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Abstract

The broad adoption of continuous prompts has
brought state-of-the-art results on a diverse ar-
ray of downstream natural language process-
ing (NLP) tasks. Nonetheless, little attention
has been paid to the interpretability and trans-
ferability of continuous prompts. Faced with
the challenges, we investigate the feasibility of
interpreting continuous prompts as the weight-
ing of discrete prompts by jointly optimizing
prompt fidelity and downstream fidelity. Our
experiments show that: (1) one can always find
a combination of discrete prompts as the re-
placement of continuous prompts that performs
well on downstream tasks; (2) our interpretable
framework faithfully reflects the reasoning pro-
cess of source prompts; (3) our interpretations
provide effective readability and plausibility,
which is helpful to understand the decision-
making of continuous prompts and discover po-
tential shortcuts. Moreover, through the bridge
constructed between continuous prompts and
discrete prompts using our interpretations, it is
promising to implement the cross-model trans-
fer of continuous prompts without extra train-
ing signals. We hope this work will lead to
a novel perspective on the interpretations of
continuous prompts.

1 Introduction

Continuous prompts for pre-trained language mod-
els (PLMs) have shown remarkable performance on
almost every NLP field (Li and Liang, 2021; Lester
et al., 2021; Liu et al., 2021b). However, trained
continuous prompts tend to improve performance
at the sacrifice of interpretability and transferabil-
ity relative to discrete prompts (Liu et al., 2021a),
which causes mistrust in people and makes cross-
model transfer challenging.

Recent advancements spiked interest in under-
standing how prompts work and found the counter-
intuitive mechanism behind. (Webson and Pavlick,
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Figure 1: Interpreting continuous prompts for senti-
ment classification. Each continuous prompt (pi) can
be regarded as the combination of discrete prompts (ri),
which reflects the tokens utilized by continuous prompts
in prompting the PLM to output expected labels.

2022) conducted numerous experiments on var-
ious discrete prompts, finding the improvement
in downstream tasks does not originate from the
model understanding task instructions in a man-
ner similar to how humans use them. (Kavumba
et al., 2022) presented the first investigation of the
exploitation of superficial cues by prompt-based
models, finding the presence of superficial cues
which prompt-based models exploit. Continuous
prompts, on the other hand, are more complicated
and incomprehensible. Recent attempts for inter-
preting continuous prompts came from (Khashabi
et al., 2022), which introduced the Prompt Way-
wardness Hypothesis to prove the infeasibility of
interpreting a learned continuous prompt with a
single discrete prompt. To the best of our knowl-
edge, no general post-hoc interpretable framework
is proposed to translate continuous prompts into a
comprehensible form.

Towards filling this research gap, we propose the
Combination Hypothesis, which argues the feasi-
bility of utilizing combinations of discrete prompts
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as faithful interpretations for continuous prompts
(§3.2). In other words, we treat the continuous
prompt as an embedding lookup table with the
one-hot restriction removed. For instance, a well-
trained continuous prompt for sentiment classifi-
cation should contain task-related tokens such as
"drama" or auxiliary tokens such as "seem", "look"
to stimulate the PLM for desired outputs (Fig. 1).
To find the effective interpretation, a joint optimiza-
tion framework is proposed to ensure both prompt
fidelity and downstream fidelity (§3.3).

Comprehensive experiments are conducted to
support our hypothesis and framework. We first
directly optimize parameters of the combination of
discrete prompts to replace continuous prompts.
Results show that the combination of discrete
prompts has competitive performance in most sce-
narios (especially in few-shot learning), which ver-
ifies the feasibility of the Combination Hypothesis
in practice (§5).

As a significant property of interpretations, faith-
fulness is comprehensively verified to check how
accurately it reflects the true reasoning process of
the model (Jacovi and Goldberg, 2020). We first
verify the prompt fidelity and downstream fidelity
of the interpretations using discrete prompts and
continuous prompts as the content to be interpreted
(§6.1), then we verify the tokens selected from in-
terpretations can better restore the performance of
source prompts on downstream tasks (§6.2).

Despite faithfulness, a high-quality interpreta-
tion should also contain plausibility, which refers
to how convincing the interpretation to humans (Ja-
covi and Goldberg, 2020). By conducting a visual
comparison with the nearest tokens to continuous
prompts (§7.1), Our interpretations are shown to
be more convincing and allow us to identify sev-
eral "shortcuts" contained in the model’s decision-
making (§7.2).

