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Abstract

Temporal knowledge graph (TKG) completion
models typically rely on having access to the
entire graph during training. However, in real-
world scenarios, TKG data is often received
incrementally as events unfold, leading to a
dynamic non-stationary data distribution over
time. While one could incorporate fine-tuning
to existing methods to allow them to adapt to
evolving TKG data, this can lead to forget-
ting previously learned patterns. Alternatively,
retraining the model with the entire updated
TKG can mitigate forgetting but is computa-
tionally burdensome. To address these chal-
lenges, we propose a general continual training
framework that is applicable to any TKG com-
pletion method, and leverages two key ideas:
(i) a temporal regularization that encourages
repurposing of less important model param-
eters for learning new knowledge, and (ii) a
clustering-based experience replay that rein-
forces the past knowledge by selectively pre-
serving only a small portion of the past data.
Our experimental results on widely used event-
centric TKG datasets demonstrate the effective-
ness of our proposed continual training frame-
work in adapting to new events while reducing
catastrophic forgetting. Further, we perform
ablation studies to show the effectiveness of
each component of our proposed framework.
Finally, we investigate the relation between the
memory dedicated to experience replay and the
benefit gained from our clustering-based sam-
pling strategy.

1 Introduction

Knowledge graphs (KGs) provide a powerful tool
for studying the underlying structure of multi-
relational data in the real world (Liang et al., 2022).
They present factual information in the form of
triples, each consisting of a subject entity, a relation,
and an object entity. Despite the development of
advanced extraction techniques, knowledge graphs
often suffer from incompleteness, which can lead

to errors in downstream applications. As a result,
the task of predicting missing facts in knowledge
graphs, also known as knowledge graph comple-
tion, has become crucial. (Wang et al., 2022; Huang
et al., 2022; Shen et al., 2022)

KGs are commonly extracted from real-world
data streams, such as newspaper texts that change
and update over time, making them inherently dy-
namic. The stream of data that emerges every day
may contain new entities, relations, or facts. As
a result, facts in a knowledge graph are usually
accompanied by time information. A fact in a se-
mantic knowledge graph, such as Yago (Kasneci
et al., 2009), may be associated with a time in-
terval, indicating when it appeared and remained
in the KG. For example, consider (Obama, Pres-
ident, United States, 2009-2017) in a semantic
KG. A link between Obama and United states
appears in the graph after 2009, and it exists un-
til 2017. On the other hand, a fact in a Tempo-
ral event-centric knowledge graph (TKGs), such
as ICEWS (Boschee et al., 2015), is associated
with a single timestamp, indicating the exact time
of the interaction between the subject and object
entities. For example, in an event-centric TKG,
(Obama, meet, Merkel) creates a link between
Obama and Merkel several times within 2009 to
2017 since the temporal links only show the time
when an event has occurred. Therefore, event-
centric TKGs exhibit a high degree of dynamism
and non-stationarity in contrast to semantic KGs.

To effectively capture the temporal dependen-
cies within entities and relations in TKGs, as well
as new patterns that may emerge with new data
streams, it is necessary to develop models specifi-
cally designed for TKG completion. A significant
amount of research has been dedicated to develop-
ing evolving models (Messner et al., 2022; Mir-
taheri et al., 2021; Jin et al., 2020; Garg et al.,
2020) for TKG completion. These models typi-
cally assume evolving vector representations for
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Figure 1: Catastrophic forgetting effect of fine-tuning.
A TKG completion model is fine-tuned with the graph
data at time ti and achieves the highest MRR score for
Gi. The MRR scores decrease for G1, ..., Gi−1.

entities or relations. These representations change
depending on the timestep, and they can capture
temporal dependencies between entities. However,
these models often assume that the entire dataset
is available during training. They do not provide a
systematic method for updating model parameters
when new data is added. One potential solution is
to retrain the model with new data. However, this
approach can be resource-intensive and impractical
for large-scale knowledge graphs. An alternative
approach is to fine-tune the model with new data,
which is more time and memory efficient. However,
this approach has been shown to be susceptible to
overfitting to the new data, resulting in the model
forgetting previously learned knowledge, a phe-
nomenon known as catastrophic forgetting (Fig. 1).
A limited number of studies (Song and Park, 2018;
Daruna et al., 2021; Wu et al., 2021) have addressed
this problem for semantic knowledge graphs using
continual learning approaches, with TIE (Wu et al.,
2021) being the most closely related work to cur-
rent research. Nevertheless, the development of
efficient and effective methods for updating mod-
els with new data remains a significant challenge
in event-centric Temporal Knowledge Graphs.

