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Abstract

Vision-language tasks, such as VQA, SNLI-
VE, and VCR are challenging because they
require the model’s reasoning ability to under-
stand the semantics of the visual world and
natural language. Supervised methods work-
ing for vision-language tasks have been well-
studied. However, solving these tasks in a
zero-shot setting is less explored. Since Con-
trastive Language-Image Pre-training (CLIP)
has shown remarkable zero-shot performance
on image-text matching, previous works uti-
lized its strong zero-shot ability by convert-
ing vision-language tasks into an image-text
matching problem, and they mainly consider
global-level matching (e.g., the whole im-
age or sentence). However, we find visual
and textual fine-grained information, e.g., key-
words in the sentence and objects in the im-
age, can be fairly informative for semantics
understanding. Inspired by this, we propose
a unified framework to take advantage of the
fine-grained information for zero-shot vision-
language learning, covering multiple tasks
such as VQA, SNLI-VE, and VCR. Our ex-
periments show that our framework outper-
forms former zero-shot methods on VQA and
achieves substantial improvement on SNLI-VE
and VCR. Furthermore, our ablation studies
confirm the effectiveness and generalizability
of our proposed method. Code is available at
https://github.com/ThreeSR/UniFine.

1 Introduction

VQA (Antol et al., 2015), SNLI-VE (Xie et al.,
2019), and VCR (Zellers et al., 2019) are vision-
language tasks, which utilize the text and corre-
sponding image to test a system’s cross-modal rea-
soning ability. These tasks are challenging as re-
quiring models to obtain a joint understanding of
visual and textual modality. Nevertheless, they are
also meaningful since this capability plays an es-
sential role in daily human-robot interaction, e.g.,
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Figure 1: Examples of how fine-grained information is
utilized to help CLIP from VQA, SNLI-VE, and VCR.
Before extracting the fine-grained information, CLIP
gives the wrong answer shown as the red box. With the
assistance of visual and textual fine-grained information,
CLIP can make the correct decision as the green box
shows. (For visualization, only three answer choices are
kept in VQA and VCR. And unisex names (Riley and
Jackie) are added in VCR.)

asking a robot how many people are in the im-
age. Despite the difficulty, a line of work (Tan and
Bansal, 2019; Li et al., 2019; Lu et al., 2019; Chen
et al., 2019; Su et al., 2019; Li et al., 2020) has been
dedicated to resolving these vision-language tasks
in a supervised setting and obtaining impressive
progress. However, these methods all suffer from a
significant problem of being costly as they require
expert knowledge to collect well-annotated image-
text data. On the other hand, zero-shot methods for
vision-language tasks can successfully bypass this
problem without costly annotations. Unfortunately,
limited methods and relatively fewer works have
been dedicated to exploring this direction.
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Recently, CLIP (Radford et al., 2021) has been
proposed to acquire visual concepts using natural
language supervision. It jointly trains an image
encoder and a text encoder on 400M noisy image-
text pairs collected from the Internet by aligning
images and texts through a contrastive loss.

Previous works (Song et al., 2022; Subramanian
et al., 2022; Shen et al., 2021; Wang et al., 2022b)
demonstrated that CLIP can achieve strong zero-
shot performance of vision-language tasks by con-
verting original tasks into the image-text matching
format. However, they mainly consider matching
on an instance or global level, i.e., the whole im-
age or sentence, ignoring the significance of fine-
grained elements, e.g., keywords in the sentence
and objects in the image. Meanwhile, we find these
fine-grained elements are important for specific
downstream tasks, especially in zero-shot learning.

For instance, in Fig. 1, CLIP makes three incor-
rect predictions in three zero-shot vision-language
tasks. For VQA, the model infers the wrong object
"pancake" for the verb "eating", as it does not cap-
ture the details in the image (pizza on the table) and
captions (pizza is mentioned). We posit that if we
can find a proper solution to navigate the model to
focus on these detailed pieces of textual and visual
information, the model would likely have a better
chance of selecting the correct answer label. This
conjecture also seems true and generalizable across
multiple zero-shot downstream tasks as shown by
the three examples from different vision-language
tasks, i.e., VCR, VQA, and SNLI-VE in Fig. 1.
Yet, we also recognize potential challenges also
exist as those different tasks may differ from many
perspectives including the distribution of image cat-
egories or scenes, the different semantic focus, and
format of text premises between declarative state-
ments and questions, and different task formats in
terms of image-text matching or classification.

To overcome these challenges, we first identify
two common fundamental steps required to utilize
the fine-grained information across different vision-
language tasks: 1) Extraction of the fine-grained
information from context information, e.g., the ex-
traction of the word "pizza" from the caption in
VQA as in Fig. 1. 2) The semantic matching be-
tween these extracted fine-grained information and
answer choices or hypothesis. Based on these, we
propose a unified approach leveraging these two
common steps thus it can assist the model to gen-
eralize over different vision-language tasks. For

the extractor, we have two branches – 1) the vi-
sion branch and 2) the textual branch. In the vision
branch, we employ Faster-RCNN (Ren et al., 2015)
to extract object-level information. We select rele-
vant object regions guided by the question in VQA
and VCR or hypothesis in SNLI-VE. After that,
we concatenate the whole image and its selected
image regions and input them into the image en-
coder of CLIP. For textual information extraction,
we exploit rich information from the image cap-
tion generated by a recently-developed captioning
model OFA (Wang et al., 2022a) and question in
VQA and VCR or hypothesis in SNLI-VE to boost
the zero-shot performance.

