14.98 22.05 25.20 21.39

H
its

@
3

TransE 6.14 6.54 6.60 14.91 5.95 7.22 8.20 7.93
ComplEx 8.47 5.28 5.19 6.70 4.31 4.68 2.11 5.24
RotatE 10.52 7.42 14.62 21.75 12.11 9.75 11.29 12.49
Prix-LM (Single) 23.09 28.75 24.75 38.44 25.32 29.02 33.05 28.91
Prix-LM 23.68 29.54 23.15 39.80 25.46 27.01 31.45 28.58
Ours 30.40 29.74 26.36 44.18 27.03 30.79 35.48 31.99

H
its

@
10

TransE 17.54 17.80 15.26 29.00 14.16 20.65 19.35 19.10
ComplEx 9.35 8.21 8.91 16.96 8.76 8.23 5.24 9.38
RotatE 14.61 8.61 19.49 28.31 18.48 14.44 17.13 17.29
Prix-LM (Single) 33.82 38.91 34.04 47.31 36.61 38.81 38.50 38.28
Prix-LM 33.91 41.29 32.25 46.23 35.18 36.12 37.50 37.49
Ours 41.81 43.44 35.15 58.00 39.15 42.45 44.55 43.50

Table 1: In this table, the results of seven language-specific knowledge graph completion (KGC) tasks are presented.
The embedding-based methods, including TransE, complEx, and RotatE, were implemented using the OpenKE
framework (Han et al., 2018). The results for these methods were obtained by training separate knowledge graphs
for each language. The Single make the monolingual version, which is trained independently for each language.
The numbers in bold represent the best results among the methods and languages considered.

DE FI FR HU IT JA TR AVG

Training
Entity 39,842 36,892 106,955 27,765 86,988 68,279 29,120 56,549
Relation 1,544 945 2,358 999 1,539 2,542 1,008 1,562
Triple 27,014 28,040 83,940 24,193 66,904 50,164 24,013 43,467

Validation
Entity 501 766 2,452 988 2,240 1,206 749 1,272
Relation 122 142 362 142 257 303 101 204
Triple 264 435 1,407 614 1,286 671 432 730

Testing
Entity 649 916 2,687 1,154 2,499 1,414 822 1,449
Relation 135 147 377 154 271 322 95 214
Triple 342 511 1,559 731 1,461 789 496 841

T/E Ratio 0.69 0.79 0.81 0.92 0.80 0.76 0.76 0.79

Table 2: The table show the statistics of multi language
knowledge graph dataset. The T/E Ratio is equal to the
number of triples divided by the number of entities.

4.1 Datasets and Evaluation Metrics

To evaluate our method, we utilize the Link Pre-
diction dataset provided by Prix-LM (Zhou et al.,
2022) and split it by the closed-world setting. The
dataset consists of data from DBpedia, a large mul-
tilingual knowledge graph, and the amount of data
is shown in Table 2. We ensure that entities and
relations appearing in the validation and test sets
are included in the training set. We introduce a
ratio between entities and triples as a measure of
the knowledge density of the dataset. This ratio has
a lower bound of 0.5, which indicates that there
are no cross-links between triples. The ratio of our
dataset is much lower than that of publicly avail-
able datasets. The evaluation metrics we use are
standard Hits@1, Hits@3, and Hits@10, which are
commonly used in the evaluation of KGC methods.

4.2 Implementation Details

In our experiments, we used XLM-R (Base) as
the base pre-trained language model and did not
introduce any additional parameters beyond those
provided by XLM-R. The model was implemented
using the Huggingface Transformers library (Wolf
et al., 2020) and the hyperparameters α and β were
set to 0.001 and 0.005. The learning rate and batch
size were selected from the sets {4e-5, 5e-5} and
{128, 256}. And the maximum length of a triple
sequence was 35. The model was trained using a
single Nvidia RTX 3039 GPU.

4.3 Multilingual Knowledge Graph
Completion

Our method for mKGC was compared to various
embedding-based methods and Prix-LM on seven
languages KG, as shown in Table 1. The results
show that our method outperformed Prix-LM on
the metrics of Hits@1, Hits@3, and Hits@10, with
average improvements of 12.32%, 11.39%, and
16.03%, respectively. These improvements sug-
gest that the integration of both global and local
knowledge significantly enhances the effectiveness
of the mKGC task, leading to a higher ability to
accurately predict missing triple in KG.

It is worth noting that the low knowledge density
in the training set can hinder the performance of
traditional embedding-based methods, which rely
on the presence of sufficient training data to learn
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model zh-km zh-th zh-lo zh-my
H

1 Prix-LM 65.02 22.42 62.15 41.56
Ours 67.25 24.07 62.15 43.49

H
3 Prix-LM 68.37 26.87 64.27 46.44

Ours 69.23 27.65 64.80 47.65

H
10 Prix-LM 70.15 30.50 66.12 49.08

Ours 70.15 30.35 66.27 50.73

Table 3: This table presents the results of entity align-
ment tasks for low-resource languages. The parallel
entity pairs were obtained from Wikidata (Vrandečić
and Krötzsch, 2014). We transformed the entity align-
ment into a KGC task by augmenting the knowledge
graph with additional edges representing the linguistic
relations between the entity pairs.

meaningful relationships between entities. In con-
trast, the use of PLMs, as employed in our method,
can effectively address the issue of data sparsity
and still achieve notable impact on performance.
Overall, these results demonstrate the effectiveness
of our approach in comparison to the use of PLMs
alone for mKGC.