We propose a framework for incrementally train-
ing a TKG completion model that consolidates
the previously learned knowledge while capturing
new patterns in the data. Our incremental learn-
ing framework employs regularization and experi-
ence replay to alleviate catastrophic forgetting. We
propose a temporal regularization method based
on elastic weight consolidation (Kirkpatrick et al.,
2017). By estimating an importance weight for
every model parameter at each timestep, the regu-

larization term in the objective function ’freezes’
the more important parameters from past timesteps,
encouraging the use of less important parameters
for learning the current task. Additionally, an expo-
nentially decaying hyperparameter in the objective
function further emphasizes the importance of the
most recent tasks over older ones. Our selective
experience replay method uses clustering over the
representation of the data points to first capture the
underlying structure of the data. The points closest
to the clusters’ centroid are selected for experience
replay. We show that the temporal regularization
combined with clustering-based experience replay
outperforms all the baselines in alleviating catas-
trophic forgetting. Our main contributions include:

1. A novel framework for incremental training
and evaluation of event-centric TKGs, which
addresses the challenges of efficiently updat-
ing models with new data.

2. A clustering-based experience replay method,
which we show to be more effective than uni-
form sample selection. We also demonstrate
that careful data selection for experience re-
play is crucial when memory is limited.

3. An augmentation of the training loss with a
consolidation loss, specifically designed for
TKG completion, which helps mitigate forget-
ting effects. We show that assigning a decayed
importance to the older tasks reduces forget-
ting effects.

4. A thorough evaluation of the proposed meth-
ods through extensive quantitative experi-
ments to demonstrate the effectiveness of our
full training strategies compared to baselines.

2 Related Work

Our work is related to TKG completion, contin-
ual learning methods, and recent developments of
continual learning for knowledge graphs.

2.1 Temporal Knowledge Graph Reasoning
TKG completion methods can be broadly catego-
rized into two main categories based on their ap-
proach for encoding time information: translation-
based methods and evolving methods.

Translation-based methods, such as those pro-
posed by (Leblay and Chekol, 2018; García-Durán
et al., 2018; Dasgupta et al., 2018; Wang and Li,
2019; Jain et al., 2020), and (Sadeghian et al.,
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2021), utilize a lower-dimensional space, such as a
vector (Leblay and Chekol, 2018; Jain et al., 2020),
or a hyperplane (Dasgupta et al., 2018; Wang and
Li, 2019), for event timestamps and define a func-
tion to map an initial embedding to a time-aware
embedding.

On the other hand, evolving models assume a dy-
namic representation for entities or relations that is
updated over time. These dynamics can be captured
by shallow encoders (Xu et al., 2019; Mirtaheri
et al., 2019; Han et al., 2020a) or sequential neural
networks (Trivedi et al., 2017; Jin et al., 2020; Wu
et al., 2020; Zhu et al., 2020; Han et al., 2020b,c; Li
et al., 2021). For example,(Xu et al., 2019) model
entities and relations as time series, decomposing
them into three components using adaptive time se-
ries decomposition. DyERNIE (Han et al., 2020a)
propose a non-Euclidean embedding approach in
the hyperbolic space. (Trivedi et al., 2017) repre-
sent events as point processes, while (Jin et al.,
2020) utilizes a recurrent architecture to aggregate
the entity neighborhood from past timestamps.

2.2 Continual Learning

Continual learning (CL) or lifelong learning is a
learning setting where a set of tasks are learned
in a sequence. The major challenge in CL is over-
coming catastrophic forgetting, where the model’s
performance on past learned tasks is degraded as
it is updated to learn new tasks in the sequence.
Experience replay (Li and Hoiem, 2018) is a major
approach to mitigate forgetting, where representa-
tive samples of past tasks are replayed when up-
dating a model to retain past learned knowledge.
To maintain a memory buffer storage with a fixed
size, representative samples must be selected and
discarded. (Schaul et al., 2016) propose selecting
samples that led to the maximum effect on the loss
function when learning past tasks.

To relax the need for a memory buffer, genera-
tive models can be used to learn generating pseudo-
samples. (Shin et al., 2017) use adversarial learning
for this purpose. An alternative approach is to use
data generation using autoencoders(Rostami et al.,
2020; Rostami and Galstyan, 2023a). Weight con-
solidation is another important approach to mitigate
catastrophic forgetting (Zenke et al., 2017; Kirk-
patrick et al., 2017). The idea is to identify impor-
tant weights that play an important role in encoding
the learned knowledge about past tasks and con-
solidate them when the model is updated to learn

new tasks. As a result, new tasks are learned using
primarily the free learnable weights. In our frame-
work, we combine both approaches to achieve opti-
mal performance.