It’s noted that although we employ the image
caption and question on a sentence level rather
than a word level, we compute the cosine similarity
between them and answer texts, which means if
there are keywords in the answer texts which can
be matched in the caption or question, then we will
obtain high scores in zero-shot prediction.

Therefore, it is still a process of fine-grained
information extraction. By using fine-grained infor-
mation, our model outperforms previous methods
on zero-shot VQA and we are the first to bench-
mark zero-shot VCR and SNLI-VE. The experi-
ments confirm the effectiveness of our proposed
method.

Our contributions can be summarized as follows:
• To the best of our knowledge, we are the first

to propose a unified approach based on fine-
grained information extraction for zero-shot
learning of different vision-language tasks.

• Our approach outperforms previous CLIP-
based methods for zero-shot learning of VQA
and we are the first to study CLIP’s zero-shot
ability for SNLI-VE and VCR.

• The experiments and ablation studies confirm
the generalizability of our proposed method
and the significance of visual and textual fine-
grained information for zero-shot learning of
vision-language tasks.

2 Related Work

Vision-language understanding tasks. Unlike
unimodal tasks, vision-language understanding
tasks need joint understanding between vision and
language, which require a deeper reasoning abil-
ity of the system. In VQA (Goyal et al., 2017),
given a question, the model needs to understand
the details of the corresponding image based on
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the question to answer correctly. The real images
in VQA come from MS COCO(Lin et al., 2014)
and each of them is paired with a caption in COCO
Captions (Chen et al., 2015). For another task VCR
(Zellers et al., 2019), its semantic focus is different
from VQA since it concentrates more on common-
sense questions. The model needs to answer the
recognitive questions (like VQA) at first, then it
is also required to correctly answer the cognitive
questions, which are rationales of the choice in the
first question. The images in VCR are collected
from movie clips. SNLI-VE originated from Stan-
ford Natural Language Inference (SNLI) (Bowman
et al., 2015), which is a text entailment (TE) task
based on the Flicker30k (Young et al., 2014) im-
age captions. It extends TE into the visual domain
and it has a different task format from the VQA
and VCR because the previous question-answering
format is replaced with the hypothesis. Given the
image and hypothesis, the model needs to predict
whether the image semantically entails the text.
The images in SNLI-VE are from Flicker30k with
annotated captions.

Vision-language pre-trained models. Early
vision-language pre-trained models (Tan and
Bansal, 2019; Lu et al., 2019; Li et al., 2019; Chen
et al., 2019; Su et al., 2019; Li et al., 2020) utilize
cross-modal transformer (Vaswani et al., 2017) pre-
trained on well-annotated image-text pairs. Differ-
ent from these models, contrastive learning frame-
works (Radford et al., 2021; Pham et al., 2021; Jia
et al., 2021) are trained on noisy image-text pairs
crawled from the Internet through contrastive loss,
which employs the dot product between visual and
textual modality. Due to the large-scale training
data, these models acquire rich prior knowledge
and show strong zero-shot ability on vision bench-
marks like ImageNet (Deng et al., 2009).

Vision-language zero-shot learning. There is a
line of work utilizing CLIP to do zero-shot learning
for vision-language tasks. ReCLIP (Subramanian
et al., 2022) utilizes CLIP to present a zero-shot
method for referring expression comprehension
(ReC), which outperforms prior zero-shot ReC ap-
proaches. CLIP-ViL (Shen et al., 2021) exploits
CLIP to do zero-shot VQA by simply concatenat-
ing question and answer pair for each question and
constructing "question: [question text] answer: [an-
swer text]" as the prompt. Then, they feed the text
and image into the text encoder and the image en-
coder of CLIP, which produces the near-chance

CLIP-TE
The color of the flowers is yellow.

The color of the flowers is yellow and white.
The color of the flowers is white.Answers Answer

Chosen

CLIP-VE

Image

VQA, VCR

The flowers are on a table.Hypothesis

SNLI-VE

ClusterCLIP-TE
Answer
Chosen

VQA, VCR, SNLI-VE

Figure 2: Baseline method of UniFine. (Note: For
visualization, only three answer choices are kept in VQA
and VCR. CLIP-VE denotes CLIP Visual Encoder, and
CLIP-TE denotes CLIP Text Encoder.)

level performance. The most relevant work to ours
is TAPC (Song et al., 2022), which manually de-
signs the prompt and leverages T5 (Raffel et al.,
2020), a large pre-trained text-to-text Transformer,
to convert the question-answering problem into the
image-text matching task. Then, it employs CLIP’s
remarkable zero-shot image-text matching ability
on VQA, whose results surpass CLIP-ViL by a
large margin. However, these works handle dif-
ferent tasks on an instance level rather than fully
utilizing the visual and textual fine-grained infor-
mation (i.e., keywords in the sentence and objects
in the image) like ours. Moreover, we can tackle a
diverse set of tasks but they just concentrate on one
specific task.

3 Method

In this section, we introduce our method for vi-
sual and textual fine-grained information extraction
to improve zero-shot learning of vision-language
tasks including VQA, VCR, and SNLI-VE.

3.1 Baseline Method

In the baseline method shown in Fig. 2, we use
CLIP to do zero-shot learning of vision-language
tasks. CLIP consists of a visual encoder V (e.g.,
ResNet (He et al., 2016) and ViT (Dosovitskiy
et al., 2020)) and a text encoder T (e.g., transformer
(Vaswani et al., 2017)), where the image and text
are processed independently.