Furthermore, inspired by the readability and
transferability of discrete prompts, we investigate
the feasibility of cross-model transfer for continu-
ous prompts using our interpretations. We argue
its breakthrough since no previous work to achieve
cross-model transfer for continuous prompts with-
out any training signals on target PLMs. Experi-
ments show that even continuous prompts trained
on a simple structured PLM with 100-shot settings
can be transferred to large PLMs using our method
and achieve competitive performance (§8).

2 Related Work

Prompt Engineering. Prompt engineering, as a
crucial part of prompt learning, is the process of
creating a prompt function that performs effectively
on the downstream task (Liu et al., 2021a). It can
be generally divided into discrete prompts and con-
tinuous prompts.

Discrete prompts usually search for templates,
i.e., natural language tokens in discrete spaces
as prompt functions. There is a line of work fo-
cused on manually-designed prompts (Petroni et al.,
2019; Brown et al., 2020; Scao and Rush, 2021).
These methods rely excessively on prior knowl-
edge, while even experts have difficulty finding
optimal templates (Jiang et al., 2020). Therefore,
recent explorations devoted much attention to auto-
matically searching for templates in discrete spaces
(Jiang et al., 2020; Shin et al., 2020; Gao et al.,
2021; Haviv et al., 2021).

Continuous prompts, on the other hand, relax the
constraint that templates are natural language to-
kens (Li and Liang, 2021; Liu et al., 2021b; Lester
et al., 2021; Zhong et al., 2021; Qin and Eisner,
2021; Zhang et al., 2022). These works effec-
tively improve performance at the expense of in-
terpretability. Khashabi et al. (2022) demonstrated
the disconnection between continuous prompts and
discrete prompts, In this paper, we investigate the
feasibility of using discrete prompts to interpret
continuous prompts from a novel view.

Cross-model Transfer. Benefiting from the read-
ability of discrete prompts, we can easily transfer
manually-designed prompts to any PLM (Perez
et al., 2021). Nonetheless, since the embedding
dimensions and semantic spaces of different PLMs
are inconsistent, it is tricky for cross-model transfer
of continuous prompts. Su et al. (2022) devoted the
first attempt by prompt projectors, which trained
on another task to project continuous prompts into
the semantic space of target PLMs. As a post-hoc
interpretable framework, this paper investigates the
feasibility of cross-model transfer without the help
of additional task data.

3 Prompt Decoupling

3.1 Setup and Formulation

Given a sequence with n continuous prompts
P = {p1,p2, · · · ,pn} trained on the dataset
D = {x, y}, we analyze the feasibility to interpret
continuous prompts as a combination of discrete

7805



prompts R = {r1, r2, · · · , rn}, where pi ∈ Rd is
a d-dimensional vector, ri ∈ Rv is a v-dimensional
vector which decouples pi into v discrete prompts
(Fig. 1).

In this paper, we are interested in generating an
interpretation R with both faithfulness and plau-
sibility (Jacovi and Goldberg, 2020). In addition,
as a side effect of the interpretation, it is also ex-
pected to utilize the results for cross-model transfer
of continuous prompts.

3.2 The Combination Hypothesis

Continuous prompts are essentially trained on a
large corpus of natural language. These incom-
prehensible prompts occupy the place of discrete
prompts that are composed of natural language to-
kens, but better motivate the PLM to output desired
results. Consequently, they are intuitively more
likely to be associated with natural language to-
kens than to be isolated from them.

Considering the infeasibility of one-to-one map-
ping (Khashabi et al., 2022), we propose the idea
that the continuous prompt may be a combination
of multiple discrete prompts. It is known that the
essence of discrete prompt e(x) is a function of
token x, which is parameterized by a one-hot em-
bedding lookup table (Li et al., 2020a). If the one-
hot restriction is removed, the continuous prompt
can be seen as the output of a fully connected layer
with all discrete prompts as input. We formalize
the idea as the following hypothesis.

Hypothesis 1: (Combination Hypothesis) For any
continuous prompt p ∈ Rd and a discrete
prompt matrix E ∈ Rv×d of a large pre-trained
model, there exists a vector r ∈ Rv such that
dist(r⊤E,p⊤) ≤ ∆, where dist(·) is the Euclidean
distance function, ∆ is the shortest distance to p
among all discrete prompts.