2.3 Continual Learning for Graphs

CL in the context of graph structures remains an
under-explored area, with a limited number of re-
cent studies addressing the challenge of dynamic
heterogeneous networks (Tang and Matteson, 2021;
Wang et al., 2020; Zhou and Cao, 2021) and se-
mantic knowledge graphs (Song and Park, 2018;
Daruna et al., 2021; Wu et al., 2021). In partic-
ular, (Song and Park, 2018; Daruna et al., 2021)
propose methods that integrate class incremental
learning models with static translation-based ap-
proaches, such as TransE (Bordes et al., 2013), for
addressing the problem of continual KG embed-
dings. Additionally, TIE (Wu et al., 2021) develops
a framework that predominantly focuses on seman-
tic KGs, and generates yearly graph snapshots by
converting a fact with a time interval into multiple
timestamped facts. This process can cause a loss
of more detailed temporal information, such as the
month and date, and results in a substantial overlap
of over 95% between consecutive snapshots. TIE’s
frequency-based experience replay mechanism op-
erates by sampling a fixed set of data points from a
fixed-length window of past graph snapshots; for
instance, at a given time t, it has access to the snap-
shots from t−1 to t−5. This contrasts with the stan-
dard continual learning practice, which involves
sampling data points from the current dataset and
storing them in a continuously updated, fixed-size
memory buffer. When compared to Elastic Weight
Consolidation (EWC), the L2 regularizer used by
TIE proves to be more rigid when learning new
tasks over time. Furthermore, their method’s evalu-
ation is confined to shallow KG completion models
like Diachronic Embeddings (Goel et al., 2020) and
HyTE (Dasgupta et al., 2018).

3 Problem Definition

This section presents the formal definition of con-
tinual temporal knowledge graph completion.

3.1 Temporal Knowledge Graph Reasoning

A TKG is a collection of events represented as a set
of quadruples G = {(s, r, o, τ)|s, o ∈ E , r ∈ R},
where E andR are the set of entities and relations,
and τ is the timestamp of the event occurrence.
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These events represent one-time interactions be-
tween entities at a specific time. The task of tem-
poral knowledge graph completion is to predict
whether there will be an interaction between two
entities at a given time. This can be done by either
predicting the object entity, given the subject and
relation at a certain time, or by predicting the rela-
tion between entities, given the subject and object
at a certain time. In this case, we will focus on
the first method which can be formally defined as
a ranking problem. The model will assign higher
likelihood to valid entities and rank them higher
than the rest of the candidate entities.

3.2 Continual Learning Framework For
Tempporal Knolwedge Graphs

A Temporal knowledge graph G can be represented
as a stream of graph snapshots G1, G2, . . . , GT

arriving over time, where Gt = {(s, r, o, τ)|s, o ∈
E , r ∈ R, τ ∈ [τt, τt+1)} is a set of events occurred
within time interval [τt, τt+1).

The continual training of a TKG completion
method involves updating the parameters of the
modelM as new graph snapshots, consisting of
a set of events, become available over time. This
process aims to consolidate previously acquired
information while incorporating new patterns. For-
mally, we define a set of tasks ⟨T1, . . . , TT ⟩, where
each task Tt =

(
Dtrain

t , Dtest
t , Dval

t

)
is comprised

of disjoint subsets of the Gt events, created through
random splitting. A continually trained model
M can then be shown as a stream of models
M = ⟨M1, . . . ,MT ⟩, with corresponding param-
eter sets θ = ⟨θ1, θ2, ..., θT ⟩, trained incrementally
as a stream of tasks arrive T = ⟨T1, T2, ..., TT ⟩.

3.3 Base Model
In this paper, we utilize RE-NET (Jin et al., 2020),
a state-of-the-art TKG completion method, as the
base model. RE-NET is a recurrent architecture
for predicting future interactions, which models
the probability of an event occurrence based on
temporal sequences of past knowledge graphs. The
model incorporates a recurrent event encoder to
process past events and a neighborhood aggrega-
tor to model connections at the same time stamp.
Although RE-NET was initially developed for pre-
dicting future events (extrapolation), it can also be
used to predict missing links in the current state of
the graph (interpolation), which is the focus of this
study. The model parameterizes the probability of
an event p(oτ |s, r) as follows:

p(oτ |s, r) ∝ exp
(
[es : er : hτ−1(s, r)]

⊤ ·woτ

)
, (1)

where es, er ∈ Rd are learnable embedding
vectors for the subject entity s and relation r.
hτ−1(s, r) ∈ Rd represents the local dynamics
within a time window (τ − ℓ, τ − 1) for (s, r). By
combining both the static and dynamic representa-
tions, RE-NET effectively captures the semantics
of (s, r) up to time stamp (τ − 1). The model then
calculates the probability of different object entities
oτ by passing the encoding through a multi-layer
perceptron (MLP) decoder, which is defined as a
linear softmax classifier parameterized by woτ .