Followed by the encoder, there is the dot product
(i.e., alignment score) between visual and textual
features, i.e., V(image) · T(text). We input the im-
age from VQA, VCR, and SNLI-VE into the CLIP
visual encoder. Since there is a difference in task
format, answer choices from VQA and VCR and
the hypothesis from SNLI-VE are input into the
CLIP text encoder. After encoding, we can obtain
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the alignment score between the image and text. In
VQA and VCR, we select the answer with the high-
est score. In SNLI-VE, there is a clustering process
after the dot product, which is demonstrated in
Algo. 1, and we select the answer with the lowest
score.

3.2 Visual fine-grained information extraction
In visual fine-grained information extraction, we
aim to find the related image regions to the question
in VQA and VCR or the hypothesis in SNLI-VE
since these regions can provide local visual clues
to complement the global image. The objects and
attributes are detected by Faster-RCNN (Ren et al.,
2015), which is pre-trained on Visual Genome (Kr-
ishna et al., 2017) provided by Anderson et al.
(2018). We select the top N relevant image regions
(N is a hyperparameter, which will be analyzed in
Sec. 4.3) by image region score (i.e., cosine simi-
larity) between the textual features of the question
or hypothesis and the object class&attribute (e.g.,
yellow flowers) encoded by RoBERTa (Liu et al.,
2019):

Top-N
oi∈O

{cos(R(Query),R({Attr(oi), Class(oi)}))} (1)

where R is RoBERTa, cos(, ) is cosine similarity,
O is the set of objects detected by Faster-RCNN,
Attr() and Class() are attribute and class of object
respectively, and Query is the question in VQA
and VCR or the hypothesis in SNLI-VE. After se-
lection, the global image and selected image re-
gions will be fed into CLIP visual encoder to obtain
the encoded feature of each.

3.3 Textual fine-grained information
extraction

Next, we present how textual fine-grained informa-
tion is extracted and incorporated into our frame-
work. To be more specific, two types of information
are studied: image caption and question. Questions
as a prior can narrow down the range of answer
candidates and get rid of irrelevant answers. Image
caption can transform the information inside the
image into text so that it can be compared with
answers in the same domain. Image captions are
generated from the image, but their format is lan-
guage. Thus, we arguably regard image captions as
textual fine-grained information. Overcoming the
challenge in different formats of vision-language
tasks, we introduce a relatively unified way to ex-
tract and utilize textual fine-grained information in
the zero-shot scenario.

Visual Question Answering: VQA
Following previous work, we experiment on the
validation set of VQAv2 (Goyal et al., 2017). Typi-
cally, VQA is regarded as a classification problem
and there are 3,129 most frequent answers used for
classification. There are 65 types of questions (e.g.,
does this type) and 3 types of answers including
Yes/No, Number, and Other in VQAv2.

Although in VQA, each image is paired with
a ground truth caption from MS COCO, we still
choose to use OFA, a SOTA model of image cap-
tioning, to generate the caption given the image,
because not every dataset is annotated with ground
truth captions and we would like to make our
method generalizable.

As Shen et al. (2021) shows, directly inputting
the concatenation of the question and answer into
CLIP will lead to near-chance level performance.
In addition, there are more than 3,000 answer can-
didates in VQAv2, which will largely slow down
the inference speed of zero-shot VQA with all an-
swers input into CLIP. To bypass that, we utilize an
answer-filtering method to downsize the number of
answer choices inspired by Song et al. (2022).

Following Song et al. (2022), we first convert
the question-answering format into declarative tem-
plates with the <extra_id_0> token by T5 low-shot
demonstration. Then, templates with <extra_id_0>
token are input into the T5 and we obtain the plausi-
bility of each answer candidate based on T5 output
probability. Next, we select the top K answers.
More details can be found at Sec. A.2.

In this way, we can downsize the number of an-
swers in VQA. There are three different answer
types in VQA, which are processed differently in
the answer filtering process. For Yes/No type, we
treat it as a binary classification problem. For Num-
ber type, since its answers are highly related to
numerical answers in the 3,129 most frequent an-
swers set, we heuristically filter 285 numerical an-
swers from 3,129 answers before answer filtering.
As for Other type, we preserve the original answer
candidates without filtering.

After obtaining top K filtered answers, on one
hand, they will be sent to the CLIP text encoder
and dot-product with image features will be calcu-
lated, denoted as CLIP alignment score SCLIP. On
the other hand, we will calculate the question prior
score SQuestion (i.e., cosine similarity between textual
features, encoded by RoBERTa, of the question
and answers) and the caption prior score SCaption
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Figure 3: The overview of our proposed UniFine method. Visual fine-grained information is extracted under
the guidance of the question (in VQA and VCR) or hypothesis (in SNLI-VE). In addition, textual fine-grained
information is extracted by utilizing the question (in VQA and VCR) or hypothesis (in SNLI-VE) and the image
caption. (Note: CLIP-VE denotes CLIP Visual Encoder and CLIP-TE denotes CLIP Text Encoder.)

(i.e., cosine similarity between textual features, en-
coded by RoBERTa, of image caption generated
by OFA and answers). The whole process can be
summarized as the following equations:

SCLIP = T(A) · V(I)
SQuestion = cos(R(Q),R(A))

SCaption = cos(R(O(I),R(A))
(2)

where V and T are image and text encoders of CLIP,
R is RoBERTa, O is OFA, and cos(, ) means co-
sine similarity. I denotes images including one
global image Ig and N selected image regions
{Il ∈ Reg}. Q and A correspond to the ques-
tion and its top K filtered answers. O(I) means
image caption generated by OFA.