In fact, it can almost be proved that the linear
equation r⊤E = p⊤ has infinitely many solu-
tions. For general PLMs, it is always satisfied that
v ≫ d (e.g., v = 30522, d = 768 in the BERTbase
model (Devlin et al., 2019)). Thus, for most cases,
R(E⊤) = R(E⊤,p) < v, where R denotes the
rank of the matrix.

Nonetheless, although v ≫ d, it is still not guar-
anteed that these discrete prompts can necessar-
ily constitute a set of bases in the vector space,
which implies the non-existence of an exact solu-
tion. Thus, we relax the restriction in our hypothe-
sis, which only proves the existence of a more faith-

Figure 2: The case where discrete prompts fail to form
a set of bases of the space and the continuous prompt p
(red) is not in the linear subspace V they form. We can
still find a linear combination of discrete prompts p⊥
(green) such that its distance to p is not greater than the
distance from the nearest discrete prompt e0 (blue) to p.

ful interpretation than the nearest discrete prompt.
We consider the following two cases.

1. E constitutes a set of bases in the vector
space. In this case, all vectors in the vector space
can be represented by this set of bases. Therefore,
there exists a solution r such that

dist(r⊤E,p⊤) = 0 ≤ ∆. (1)

2. E is not sufficient to constitute a set of bases
in the vector space. Let e0 be the nearest discrete
prompt to p, V be the linear subspace composed of
E. If p ∈ V, then there exists a linear combination
of discrete prompts that satisfies Eq.1. If p ̸∈ V
(Fig. 2), we make a projection of p onto V, denoted
p⊥, then

dist(p⊤
⊥,p

⊤) ≤ dist(e⊤0 ,p
⊤) = ∆. (2)

Since p⊥ is in the linear subspace V, it can
be represented as a linear combination of discrete
prompts. Therefore, in this case, the hypothesis
also holds, which implies the existence of a more
faithful interpretation than the discrete prompt.

Empirically, simply summing rather than con-
catenating prompts does not seem to make sense.
Suppose we have two input vectors and their con-
catenation, denoted as x1,x2 ∈ Rd and xconcat =
[x⊤

1 ⊕ x⊤
2 ]

⊤ ∈ R2d. Then we apply linear embed-
ding projection e to xconcat:

e(xconcat) = Wxconcat

= [W1 ⊕W2] · [x⊤
1 ⊕ x⊤

2 ]
⊤

= W1x1 +W2x2

= e(x1) + e(x2),

(3)
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where W1 ∈ Rd×d,W2 ∈ Rd×d,W ∈ Rd×2d are
parameters of the linear projection. This indicates
that summing is somehow equivalent to concatenat-
ing, which also supports the rationality of decou-
pling continuous prompts into discrete prompts.

3.3 Finding Interpretations
The hypothesis indicates the existence of R, but it
does not consider how to find a solution that better
represents the continuous prompt. In this section,
we first introduce an optimization method to find
the interpretations that both satisfy the hypothesis
and ensure downstream fidelity, then we reduce
the vocabulary size by traversing datasets and thus
speed up the optimization.

Our post-hoc interpretable framework is similar
to probes, which focus on simple linguistic proper-
ties of interest (Conneau et al., 2018). Therefore,
following the view of Hewitt and Liang (2019), a
simple model with only one linear layer is designed
in our paper for interpreting continuous prompts.
Since negative results can be confusing or con-
troversial, the softplus activation function (Dugas
et al., 2000) is applied in the output layer.

To satisfy the Combination Hypothesis, we mini-
mize the distance between continuous prompts and
the combination of discrete prompts:

ℓ1(r;E,p) = dist(r⊤E,p⊤). (4)

It is not sufficient to find the most reasonable
solution with the loss above. As a consequence,
we introduce the following loss function to ensure
downstream fidelity:

ℓ2(r;E,p,D) = Ex∼DEa∼r,e∼E (5)

[aDKL(M(p⊕ x),M(e⊕ x))],

where DKL(·) is the Kullback Leibler distance func-
tion, M(·) is the output of the PLM. This loss func-
tion helps to find a more meaningful combination,
i.e., discrete prompts with larger values should have
outputs on downstream tasks that are as consistent
as possible with the continuous prompt.