4 Methodology

Our proposed framework is a training approach that
can be applied to any TKG completion model. It en-
ables the incremental updating of model parameters
with new data while addressing the issues of catas-
trophic forgetting associated with fine-tuning. To
achieve this, we utilize experience replay and reg-
ularization techniques - methodologies commonly
employed in image processing and reinforcement
learning to mitigate forgetting. Additionally, we
introduce a novel experience replay approach that
employs clustering to identify and select data points
that best capture the underlying structure of the
data. Furthermore, we adopt the regularization
method of EWC, as proposed in [Kirkpatrick et
al., 2017], which incorporates a decay parameter
that assigns higher priority to more recent tasks.
Our results demonstrate that the incorporation of a
decay parameter into the EWC loss and prioritizing
more recent tasks leads to improved performance.

4.1 Experience Replay
In the field of neuroscience, the hippocampal re-
play, or the re-activation of specific trajectories, is
a crucial mechanism for various neurological func-
tions, including memory consolidation. Motivated
by this concept, the use of experience replay in Con-
tinual Learning (CL) for deep neural networks aims
to consolidate previously learned knowledge when
a new task is encountered by replaying previous ex-
periences, or training the model on a limited subset
of previous data points. However, a challenge with
experience replay, also known as memory-based
methods, is the requirement for a large memory
size to fully consolidate previous tasks (Rostami
and Galstyan, 2023b). Thus, careful selection of
data points that effectively represent the distribu-
tion of previous data becomes necessary.
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In this work, we propose the use of experience
replay for continual TKG completion. Specifi-
cally, we maintain a memory buffer B which, at
time t, contains a subset of events sampled from
Dtrain

1 , Dtrain
2 , . . . , Dtrain

t−1 . When Task Tt is pre-
sented to the model, it is trained on the data points
in Dtrain

t ∪ B. After training, a random subset
of events in the memory buffer, |B|

t , are discarded
and replaced with a new subset of events sampled
from Dtrain

t . In this way, at time t, where t tasks
have been observed, equal portions of memory with
size |B|

t are dedicated to each task. A naive ap-
proach for selecting a subset of events from a task’s
training set at time t would be to uniformly sam-
ple |B|

t events from Dtrain
t . However, we propose

a clustering-based sampling method that offers a
more careful selection algorithm, which is detailed
in the following section.

4.1.1 Clustering-based Sampling

When dealing with complex data, it is likely that
various subspaces exist within the data that must be
represented in the memory buffer. To address this
issue, clustering methods are employed to diversify
the memory buffer by grouping data points into dis-
tinct clusters. The centroids of these clusters can
be utilized as instances themselves or as representa-
tives of parts of the memory buffer.(Shi et al., 2018;
Hayes et al., 2019; Korycki and Krawczyk, 2021).
In this study, clustering is applied to the representa-
tion of events in the training set in order to uncover
the underlying structure of the data and select data
points that effectively cover the data distribution.
The Hierarchical Density-Based Spatial Cluster-
ing of Applications with Noise (HDBSCAN) algo-
rithm (McInnes et al., 2017) is utilized for this pur-
pose. HDBSCAN is a hierarchical, non-parametric,
density-based clustering method that groups points
that are closely packed together while identifying
points in low-density regions as outliers.

The use of HDBSCAN over other clustering
methods is advantageous due to its minimal require-
ments for hyperparameters. Many clustering algo-
rithms necessitate and are sensitive to the number
of clusters as a hyperparameter. However, HDB-
SCAN can determine the appropriate number of
clusters by identifying and merging dense space
regions. Additionally, many clustering algorithms
are limited to finding only spherical clusters. HDB-
SCAN, on the other hand, is capable of uncovering
more complex underlying structures in the data. As

Algorithm 1: Cluster Experience Replay
input: Ct = C1t , C2t , . . . , Cmt (clusters

generated with hdbscan from Dtrain
t

sorted in decreasing order of their
size; Dtrain

t (training set at time t); s
(sample size);
FindExemplars(Ci, k) (Takes a
cluster and returns k points closests
to the cluster exemplars.)