In the end, all scores are ensembled. We select
the answer with the highest score as zero-shot pre-
diction result:

argmax
i

{SCLIP(Ai, Ig) + k1 · max
Il∈Reg

{SCLIP(Ai, Il)}

+ k2 · SQuestion(Q,Ai) + k3 · SCaption(Ig, Ai)},
(3)

where k1, k2, and k3 are hyperparameters.
Visual Commonsense Reasoning: VCR
VCR is similar to VQA since both of them are
in question-answering formats. However, there
are only four answer choices per question, which
means we don’t need to do answer filtering. Q2A

and QA2R are two subtasks of VCR. Q2A is sim-
ilar to VQA in that there is only one question per
sample. So the process of Q2A is the same as VQA
except for omitting answer filtering. QA2R aims
to dig out the rationale why one correct answer is
chosen in Q2A question. Since there is no question
text in QA2R and the correct answer is provided,
we directly utilize the correct answer as the ques-
tion text. Other procedures in QA2R are the same
as Q2A.
Visual Entailment: SNLI-VE
The task format of SNLI-VE is different from
VQA and VCR. For each sample, only one image
premise I and one hypothesis H are given, without
answer candidates. It is a three-way classification
problem, aiming to predict the relation between the
image premise and hypothesis text into one of three
classes: Entailment, Contradiction, and Neutral.

Since there are no answer candidates, we cannot
directly compare CLIP alignment scores of answers
to select the best answer, as in VQA and VCR. To
tackle that, we compute the CLIP alignment scores
between image and hypothesis of each sample in
whole evaluation set, and cluster those scores into
three clusters with three centroids. We rank the
centroids from high to low and sequentially treat
them as entailment centroid Ce

CLIP, neutral centroid
Cn

CLIP and contradictory centroid Cc
CLIP. The detail of
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clustering can be found in Algo. 1. It’s noted that,
to make cluster centroids meaningful, an assump-
tion is required: three relationships are uniformly
distributed in the evaluation dataset. That assump-
tion is true in SNLI-VE but not guaranteed in other
less-calibrated datasets. We can measure how close
SCLIP of each sample is to each centroid:

Dis(Ci
CLIP, SCLIP) =

∥Ci
CLIP − (SCLIP(H, Ig) + k1 · max

Il∈Reg
{SCLIP(H, Il)})∥ (4)

where centroid Ci
CLIP ∈ {Ce

CLIP, C
n
CLIP, C

c
CLIP}.

Besides the CLIP alignment score comparison,
we can obtain the caption prior score SCaption(I,H)
using the image caption generated by OFA. Same
as above, we also use the clustering method in Algo.
1, with only changing CLIP score to caption score,
to get three centroids {Ce

Caption, C
n
Caption, C

c
Caption}. And

we measure how close SCaption of each sample is to
each centroid:

Dis(Ci
Caption, SCaption) = ∥Ci

Caption − SCaption(I,H)∥ (5)

It’s noted that due to the lack of answer candidates,
we can’t get the question prior score SQuestion. In the
end, we ensemble two distances and predict the
relationship by picking the closest centroid:

argmin
i

{Dis(Ci
CLIP, SCLIP) + k2 ·Dis(Ci

Caption, SCaption)}
(6)

4 Experiments

In this section, we will talk about benchmark com-
parison first to show our strong performance. Then,
we conduct extensive ablation studies to confirm
the effectiveness of fine-grained information.

4.1 Experimental setup
Datasets. We analyze three vision-language tasks
in our paper. For each of them, we utilize the
validation set of VQAv2 (Goyal et al., 2017), VCR
(Zellers et al., 2019), and SNLI-VE (Xie et al.,
2019). More details about the validation set can
be found in Sec. A.1. In VQAv2, we employ vqa
scores to evaluate the model. In VCR and SNLI-
VE, we use the accuracy of the validation set for
evaluation.
Models. The core component of our method is
CLIP 1. There are different variants of CLIP since
we can use different models to act as the image or
text encoder. Following previous work, we lever-
age CLIP Res50x16 and CLIP ViT-B/16 in VQA

1https://github.com/openai/CLIP

Methods
VQA Answer Types

Yes/No Number Other All

CLIP-ViL
w/ CLIPRes50x16 56.16 9.76 1.39 23.07
w/ CLIPViT-B/16 53.89 7.67 0.70 21.40

TAP-C* (Baseline)
w/ CLIPRes50x16 68.9(71.7) 25.9(18.7) 16.7(18.2) 37.5(38.4)
w/ CLIPViT-B/16 68.6(71.4) 25.4(21.0) 16.7(18.6) 37.3(38.7)

UniFine-Base (Ours)
w/ CLIPRes50x16 69.69 29.61 19.85 39.87
w/ CLIPViT-B/16 69.49 29.34 20.15 39.91

UniFine-Large (Ours)
w/ CLIPViT-L/14@336px 70.36 29.95 20.19 40.33

Random 50.00 - - 18.80

Table 1: Zero-shot VQAv2 results on the validation set.
* denotes our reimplementation. Reported results from
TAP-C are in the bracket.