4.4 Cross-lingual Entity Alignment

To assess the generalizability of the proposed
method, we conduct a comparison on the entity
alignment task. As shown in Table 3, we compared
the proposed method with the Prix-LM. This com-
parison allowed us to assess the performance of the
proposed method on a different task and determine
its potential for use in a wider range of applica-
tions. The results show our method The results of
the comparison indicate that our proposed method
outperforms the Prix-LM in most of the evaluation
indicators. This suggests that our method is able
to generalize well to different tasks and is capable
of achieving improved performance on the entity
alignment task. Counterintuitively, the results show
that languages with fewer resources tend to yield
better performance. This may be due to the fact
that the relationship between low-resource entity
pairs is relatively simple and easier for the model
to learn.

4.5 Ablation Experiment

Our proposed method introduces a novel approach
for extracting both global and local knowledge
through the use of a scoring function function and
the maximization of mutual information. As shown
in Table 4, we conducted an extensive comparison
with various alternatives for scoring function and
mutual information estimation, showcasing the su-
perior performance of the proposed method. And

Model Hits@1 Hits@3 Hits@10
Prix-LM 19.04 28.58 37.49
Ours 21.39 31.99 43.50
w/o local 21.11 31.64 42.23
w/o global 19.45 29.51 42.71
w/o mask 20.61 30.12 42.11
Ours+RotatE 21.15 31.43 43.32
Ours+ComplEx 19.71 30.52 41.87
Ours+GAN 20.71 31.36 43.14
Ours+DV 18.98 29.61 41.60

Table 4: This table presents the average results of seven
languages of the ablation experiment which investigates
the impact of different methods for acquiring global and
local knowledge and different module effects. The re-
sults of the experiment provide insights into the relative
importance of these different methods for improving the
performance of the mKGC.

we also verified the effect of different module, our
findings indicate that the use of global features is
better than local features, and that the difference
between local and global results on the H10 metric
is minimal. This supports our expectation that local
features improve the ranking of entity types. Us-
ing the tasks matrix reduces some of the noise and
allows faster convergence, which is the key to im-
proving performance. We will include these results
in our revised manuscript and provide a detailed
discussion on their implications.

4.6 Answer Length Comparison
As shown in Figure 5, we compared the perfor-
mance of the proposed method on answers of dif-
ferent lengths to assess its robustness. The results
of this comparison demonstrate that the proposed
method exhibits strong performance across a range
of answer lengths, indicating its ability to handle
diverse inputs effectively. The results show that
our method outperforms the baseline in terms of
Hits values for answers of various lengths, with
particularly strong performance on short answers.

4.7 Case Study
As shown in Figure 4, we compare the perfor-
mance of our method with Prix-LM on a set of
real examples. The predicted answers generated
by both methods are presented and analyzed in or-
der to evaluate the effectiveness of each approach
for mKGC. The results of these case studies pro-
vide additional evidence for the effectiveness of
our approach in comparison to the baseline model.
Our analysis of the top three cases reveals that our
method produces a higher number of predictions
of the same type as the correct answer compared to
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Language Query Answer Prediction by Prix-LM Prediciton by Ours

Deutsch (Napa Valley AVA, 
Sortenreine Weine, ?) Merlot

Nunavut | Chardon | Nuclear Death | Cabernet Blanc 
| Çaycuma | Nuclear Blast | Symphony | Symphonic 
Metal | Porter (Band) | Nuclear Death Terror

Merlot | Grauburgunder | Cabernet Blanc | Chardonel | 
Trousseau Gris | Sauvignon Gris | Cabernet Jura | Chardon | 
Cabernet Cubin | Cabernet Cortis

Suomi (Martin Thörnberg, 
syntymäpaikka, ?) Ruotsi

Helsinki | Hamburg | Bern | Ullevi | Fribourg | 
Kołobrzeg | Baden-Württemberg | Weimar | Lahti | 
Kopparberg

Ruotsi | Suomi | Englanti | Yhdysvallat | Helsinki | Espoo | 
Häme | Kotka | Lahti | Vantaa

French (Région wallonne, 
langue, ?) Allemand

Malte | Hollande | Langue française | Belgique | 
Malé | Portugais | Budu | Langue anglaise | Suédois | 
Langue nationale

Allemand | Langue française | Anglais | Hongrois | Italien | 
Hollandais | Française | Arménien | Slavon d'église

Italiano
(One Piece:Unlimited 
World Red, 
piattaforma, ?)