1 def SelectPoints(Ct, Dtrain
t , s):

2 Q← ∅
3 for i← 1 to m do
4 r ← ⌈ |Ci|∑

j |Cj | × s⌉
5 X ← FindExemplars(Ci, r)
6 Q← Q ∪ (X , r)
7 S ← ∅
8 while Q ̸= ∅ & |S| < s do
9 X , r ← Q.pop()

10 S ← S ∪ [X [0]]
11 Q← Q ∪ (X [1 :], r − 1)

12 return S

a result of its ability to identify clusters with off-
shaped structures, HDBSCAN generates a set of
exemplar points for each cluster rather than a single
point as the cluster centroid.

We represent each event (s, r, o, τ) ∈ Dtrain
t as

a vector [es : eo] ∈ R2d, where es and eo represent
the d-dimensional embeddings of s and o at time
t, respectively. The notation [:] denotes concatena-
tion, creating a |Dtrain

t |×2d matrix that represents
the training data at time t. In our initial experi-
ments, we found that data representations such as
[es : er], where er is the relation embeddings, did
not significantly affect the results. Moreover, rep-
resenting the data as [es : er : eo] led to a bias
towards relation representation, causing data points
with identical relation types to cluster together.

We obtained clusters C1, C2, . . . , Cm by running
HDBSCAN. Our algorithm then selects |B|

t events
from these clusters by prioritizing the data points
closest to the exemplars and giving precedence
to larger clusters. If |B|

t < m, data points are
chosen only from the first |B|

t clusters. Conversely,
if |B|

t > m, the number of points selected from
each cluster will depend on the cluster size, with
a minimum of one data point chosen from each
cluster. The specifics of this procedure are detailed
further in Algorithm 1.
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4.2 Regularization
Regularization-based approaches for CL incorpo-
rate a regularization term in the objective function
to discourage changes in the weights that are cru-
cial for previous tasks, while encouraging the uti-
lization of other weights. One such approach, Elas-
tic Weight Consolidation (EWC) (Kirkpatrick et al.,
2017), estimates the importance of weights using
the Fisher Information Matrix. Given a model with
parameter set θ previously trained on task A, and
a new task B, EWC optimizes the following loss
function:

L(θ) = LB(θ) +
∑

i

λ

2
Fi(θi − θ∗A,i)

2 (2)

Where LB is the loss over task B only and λ de-
termines the importance of the previous task com-
pared to task B. We extend this loss function for
continual TKG completion. Given a stream of tasks
⟨T1, T2 . . . , Tt⟩ and incrementally obtained param-
eter sets ⟨θ1, θ2 . . . , θt⟩, we define the temporal
EWC loss functions as follows:

L(θt) = LTt(θt) +
t−1∑

τ=1

∑

i

λ

2
Fτ (θi − θ∗τ,i)

2 (3)

Where LTt is the model loss calculated only us-
ingMt and Dtrain

t , Fτ is the Fisher Information
Matrix estimated for Mτ and Tτ and θτ,i is i-th
parameter of Mτ . The λ parameter in Equation
3 assigns equal importance to all the tasks from
previous time steps, however, in practice, and de-
pending on the application, different tasks might
have different effect on the current task making
plausibility of adaptive λτ :

L(θt) = LTt(θt)+
t−1∑

τ=1

∑

i

λτ

2
Fτ (θi−θ∗τ,i)

2, (4)

where λτ = λαt−τ , λ is the overall EWC loss
importance, and α < 1 is the decay parameter.

4.3 Training and Loss Function
The final loss function of our framework, when
trained with experience replay and EWC can be
summarized as follows:

L(θt) = Lexpr(θt) + λLewc(θt),

Lexpr(θt) = LTt∪B(θt),

Lewc =
t−1∑

τ=1

∑

i

αt−τ

2
Fτ (θi − θ∗τ,i)

2

(5)

Dataset #tasks task period split ratio
avg #quads

train/test

ICEWS-M 13 1 month 50/25/25 27k/13k
ICEWS-2M 13 2 month 50/25/25 50k/25k

GDELT 21 3 days 60/20/20 38k/13k

Table 1: Dataset statistics

The replay loss Lexpr is the model loss trained
over both the current task’s training set Dtrain

t and
the data points in the memory buffer B. For training
in batches, the number of data points selected from
Dtrain

t and B is in proportion to their size.

5 Experiments

In this section, we explain the evaluation protocol
to quantitatively measuring the model catastrophic
forgetting. From know TKG datasets, we create
two benchmarks for TKG continual learning. We
evaluate our proposed training method using the
benchmark, compare them with various baselines
and show the effectiveness of our approach in alle-
viating catastrophic forgetting. Finally, we conduct
ablation studies on different components of our
training method to validate our model.