Methods
SNLI-VE Answer Types VCR Tasks

C N E All Q2A QA2R

Baseline
w/ CLIPViT-B/16 67.59 18.66 55.92 47.37 53.24 46.51

UniFine-Base
w/ CLIPViT-B/16 68.08 28.55 51.67 49.41 54.97 50.72

UniFine-Large
w/ CLIPViT-L/14@336px 68.29 29.57 52.68 50.16 58.48 51.88

Supervised
w/ EVE-Image 71.04 70.55 73.10 71.56 -
w/ R2C - 63.8 67.2

Random - - - 33.33 25.00 25.00

Table 2: Zero-shot SNLI-VE and VCR results on the
validation set. (C: Contradiction, N: Neutral, E: Entail-
ment)

for comparison. Since we are the first to evalu-
ate CLIP’s zero-shot ability in SNLI-VE and VCR,
there is no need for us to compare them with prior
work. So we just exploit CLIP ViT-B/16 in VCR
and SNLI-VE. We believe the scale of the model
will have a big impact on the result, so we also
utilize CLIP ViT-L/14@336px in VQA, VCR, and
SNLI-VE to see how much improvement can be ob-
tained by using a larger model. In addition to CLIP,
we also use T5-large 2 for task format conversion,
OFA-base 3 for image captioning, RoBERTa-large
4 for the following calculation of cosine similarity,
and Faster-RCNN 5 for object detection.

4.2 Benchmark comparison

VQA. Results of zero-shot VQA are reported in
Tab. 1. For a fair comparison, we compare our

2https://huggingface.co/models
3https://github.com/OFA-Sys/OFA
4https://github.com/UKPLab/sentence-transformers
5https://github.com/peteanderson80/bottom-up-attention
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method with two CLIP-based methods. We choose
TAP-C (Song et al., 2022) as our baseline. Since
the author didn’t release the code, we reimplement
it from scratch. After reimplementation, we obtain
a lower score than TAP-C. There might be some
reasons like differences in specific prompt design
and answer filtering process making our result dif-
ferent from the original one. Although our reimple-
mented results are lower than the reported ones, we
can surpass TAP-C after extracting and exploiting
visual and textual fine-grained information. Com-
pared to our reimplemented results, our method can
elevate the performance of all answer types. By
using a larger CLIP model, we can achieve better
performance. Our best performance can surpass
the reimplemented and TAP-C result by 2.83% and
1.63%. Currently, our method outperforms previ-
ous CLIP-based methods for zero-shot VQA.

SNLI-VE. We report the results of SNLI-VE in
Tab. 2. By using the baseline method, we can get
an accuracy of 47.37% in all categories, which is
14.04% higher than random performance. This re-
sult reveals that our baseline method is strong and
it confirms CLIP’s zero-shot ability in SNLI-VE.
By extracting fine-grained information and upscal-
ing the model, we can increase accuracy by 2.79%
at most. For each answer type, Neutral type in-
creases the most (+10.91%) and Entailment type
decreases by 3.24%. We need to note that Neutral
type is more complex than Entailment and Contra-
diction since this type is not as clear as the other
two types requiring a model’s deeper reasoning
ability. The improvement in Neutral type shows
the significance of fine-grained information. As for
the decrement in Entailment type, it is likely due
to the deficiency of our clustering method, which
should be improved in the future. Since there is
no CLIP-based zero-shot method for SNLI-VE be-
fore, we choose the supervised method EVE-Image
from SNLI-VE paper (Xie et al., 2019) for compar-
ison. Although the overall performance is still not
comparable to the supervised method, our result of
Contradiction type is approaching EVE-Image.

VCR. The results of VCR are reported in Tab.
2. We carry out experiments in two VCR sub-
tasks, namely Q2A and QA2R. Compared to the
random performance of Q2A and QA2R, our base-
line method can improve by 28.24% and 21.51%
respectively. The improvement confirms CLIP’s
strong zero-shot ability for VCR. By extracting
fine-grained information and using a larger model,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Image Regions

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Va

lu
e

VQA Yes/No
VE
VCR Q2A

Figure 4: Normalized value to the number of image
regions.

we can improve the baseline by 5.24% and 5.37%
at most, which proves the effectiveness of our
proposed method. There is no prior CLIP-based
method for zero-shot VCR so we select the super-
vised model R2C, proposed in VCR paper (Zellers
et al., 2019), for comparison. Although we cannot
surpass the supervised model, the result of Q2A is
approaching R2C and our results are competitive.

4.3 Ablation studies

In this section, we will analyze every important
component of our proposed method. In Tab. 3, we
can see all of the fine-grained (FG) information can
help zero-shot learning and all fine-grained (FG)
information combined together can bring more im-
provement.
Textual FG Information - Question: By adding
the question prior information, we can see it can
help VCR the most. We think the first reason is
the question and answer in VCR are longer and
more complex than the other two datasets. Con-
sequently, the question and answers can provide
more useful and richer information in zero-shot
inference. Secondly, the correct answer is likely to
have more overlap with the question. Plus, we can
observe that question doesn’t help a lot in VQA
Yes/No answer type since this is a binary classifica-
tion problem and a large number of questions are
like "Is this A or B?" type, which cannot provide
more useful information to zero-shot prediction.
Visual FG Information - Image Region: We can
observe that the image region can largely improve
the performance of Other answer type in VQA
because the questions of this type tend to query
the details of the image. And image regions can
provide finer details to zero-shot inference. At
the same time, we also find that the image region
cannot help SNLI-VE much. We think SNLI-VE
concentrates more on the global image thus image

784



Methods VLU Tasks Baseline w/ Question w/ Image Region
(Faster-RCNN)

w/ Image Caption
(OFA)

w/ All
(Generation)

w/ Image Caption
(GT)

w/ Image Region
(GT)

w/ All
(GT)

UniFine-Base
w/ CLIPBase

VQA

Yes/No 68.61 68.67 [+0.06] 68.80 [+0.19] 69.40 [+0.79] 69.49 [+0.88] 69.32 [+0.71] - 69.54 [+0.93]

Number 25.36 26.22 [+0.86] 26.21 [+0.85] 28.99 [+3.63] 29.34 [+3.98] 28.52 [+3.16] - 28.88 [+3.52]