PlayStation 
Vita

PlayStation 2 | PlayStation 4 | Game Boy Advance | 
N-Gage | PlayStation | Playstation 3 | PlayStation 
Vita | Xbox 360 | Nintendo DS | IOS

PlayStation Vita | PlayStation 2 | PlayStation | PlayStation 
4 | Xbox | PlayStation Portable | Playstation 2 | Xbox 360 | 
Microsoft Windows | Playstation 3

Magyar (Joszif Sztálin, 
halálozási hely, ?) Szovjetunió Luxembourg | Celje | Athén | Roma | Braunschweig | 

Szécsény | Rostock | Molde | Ħamrun | Rodolfo

Szovjetunió | Jeruzsálem | Lengyelország | Kolozsvár | 
Temesvár | Kairó | Szentgotthárd | Szarajevó | Szentpétervár 
| Szaloniki 

Turkish (Gérson Caçapa, 
doğumyeri, ?) Brezilya

João Pessoa | New York | La Paz | Estonya | Portekiz 
| João Paulo | Rio de Janeiro | João Havelange | 
Letonya | Fukuoka;

Brezilya | Portekiz | Rio de Janeiro | Minas Gerais | São 
Luís | Arjantin | Porto | Salvador | Fortaleza | Porto Alegre

Figure 4: This figure presents a comparison of the performance of our method and baseline model on a set of case
studies. The blue font is used to indicate that the predicted answer aligns with the golden answer type. The bold
font in the predicted answer signifies the correct answer.

the baseline model. This finding suggests that our
approach effectively addresses the task bias and
demonstrates the adaptability of the PLM for the
KGC task. Despite, the predicted answer types in
the bottom three examples are all same, our method
is able to accurately identify the correct answer.
This demonstrates the robustness and effectiveness
of our approach in generating accurate results even
in situations where the predicted answers type are
similar.

5 Related Work

5.1 Embedding-based Methods for KGC
There has been a amount of research focused on
developing embedding-based methods for finding
potential knowledge within a knowledge graph
(Wang et al., 2017; Dai et al., 2020). These meth-
ods typically involve representing entities and re-
lations within the graph as low-dimensional vec-
tor embeddings. Such like TransE (Bordes et al.,
2013) makes entity and relation vectors follow the
translational principle h + r = t. The choice of
scoring function and the specific vector space used
can have a significant impact on the performance
of the method, including RotatE(Sun et al., 2019),
TransH (Wang et al., 2014), HolE(Nickel et al.,
2016), ComplEx(Trouillon et al., 2016). However
embedding-based methods may not fully consider
the background knowledge that is implicit in the
text associated with entities and relations.

5.2 Pretrained Language Models for KGC
Recently, some research leverage pretrained lan-
guage models to complete KGC task. There meth-

ods represent entities and relations by PLMs, and
score high for positive triplets (Lv et al., 2022;
Kim et al., 2020). This manner enables the intro-
duction of knowledge that has already been learned
in PLMs.

2 3 4 5 6 7 8 9 10
Answer Length

0.1

0.2

0.3

0.4

0.5

0.6

Hi
ts

ours
Prix-LM
Hits@1
Hits@3
Hits@10

Figure 5: The figure presents the results of the Hits@k
evaluation metric for a mKGC task, focusing on an-
swers of varying lengths. In order to facilitate a more
straightforward analysis, the results are limited to those
sets of lengths that have more than 100 occurrences.

To fully utilize the PLM, some research focus on
generative paradigm for knowledge graph construc-
tion (Ye et al., 2022). GenKGC (Xie et al.,
2022) transforms knowledge graph completion into
a sequence-to-sequence generation task base on
pretrained language model and propose relation-
guided demonstration and entity-aware hierarchical
decoding. COMET (Bosselut et al., 2019) propose
the Commonsense Transformer to generate com-
monsense automatically. KGT5 (Saxena et al.,
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2022) consider KG link prediction as sequence-to-
sequence tasks base on a single encoder-decoder
Transformer. It reduce model size for KG link pre-
diction compare with embedding-based methods.
While previous efforts to utilize PLMs for KGC
have demonstrated effectiveness, they have not
fully considered the inherently knowledge-based
nature of KGC tasks. This oversight may hinder
the full potential of such models in addressing the
unique challenges and requirements of KGC.

6 Conclusion

Our work improve the multilingual knowledge
graph completion performance base on PLM and
generative paradigms. We propose two two knowl-
edgeable tasks to integrate global and local knowl-
edge into answer generation given a query. The
global knowledge improves the type consistency of
the generated answers. Local knowledge enhances
the accuracy of answer generation. We conducted
experiments and the results showed that the pro-
posed method is better than the previous model.

7 Limitations

While our approach effectively predicts the relation-
ships between entities in a knowledge graph, there
are limitations in the scope of knowledge graph
resources that can be modeled. The knowledge
graph contains a vast array of resources, including
attributes, descriptions, and images, which are not
easily captured by embedding-based methods, but
can be effectively modeled using PLMs. To im-
prove the compatibility of KGC with actual needs,
it is necessary to consider a broader range of data
types in the knowledge graph and develop comple-
mentary methods to effectively incorporate them.
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This paper proposes a method for Multilingual
Knowledge Graph Completion, and the experi-
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