We learn the interpretation r by jointly minimiz-
ing the loss ℓ1(·) for the Combination Hypothesis
(Eq.4) and the loss ℓ2(·) for downstream fidelity
(Eq.5):

ℓ
′
(r;E,p,D) = ℓ1(r;E,p) + γℓ2(r;E,p,D),

(6)
r̃ = argmin

r∈Rv
ℓ
′
(r;E,p,D), (7)

where γ is a hyperparameter. In this paper, we find
γ = 0.09 to achieve a reasonable trade-off between
prompt fidelity and downstream fidelity (see §9).

Nonetheless, it is time-consuming since the sec-
ond optimization requires traversing the vocabulary
of the PLM. As a post-hoc interpretation, we argue
that the decoupling result r should be sparse, i.e.,
most of the discrete prompts should correspond to 0.
On the one hand, a dense interpretation is incompre-
hensible; on the other hand, as an effective prompt
that motivates the PLM to output desired outputs,
it should not have much useless token information.

We propose a simple method that traverses the
full downstream dataset and selects the v tokens
with the highest frequency into our new vocabulary
since it is intuitive that critical tokens contained in
continuous prompts tend to appear in the dataset to
be trained already. Moreover, since the parameters
of the PLM are fixed, M(e⊕ x) is invariant in dif-
ferent epochs. Thus, for a given discrete prompt e
and sample x, we only need to compute the output
once, which further speeds up the training.

4 Studying P-tuning: Experimental Setup

4.1 Model and Training Details

P-tuning (Liu et al., 2021b), as a typical represen-
tative of continuous prompts, is used in this paper
to study our proposed framework. For PLMs, we
use the base version of BERT (Devlin et al., 2019),
which is broadly adopted in the NLP field.

We freeze the parameters of BERT and use
the prompt template T = {x, [p1], [p2],y, [p3]},
where [p1], [p2], [p3] are the only trainable pa-
rameters with a two-layer LSTM (Hochreiter and
Schmidhuber, 1997) head, respectively. We use
a batch size of 8, initial learning rate of 0.00001,
AdamW optimizier (Loshchilov and Hutter, 2019),
and 15 training epochs for P-tuning; initial learning
rate of 0.01, L1 loss coefficient of 0.01 and 4000
steps for training our interpretations with early stop-
ping based on the validation set. Unless otherwise
stated, all experiments are conducted in the 100-
shot scenario.

4.2 Studied Datasets

Detailed experiments are conducted on the follow-
ing 4 classification datasets: SST-2 (Socher et al.,
2013), IMDB (Maas et al., 2011), Amazon Review
Polarity (McAuley and Leskovec, 2013) and AG-
News (Zhang et al., 2015). Statistics and target
tokens for each dataset are attached in Appendix A
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SST-2 IMDB Amazon AGNews

50-shot 100-shot Full 50-shot 100-shot Full 50-shot 100-shot Full 50-shot 100-shot Full

P-tuning 71.11 78.36 86.91 68.08 71.50 87.21 72.26 78.08 92.35 84.49 86.46 90.36
Random 49.92 49.92 49.92 51.75 51.75 51.75 50.43 50.43 50.43 39.67 39.67 39.67
Discrete-500 73.86 71.28 83.25 70.15 75.31 83.06 77.97 81.56 85.28 83.74 84.50 87.21
Discrete-768 77.70 78.42 85.06 67.32 72.45 83.98 77.65 80.88 86.38 84.74 84.74 87.54
Discrete-1000 69.69 75.62 82.92 71.72 72.16 83.12 79.17 80.52 86.25 83.64 84.38 86.96
Discrete-1500 75.56 76.55 83.80 70.19 78.16 83.60 76.25 77.72 86.51 83.92 84.99 87.56

Table 1: Comparison of P-tuning and discrete prompts combinations (Discrete-v) on different tasks, where v is the
vocabulary size, k-shot columns are trained on few-shot scenarios with k samples for each label, and Full columns
are trained on the full datasets.

and B. Among all these datasets, test set accuracy
is reported as our evaluation metric.

5 Hypothesis Verification

The Combination Hypothesis argues the existence
of combinations of discrete prompts in fairly small
neighborhoods as an alternative to continuous
prompts. Therefore, it should also be feasible to
train combinations of discrete prompts individu-
ally for downstream tasks. The amount of loss is
quantified as follows:

ℓ(r;E,D) = Ex,y∼D[loss(M(r⊤E⊕x), y)], (8)

where loss(·) is the loss function on downstream
task. We then minimize the loss function to ob-
tain a replacement for continuous prompts. The
optimized performance is provided in Table 1. Our
method performs competitively, especially in few-
shot scenarios. Furthermore, we find that v = 1500
is sufficient for the model to obtain good perfor-
mance, while a larger vocabulary size is more likely
to introduce noisy tokens, which is not conducive
to optimization. Therefore, we set v = 1500 in the
following research.