5.1 Datasets

We use two datasets: the Integrated Crisis Early
Warning System (ICEWS) and the Global Database
of Events, Language, and Tone (GDELT). Both
datasets contain interactions between geopolitical
actors, with daily event dates in the ICEWS dataset
and 15-minute intervals in the GDELT dataset. To
create benchmarks, we use a one-year period of
the ICEWS dataset starting from 01-01-2015 and
consider each month as a separate graph snap-
shot (ICEWS-M). We also use a two-year period
from 01-01-2015 to 02-01-2017, dividing it into 13
graph snapshots with 2-month windows (ICEWS-
2M). We split the events in each snapshot into train,
validation, and test sets with a 50/25/25 percent
ratio. For the GDELT, we use a 20-day period, di-
viding it into 3-day windows and split the data into
train/test/validation sets with a 60/20/20 percent ra-
tio. Table 1 includes statistics for each benchmark.
We assume that all relations and entities are known
at all times during training, and no new entities or
relations are presented to the model.

5.2 Evaluation Setup

We start by trainingM over Dtrain
1 and use Dval

1

for hyper-parameter tuning. The modelMt with
parameter set θt at time step t is first initialized with
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Figure 2: The overall performance comparison. Average Hit@10 and average MRR reported for RE-NET
incrementally trained using three benchmarks: ICEWS-M, ICEWS-2M, and GDELT.

parameters from the previous time step θt−1. Then
Mt parameters are updated by training the model
over Dtrain

t . The training step can be a simple fine-
tuning, or it can be augmented with data points for
experience replay or with the temporal EWC loss.

In order to assess the forgetting effect, at
time t, we report the average Mt performance
over the current and all the previous test sets
Dtest

1 , Dtest
2 , . . . , Dtest

t . Precisely, we report the
performance at time t as Pt =

1
t

∑t
j=1 pt,j , where

pt,j is the performance ofMt measured by either
MRR or Hit@10 over Dtest

j .

5.3 Comparative Study

To evaluate the performance of our incremental
training framework, we conduct a comparative anal-
ysis with several baseline strategies. These include:

• FT: This strategy fine-tunes the model using
the original loss function and the newly added
data points.

• ER: This method applies experience replay
(Rolnick et al., 2019) with randomly chosen
points. It then fine-tunes the model with both
newly added events and events stored in the
memory buffer.

• EWC (Kirkpatrick et al., 2017): In this strat-
egy, the model is trained with a loss function
augmented by an EWC (Elastic Weight Con-
solidation) loss, as defined in Equation 3.

• TIE (Wu et al., 2021): Drawing from TIE’s
methodology, we incorporated L2 regulariza-
tion into our objective function and utilized
their implementation of frequency-based ex-
perience replay.

• Full: Our comprehensive model is trained
using a clustering-based experience replay
mechanism, supplemented with a decayed
EWC loss.

Additionally, we train an upper-bound model, de-
noted as UPP. During the t-th step of training, this
model has access to all training data from all pre-
ceding time steps, 1, . . . , t. Detailed information
about hyperparameter selection and implementa-
tion is provided in Appendix A. The results of this
experiment, summarized in Fig. 2, demonstrate that
our full training framework outperforms all other
incremental training strategies in alleviating catas-
trophic forgetting. The L2 regularization used with
TIE proves to be overly restrictive, leading to an
even greater performance drop than that observed
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ICEWS-M ICEWS-2M GDELT

Current Average Current Average Current Average

Model H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR

FT .503 .325 .390± .04 .239± .03 .517 .330 .411± .04 .256± .03 .421 .260 .351± .02 .214± .02
ER .491 .314 .410± .03 .252± .02 .521 .331 .424± .04 .263± .03 .429 .263 .356± .02 .215± .02
EWC .483 .299 .448± .03 .273± .02 .475 .294 .466± .02 .288± .02 .429 .262 .359± .02 .217± .02
TIE .548 .354 .398± .05 .235± .04 .567 .362 .428± .05 .260± .04 .492 .309 .322± .05 .192± .03

OURS .565 .358 .462± .04 .280± .03 .555 .349 .473± .03 .291± .02 .416 .256 .365± .02 .222± .01

Table 2: Performance comparison (Hit@10 and MRR) of the RE-NET model incrementally trained using three
benchmarks: ICEWS-M, ICEWS-2M, and GDELT. Performance is evaluated at the final training time step over the
last test dataset(Current) and across all prior test datasets (Average).

with the finetuning strategy. Table 2 summarizes
the performance of the model at the final training
time step on the last test dataset (referred to as ’cur-
rent’), as well as its average performance across
all previous test datasets (referred to as ’average’).
Despite a slight dip in performance on the current
task, our method consistently delivers a higher av-
erage performance. This discrepancy underscores
the trade-off inherent in our approach, which is
deliberately calibrated to strike a balance between
maintaining high performance across all tasks and
mitigating the forgetting of prior tasks.