Other 16.65 17.61 [+0.96] 19.00 [+2.35] 18.26 [+1.61] 20.15 [+3.50] 18.03 [+1.38] - 20.04 [+3.39]

All 37.33 37.94 [+0.61] 38.67 [+1.34] 38.90 [+1.57] 39.91 [+2.58] 38.69 [+1.36] - 39.81 [+2.48]

SNLI-VE

C 67.59 - 68.59 [+1.00] 66.87 [-0.72] 68.08 [+0.49] 69.41 [+1.82] - 69.67 [+2.08]

N 18.66 - 20.94 [+2.28] 19.84 [+1.18] 28.55 [+9.89] 24.87 [+6.21] - 25.50 [+6.84]

E 55.92 - 53.13 [-2.79] 56.43 [+0.51] 51.67 [-4.25] 63.03 [+7.11] - 62.90 [+6.98]

All 47.37 - 47.54 [+0.17] 47.68 [+0.31] 49.41 [+2.04] 52.42 [+5.05] - 52.66 [+5.29]

VCR
Q2A 53.24 54.60 [+1.36] 53.93 [+0.69] 53.35 [+0.11] 54.97 [+1.73] 53.42 [+0.18] 53.79 [+0.55] 54.72 [+1.48]

QA2R 46.51 50.10 [+3.59] 47.66 [+1.15] 46.79 [+0.28] 50.72 [+4.21] 46.60 [+0.09] 47.02 [+0.51] 50.16 [+3.65]

UniFine-Large
w/ CLIPLarge

VQA

Yes/No 69.38 69.42 [+0.04] 69.75 [+0.37] 70.04 [+0.66] 70.36 [+0.98] 70.16 [+0.78] - 70.41 [+1.03]

Number 28.44 28.67 [+0.23] 28.64 [+0.20] 29.48 [+1.04] 29.95 [+1.51] 29.32 [+0.88] - 29.72 [+1.28]

Other 16.74 17.35 [+0.61] 19.03 [+2.29] 17.95 [+1.21] 20.19 [+3.45] 17.74 [+1.00] - 20.06 [+3.32]

All 38.07 38.41 [+0.34] 39.36 [+1.29] 39.05 [+0.98] 40.33 [+2.26] 38.97 [+0.90] - 40.26 [+2.19]

SNLI-VE

C 67.57 - 68.44 [+0.87] 66.69 [-0.88] 68.29 [+0.72] 69.37 [+1.80] - 70.30 [+2.73]

N 25.17 - 20.97 [-4.20] 29.05 [+3.88] 29.57 [+4.40] 25.71 [+0.54] - 25.44 [+0.27]

E 51.57 - 55.14 [+3.57] 52.70 [+1.13] 52.68 [+1.11] 62.84 [+11.27] - 62.84 [+11.27]

All 48.05 - 48.15 [+0.10] 49.46 [+1.41] 50.16 [+2.11] 52.62 [+4.57] - 52.84 [+4.79]

VCR
Q2A 56.92 58.12 [+1.20] 57.26 [+0.34] 57.11 [+0.19] 58.48 [+1.56] 57.01 [+0.09] 57.37 [+0.45] 58.29 [+1.37]

QA2R 48.06 51.20 [+3.14] 49.31 [+1.25] 48.44 [+0.38] 51.88 [+3.82] 48.16 [+0.10] 48.44 [+0.38] 51.30 [+3.24]

Table 3: Ablation studies of zero-shot VQA, SNLI-VE, and VCR. (C: Contradiction, N: Neutral, E: Entailment,
GT: Ground Truth, CLIPBase: CLIPViT-B/16, CLIPLarge: CLIPViT-L/14@336px)

regions can’t help a lot.
Textual FG Information - Image Caption: In
Tab. 3, we can observe that the image caption can
better assist the Number and Other answer type in
VQA. For Number type, we think the image cap-
tion may contain numerical information which aids
zero-shot prediction of Number type. Since there
are a large number of questions in Other type, they
will cover diverse question types, some of which
may focus on information on an instance level. Nor-
mally, the image caption captures the instance-level
information, so it can help VQA Other answer type.
We can also notice that using image captions may
hurt some categories of SNLI-VE, we think this
result may suffer from the quality of the generated
caption.
Generation vs. Ground Truth: Since not every
dataset is well human-annotated, we employ these
two settings to test the generalizability of our pro-
posed method. In the generation setting, we gener-
ate image captions by OFA and detect objects by
Faster-RCNN. In the ground truth setting, as men-
tioned above, there are ground truth captions paired
with images in VQA and SNLI-VE. For VCR, im-
ages are not paired with human-annotated caption
texts. However, 68% images of VCR validation
set are the same as images in VisualCOMET (Park
et al., 2020) and VisualCOMET is paired with the