Note that since the designed structure itself is
difficult to optimize, we set the learning rate to
0.3 when trained on few-shot scenarios and 0.1
when trained on full datasets. Besides, the L1 loss
function with a coefficient of 0.01 is added. This
method does not aim to fully surpass P-tuning, but
to verify the feasibility of the hypothesis that contin-
uous prompt can be replaced by the full connection
of discrete prompts without loss of precision and
at the same time provide methods for faithfulness
verification in §6. As an approximate alternative
to continuous prompts, the loss of accuracy is un-
avoidable. For example, P-tuning is able to accu-
rately find the simple connection between features
and labels on full datasets, while it is more tricky
for our method.

Prompt 1 Prompt 2 Prompt 3 Downstream

Token PCT Token PCT Token PCT ACC(p) ∆−→ ACC(r⊤E)

What 41.30 exactly 0.91 things 30.10 67.98
−4.22−→ 63.76

feeling 22.78 drama 4.53 quality 21.75 61.56
+2.47−→ 64.03

cat 1.32 what 25.68 things 28.63 62.77
−2.75−→ 60.02

Table 2: Performance of prompt fidelity and down-
stream fidelity on discrete prompts (SST-2). For prompt
fidelity, the percentage (%) of corresponding tokens in
the interpretations is reported (left). For downstream
fidelity, comparisons of the accuracy (%) between con-
tinuous prompts p and our interpretations r⊤E on down-
stream tasks are reported (right).

6 Faithfulness Verification

6.1 Do the Interpretations Faithfully Reflect
the Source Prompts?

In this section, We verify the prompt fidelity and
downstream fidelity of the interpretations, i.e., the
proximity of the weighted discrete prompts to the
source prompts and the similarity in performance
on downstream tasks.

To obtain ground-truth labels, we first design
three manual discrete templates on SST-2 and inter-
pret them. The performance of prompt fidelity and
downstream fidelity are shown in Table 2, where
initial capitalization and plural forms are ignored.
For most tokens, they account for more than 20%
among the 1500 tokens. We consider this to be
a fairly high value and the synonyms of the orig-
inal tokens also achieve a high value. However,
several tokens like "exactly", "drama" and "cat"
still achieve a low value. For tokens like "exactly"
and "drama", the interpretations discover their syn-
onyms and give them an extremely high percentage
(>20%), such as "completely" for "exactly" and
"film" for "drama". For tokens like "cat", since
they do not help with downstream tasks, the model
can only attempt to optimize for the first objective
(Eq. 4), leading to a jumbled interpretation. As for
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SST-2 IMDB Amazon AGNews

Nearest-1 0.0026 0.0030 0.0036 0.0047
Nearest-2 0.0027 0.0030 0.0037 0.0048
Ours 0.0025 0.0027 0.0032 0.0043

Table 3: Performance of prompt fidelity on continuous
prompts (average squared distance reported).

SST-2 IMDB Amazon AGNews

Nearest-1 49.86 50.12 50.06 49.55
Nearest-2 50.19 60.87 50.12 55.50
Ours 75.18 66.77 69.72 74.21

Table 4: Performance of downstream fidelity on contin-
uous prompts.

downstream fidelity, the performance of the inter-
pretations is similar to the source prompts in all 3
sets of experiments.

Furthermore, we verify the fidelity of the inter-
pretations to continuous prompts. Performance of
prompt fidelity and downstream fidelity is shown in
Table 3 and Table 4, respectively. For comparison,
the two nearest tokens in the Euclidean space are
selected as interpretations for continuous prompts.
Among all tasks, the distance of our results from
the source prompts is closer compared to the near-
est discrete token, indicating that our method has a
higher fidelity in the restoration of source prompts.
Moreover, simply taking the two nearest discrete
tokens as a replacement for continuous prompts per-
forms quite poorly on downstream tasks, even sim-
ilar to random predictions in most cases, while our
method achieves comparable performance to the
source prompts on downstream tasks. In summary,
our interpretations consistently maintain higher fi-
delity than the only existing method (select the
nearest discrete prompts) and reflect the decision
process of the source prompts well.