5.4 Ablation Study

In this section, we present an ablation study to eval-
uate the effectiveness of our proposed approach.
Fig. 3 illustrates the results of various variations of
our model, trained on ICEWS-M and evaluated us-
ing average MRR as the performance metric. The
variations include: (1) Random Experience Replay
(RER), where points are randomly sampled uni-
formly; (2) Clustering-based Experience Replay
(CER), where points are sampled using the method
described in Section 4.1.1; (3) Regular EWC out-
lined in Equation 3 (EWC); (4) Decayed Elastic
Weight Consolidation (DEWC), using the decayed
λ value outlined in Equation 4; and (5) DEWC +
CER, which represents our full model.

Our results demonstrate that the individual com-
ponents of our model play a role in enhancing the
overall performance, with clustering-based expe-
rience replay showing superior performance com-
pared to random experience replay. Additionally,
the decayed EWC technique proves to be more ef-
fective than the traditional EWC when tasks are
assigned equal importance coefficients. For a more
in-depth understanding, the detailed results for all
datasets used in the ablation study are provided in
the Appendix B.
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Figure 3: Ablation study on different components of
the model using ICEWS-M. RER and CER stand for
random and clustering-based experience replay. DEWC
is the EWC with decayed λ values.

5.5 EWC Variations

In order to demonstrate the effectiveness of the
EWC loss with weight decay (as outlined in Equa-
tion 4), we are comparing it against three other
variations of the EWC loss. We will train the RE-
NET method incrementally, using each variation
of the EWC loss separately. The results of this
comparison can be seen in Fig. 4, which shows the
average MRR score for a model trained incremen-
tally with each loss variation, using the ICEWS-M
dataset. The other variations of the EWC loss that
we are comparing against include: (i) only using
the parameters of the previous task for regulariza-
tion, and only computing the Fisher Information
Matrix for the previous task; (ii) using all previous
task parameters for regularization, but giving all
tasks the same importance coefficient value λ, and
computing the Fisher Information Matrix for each
task separately (as outlined in Equation 3); and (iii)
a variation similar to the second one, but with the
decayed λi values of Equation 4 being assigned to
each task randomly. The results in Fig. 4 indicate
that using only the parameters of the previous task
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Figure 4: Comparison of EWC loss variations on model
performance. Blue line represents using only the previ-
ous task in EWC loss, showing a significant reduction
compared to considering all tasks.

for regularization performs the worst. Using the
same λ value for all tasks has a smoothing effect on
the Fisher Information Matrix, and this is why the
decayed, permuted λ values perform better. Our
proposed loss ultimately outperforms all variations,
highlighting the importance of more recent tasks
compared to older tasks. As a potential next step,
we could investigate learning λ values based on
task similarities.

5.6 Memory size and Experience Replay

This experiment compares the effectiveness of
clustering-based sampling and uniform sampling
for experience replay when memory is limited. We
use ICEWS-M and run RE-NET with two types of
experience replay: (i) random (uniform) sampling
(RER) and (ii) clustering-based sampling (CER)
using buffer sizes from 2000 to 11000 data points.
We evaluated the model performance forM4,M8,
andM12 which were trained incrementally with
experience replay up to time 4, 8, and 12, respec-
tively. We measure the performance of the model
by taking the average MRR score over the first
4, 8, 12 test sets for M4,M8,M12 respectively.
Finally, we compare the performance of RER and
CER methods by subtracting the RER model per-
formance from the CER model performance, and
the results are shown in Fig. 5. The results, shown
in Fig. 5, indicate that when memory is very small
or very large, there is no significant difference be-
tween RER and CER methods; when memory is
too small, there is not enough information for the
model to have a significant impact on performance,
and when memory is too large, important data
points are likely to be selected at random. How-

2k 3k 5k 7k 9k 11k
Buffer Size

0.0

0.5

1.0

1.5

2.0

2.5

M
R

R
D

iff
er

en
ce

×10−3

Models

M4

M8

M12

Figure 5: Comparison of average MRR for CER and
RER. Results show no significant difference when mem-
ory is very small or large, but CER is more effective
with sufficient memory.

ever, when memory is sufficient, clustering-based
sampling becomes more important.