ground truth caption. Thus, we directly leverage
captions from VisualCOMET in VCR. Although
images in VCR are not paired with captions, they
are annotated with ground truth bounding boxes,
so we have a ground truth image region experiment
for VCR. However, VQA and SNLI-VE are not
annotated with ground truth bounding boxes. As
Tab. 3 shows, we can conclude that our method can
work well in a situation without many annotations
because we achieve similar performance in gener-
ation and ground truth scenarios, which confirms
the generalizability of our proposed method.
Model Scale: We believe that the model scale will
affect the final result since larger models are able
to better process visual and textual information. In
our experiments, we mainly focus on two variants
of CLIP, namely CLIP ViT-B/16 and CLIP ViT-
L/14@336px. We also carry out experiments on
CLIP Res50x16 in VQA task, which can be found
in Tab. 6. We can observe that larger models can
elevate the performance and all of our best results
are achieved by using CLIP ViT-L/14@336px.
Number of Image Regions: In this subsection,
we would like to see how selected N image re-
gions affect the zero-shot performance of different
vision-language tasks. For convenience, we select
Yes/No answer type of VQA, SNLI-VE, and Q2A
task of VCR to carry out experiments. Full results
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are reported in Tab. 8. For better visualization, we
normalize the results. In Fig. 4, we can observe
that with the increment of the image regions, the
performance of all three tasks increases and then
decreases. Moreover, selecting 5 image regions is
optimal for VQA and VE. For VCR, 12 image re-
gions are optimal. Visual fine-grained information
can help CLIP and play an important role in the
zero-shot prediction since it provides fine details
of the image but more image regions after a certain
point will result in a decrement. Too many image
regions will introduce irrelevant visual information.
In our experiments, we select 5 regions for VQA
and SNLI-VE, and 12 regions for VCR.

5 Conclusion

In this work, we propose a unified and fine-grained
approach for vision-language tasks including VQA,
SNLI-VE, and VCR. We outperform previous
CLIP-based methods for zero-shot VQA. Plus, we
are the first to empirically study CLIP’s zero-shot
ability for SNLI-VE and VCR, which achieves
strong zero-shot performance. In addition to the
benchmark comparison, we conduct extensive ab-
lation studies confirming the significance of visual
and textual fine-grained information and the gener-
alizability of our proposed method.

Limitations

Although our proposed method is effective in three
vision-language tasks, we still have some limita-
tions. Firstly, we utilize T5 to convert the question-
answering format into the declarative sentence in
VQA and it works well in most cases, but it still
faces out-of-coverage problems, which will affect
the following zero-shot prediction of CLIP. We
need to design more rules for these special cases
for better conversion. Secondly, our clustering al-
gorithm for SNLI-VE can achieve strong zero-shot
performance, but the clustering centroids are close
to each other and the algorithm is sensitive to these
centroids. The robustness of this algorithm should
be improved. What’s more, we leverage Faster-
RCNN in visual fine-grained information extrac-
tion, so the detectable object attributes and classes
are constrained in a relatively limited object set of
Faster-RCNN, which may hinder further improve-
ment from visual fine-grained information. The
Faster-RCNN can be replaced with a better vision
module. Besides, since we only utilize CLIP in our
paper, we can explore the zero-shot ability of other

contrastive pre-training models in future work.

Ethics Statement

There are many large-scale pre-trained models used
in our paper like OFA, T5, RoBERTa, and CLIP.
Our method relies heavily on CLIP, which is pre-
trained on approximately 400M image-text pairs
crawled from the Internet. Since the pre-training
dataset is noisy, CLIP is likely to have potential
racial and gender bias. Therefore, if someone finds
our work interesting and would like to use it in a
specific environment, we suggest the user check
the potential bias before application. We think one
advantage of our work is we only utilize existing
pre-trained models and we don’t need to train any
new models. Compared to the energy-consuming
model training, our method can be more environ-
mentally friendly.
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A Appendix

A.1 Data Statistics

VLU Tasks Number of Questions Number of Images

VQAv2

Yes/No 80541 -
Number 28134 -

Other 105679 -
All 214354 40504

SNLI-VE

C 5939 -
N 5960 -
E 5959 -

All 17858 1000

VCR - 26534 9929

Table 4: Statistics of VQAv2, SNLI-VE, and VCR (C:
Contradiction, N: Neutral, E: Entailment, VLU: Vision-
Language Understanding)

Following previous work, we use the val2014
split of VQAv2. In zero-shot SNLI-VE and VCR,
we use the validation set.

A.2 Answer filtering for VQA

Answer filtering. As in TAP-C (Song et al., 2022),
we first manually design the demonstrations and
employ T5 to convert the question-answering for-
mat of VQA into the declarative template with the
<extra_id_0> token. Then, we input the concatena-
tion of demonstrations and declarative statements
converted from question-answering format with the
<extra_id_0> token into the T5 encoder. Next, en-
coded features from the T5 encoder and answer
candidates are input into the T5 decoder. At the
end of the T5 decoder, it will calculate the prob-
ability of each answer candidate. We select Top
K answers to replace <extra_id_0> token in the
template to generate K prompts, which will be fed
into the CLIP text encoder.

Setting of hyperparameter K. Since we em-
ploy answer filtering to select top K answers, K is
a significant hyperparameter. In Tab. 5, we show
how the zero-shot performance of VQA Number
and Other type varies with the increment of se-
lected top K answers. We carry out six and seven
experiments on these two types. We can observe
that with the increment of K, the performance first
increases and then decreases. When K is small,
many correct answers are directly removed by T5,
which makes it impossible for CLIP to choose the
right answer. Conversely, if K is very big, there
are too many answers, which are likely to disturb
CLIP’s zero-shot prediction. In our experiments,
we select the top 10 answers in VQA Other type
and the top 4 answers in VQA Number type.

Algorithm 1 Pseudocode of clustering algorithm

Input: V: CLIP image encoder, T: CLIP text en-
coder, I: all images in SNLI-VE val split, H:
all hypotheses in SNLI-VE val split, N : the
number of samples in SNLI-VE val split;

Output: centroid.
1: dictionary centroid initialized to 0
2: array scores initialized to 0
3: // use CLIP to calculate dot product
4: for i = 0; i < N ; i++ do
5: scores[i] = T(H[i]) · V(I[i])
6: end for
7: // obtain three centroids
8: scores = sort(scores) // ascending order
9: // C: Contradiction, N: Neutral, E: Entailment

10: centroid[C] = sum(scores[:N/3]) / (N/3)
11: centroid[N] = sum(scores[N/3:2N/3]) / (N/3)
12: centroid[E] = sum(scores[2N/3:]) / (N/3)

A.3 More ablation studies of VQAv2
Since previous work uses CLIP RN50x16 to do
zero-shot VQA, we also conduct ablation studies
on it. Results can be found in Tab. 6

A.4 Clustering algorithm and centroids of
SNLI-VE

Algo. 1 is utilized in zero-shot SNLI-VE. After
running the Algo. 1, we can obtain three clustering
centroids. In fact, we can cache the centroids in
advance. In order to achieve better performance,
we tune the centroids, which are reported in Tab.
7. The effectiveness of Algo. 1 is based on the
relatively even data distribution. K-Means 6 can
also be utilized here but it also requires a relatively
even data distribution. In the validation split of
SNLI-VE, we have 17858 samples, which are not
divisible by 3. However, we can assume there
are 5952, 5953, and 5953 samples in entailment,
neutral, and contradiction category respectively.

A.5 How # image regions affect performance
The full results are reported in Tab. 8. They are
values before normalization in Fig. 4. Through
the table and figure, we can see how selected N
images affects the zero-shot performance.

A.6 Zero-shot learning by only using textual
fine-grained information

We think it is interesting to investigate the zero-shot
performance if we only use textual fine-grained

6https://en.wikipedia.org/wiki/K-means_clustering
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information. We only exploit the language model to
accomplish zero-shot prediction in all three vision-
language tasks. All results are shown in Tab. 9.
In VQA, we use T5-large (for answer filtering)
and RoBERTa-large. In SNLI-VE and VCR, we
only utilize RoBERTa-large. Visual information is
not considered and textual fine-grained information
includes the image caption and question in this
experimental setting. All results show that only
using textual fine-grained information can achieve
fair performance. (Note: We can notice that only
using ground truth textual fine-grained information
in SNLI-VE can surpass baseline performance. It
is because the relation between the ground truth
caption and hypothesis is well annotated in SNLI
(Bowman et al., 2015))
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Answer
Type

2 3 4 5 9 10 11 20 40 200

Number 25.14 25.27 25.36 24.41 - 21.60 - 18.36 - -
Other - - - 14.98 16.60 16.65 16.61 15.54 14.93 10.87

Table 5: How # selected answers affect VQA

Methods VLU Tasks Baseline w/ Question w/ Image Region
(Faster-RCNN)

w/ Image Caption
(OFA)

w/ All
(Generation)

w/ Image Caption
(GT)

w/ Image Region
(GT)

w/ All
(GT)

UniFine-Base
w/ CLIPRes50x16

VQA

Yes/No 68.85 68.90 [+0.05] 68.90 [+0.05] 69.63 [+0.78] 69.69 [+0.84] 69.59 [+0.74] - 69.66 [+0.81]
Number 25.85 26.20 [+0.35] 26.34 [+0.49] 29.26 [+3.41] 29.61 [+3.76] 28.91 [+3.06] - 29.33 [+3.48]

Other 16.74 17.36 [+0.62] 18.60 [+1.86] 17.86 [+1.12] 19.85 [+3.11] 17.64 [+0.90] - 19.85 [+3.11]
All 37.53 37.90 [+0.37] 38.53 [+1.00] 38.82 [+1.29] 39.87 [+2.34] 38.65 [+1.12] - 39.82 [+2.29]

Table 6: Ablation Studies of zero-shot VQA. (GT: Ground Truth)

Answer Types
Methods

CLIP ViT-B/16 CLIP ViT-L/14@336px RoBERTa-large

Baseline w/ Image Region Baseline w/ Image Region
Only Image Caption

(Generation)
Only Image Caption

(GT)
Contradiction 0.23 0.47 0.17 0.37 0.22 0.29

Neutral 0.26 0.54 0.22 0.45 0.34 0.48
Entailment 0.27 0.55 0.23 0.46 0.43 0.60

Table 7: Clustering centroids of SNLI-VE (GT: Ground Truth).

Task 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

VQA
Yes/No 68.61 68.67 68.72 68.75 68.76 68.80 68.77 68.74 68.73 68.74 68.73 68.71 68.72 68.70 68.67 68.66

VE 47.37 47.42 47.39 47.40 47.45 47.54 47.49 47.45 47.36 47.40 47.11 47.08 47.13 47.14 47.14 47.12

VCR
Q2A 53.24 52.68 53.06 53.27 53.42 53.46 53.61 53.69 53.80 53.81 53.82 53.90 53.93 53.91 53.83 53.81

Table 8: How # image regions affect the performance of different tasks

Methods VQA Answer Types SNLI-VE Answer Types VCR Tasks

Yes/No Number Other All C N E All Q2A QA2R

Baseline w/ CLIPViT-B/16 68.61 25.36 16.65 37.33 67.59 18.66 55.92 47.37 53.24 46.51

Only textual fine-grained
information (Generation) 67.13 28.77 13.44 35.64 64.83 17.32 56.19 46.09 35.13 41.93

Only textual fine-grained
information (GT) 67.58 28.22 13.36 35.69 68.72 24.03 63.00 51.89 32.69 40.21

Table 9: Zero-shot performance when only using textual fine-grained information. (C: Contradiction, N: Neutral, E:
Entailment, GT: Ground Truth)
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