6 Conclusion

We propose a framework for incrementally train-
ing a TKG completion model that consolidates
the previously learned knowledge while capturing
new patterns in the data. Our incremental learning
framework employs regularization and experience
replay techniques to alleviate the forgetting prob-
lem. Our regularization method is based on tempo-
ral elastic weight consolidation that assigns higher
importance to the parameters of the more recent
tasks. Our selective experience replay method uses
clustering over the representation of the data points
and selects the data points that best represent the
underlying data structure. Our experimental results
demonstrate the effectiveness of our proposed ap-
proach in alleviating the catastrophic forgetting for
the event-centric temporal knowledge graphs. This
work is the first step towards incremental learning
for event-centric knowledge graphs. Potential fu-
ture work might involve exploring, and taking into
consideration the effect of time on task similarities
which might differ for various applications.

7 Limitations

In this section, we examine the limitations of our
approach. Even though our training methodol-
ogy runs faster and uses less memory than retrain-
ing, there remains potential for further scalability
optimization. One potential avenue for improve-
ment could involve optimizing the estimation of
the Fisher Information Matrix. Furthermore, op-
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timizing the parameters related to the incremen-
tal training such as buffer size and regularization
coefficient is dependent on the entire time steps
rather than the current time steps. Devising a
time-efficient way for hyperparameter optimization
could be extremely beneficial for this task. Ad-
ditionally, while our full model has demonstrated
some mitigation of the problem of catastrophic for-
getting, a significant gap remains between the up-
per performance bound and the performance of our
approach. Further research is necessary to bridge
this gap and improve overall performance. Finally,
our current focus on continual learning is limited to
the emergence of new events and does not currently
consider the possibility of new relations or entities.
This limitation is in part due to the base model (RE-
NET) not being inductive and is a problem that is
inherent to the model itself. Future research in the
field of continual learning may aim to address this
limitation by considering new relations and enti-
ties, even in the context of base models that do not
support these features.
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A Implementation Detail &
Hyperparameters

We implemented our models using PyTorch, utiliz-
ing the RE-NET implementation from their GitHub
repository1 as a base. We modified the training
pipeline of RE-NET and added experience replay
and regularization loss. The RE-NET model uti-
lized a mean pooling layer for the neighborhood
encoder, with a dropout of 0.5 and an embedding
dimension of 100 for relations and entities. For the
model variation that employed only EWC loss, we
set the learning rate to 10−3. The regularization
coefficient for EWC is set to 10 and the weight
decay to 0.9 for all the datasets. For variations that
included experience replay buffer or fine-tuning,
we began training with a learning rate of 10−3

and decreased it to 10−4 for subsequent time steps.
The buffer size was set to 3000 for ICEWS-M and
GDELT and 5000 for ICEWS-2M, and the batch
size was 256 for ICEWS-M and GDELT and 512
for ICEWS-2M. We selected the best model using
the validation set at each time step. We ran each
experiment once for each set of hyperparameters as
the RE-NET performance did not vary significantly
between runs. The min cluster size for HDBSCAN
is set to 5 for all three datasets. We run all the
experiments on machines with NVIDIA GeForce
RTX 2080 Ti GPUs.

B Extended Ablation Study

In this section, we present the results of the ablation
study conducted in Section 5.4 to evaluate the ef-
fectiveness of our method. Fig. 6 illustrates various
variations of our model, which were trained incre-
mentally over ICEWS-M, ICEWS-2M and GDELT
using the hyperparameters reported in the previous
section. The model variations include (1) Random
Experience Replay (RER), where points are ran-
domly sampled uniformly; (2) Clustering-based Ex-
perience Replay (CER), where points are sampled
using the method described in Section 4.1.1; (3)
Regular EWC outlined in Equation 3 (EWC); (4)
Decayed Elastic Weight Consolidation (DEWC),
using the decayed λ value outlined in Equation 4;
and (5) DEWC + CER, which represents our full
model. The results indicate that clustering-based
experience replay outperforms random experience
replay, and that the DEWC approach is more effec-
tive for the ICEWS datasets compared to GDELT.

1https://github.com/INK-USC/RE-Net.git

This may be due to the fact that the data distribu-
tion for ICEWS datasets changes more significantly
over the course of a year compared to GDELT,
which only includes 21 days of data. It is also visi-
ble from the plots that the GDELT dataset exhibits
less forgetting compared to both ICEWS datasets.
Finally, the full model (DEWC + CER) always out-
performs the other model variations, demonstrating
the effectiveness of our methodology.
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