6.2 How Reductive are the Interpretations on
Downstream Tasks?

As described in §3.3, the interpretations are in-
tended to be sparse, which means that the top few
tokens of interpretations are supposed to contain
the majority of information from source prompts.
In this section, We select the top five tokens of the
interpretations as vocabulary and train the weight-
ing of these tokens using the optimization method
in §5. Comparison with baselines is shown in Table
5. In all scenarios, the tokens selected by our in-

terpretations are more reductive than the randomly
selected tokens and the tokens selected nearest to
the continuous prompts, implying that these tokens
do contain more information relevant to the down-
stream task from source continuous prompts.

Moreover, for a more visual demonstration of
the ability of the selected five tokens to restore per-
formance, we show the test set accuracy of several
baselines under different training scenarios, includ-
ing Manually, LM-BFF (Gao et al. (2021)) and
P-tuning. For Manually, we report the best perfor-
mance among the five manually designed templates
(see Appendix E). For LM-BFF, we only use it to
automatically generate templates without changing
target tokens and making additional fine-tuning. It
can be found that the performance of the five to-
kens selected by our method can outperform the
templates selected by Manually and LM-BFF in all
cases, and is even comparable to P-tuning in few-
shot scenarios, while random selection and nearest
neighbor selection are not. This further shows that
our selected tokens are reliable and faithful.

7 Plausibility Verification

7.1 What do the Interpretations Look Like?

Still taking the 100-shot scenario as an example,
we show our interpretations on different tasks in
Table 6. For each prompt, five tokens with the
largest values are selected for display. As a com-
parison, the five nearest tokens to each prompt in
the Euclidean space are also selected for display.

As can be seen, our interpretations better reflect
the decision-making of continuous prompts and
output meaningful tokens compared to the Nearest
baseline. For example, the continuous prompts in
SST-2 induce the PLM to determine how great or
terrible something in the input is, while prompts in
IMDB and Amazon induce the PLM to judge how
well someone thinks of something.

To our surprise, there contains a large number
of task-independent tokens which also induce the
PLM to output desired target tokens. For example,
the interpretations on SST-2 contain tokens like
"taste", "material" and "quality". These tokens are
irrelevant to movie review sentiment classification,
but can prompt the PLM to output the target tokens
"terrible" or "great". We consider that continuous
prompts may sneak in shortcuts (Geirhos et al.,
2020) during training, which will be briefly verified
in §7.2.

Nonetheless, there still remain several noisy to-
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SST-2 IMDB Amazon AGNews

Manually 50.80 59.01 58.83 68.76

Scenario 50-shot 100-shot Full 50-shot 100-shot Full 50-shot 100-shot Full 50-shot 100-shot Full

LM-BFF 64.85 64.85 - 57.91 57.91 - 59.05 59.05 - 55.37 55.37 -
P-tuning 71.11 78.36 86.91 68.08 71.50 87.21 72.26 78.08 92.35 84.49 86.46 90.36

Random 52.61 57.11 64.36 62.50 60.72 66.20 64.37 63.28 71.94 70.16 72.42 69.70
Nearest 59.75 53.98 67.49 64.88 65.34 67.76 66.90 71.84 67.28 69.50 58.22 70.05
Ours 75.01 74.79 74.90 72.43 70.17 73.45 78.96 79.44 80.76 78.49 79.01 79.80

Table 5: Performance of downstream tasks by training combinations of five selected tokens, including random
selection, nearest to continuous prompts, and our method.

kens that are hard to understand for humans, espe-
cially in AGNews. These tokens seem irrelevant
to the downstream task and it is difficult to spot
potential shortcuts. We believe there are two rea-
sons for the phenomenon. On the one hand, the
tokens utilized by prompts are overcrowded in the
semantic space, leading to the replacement of the
interpreted tokens by irrelevant ones. On the other
hand, the high complexity of the downstream task
leads to a more difficult optimization of the inter-
pretations. Future work will be conducted along
these two directions.

7.2 Do Continuous Prompts Contain
Shortcuts?

As shown in Table 6, our interpretations reveal the
possibility of continuous prompts using shortcuts,
which perform well on benchmarks but may fail
to transfer on the anomaly test set (Geirhos et al.,
2020). Taking the interpretation of SST-2 as an
example, It contains unexpected tokens like "some-
thing", "taste", etc. to induce the PLM for desired
target labels "terrible" or "great".

To test whether the model makes use of these
shortcuts, we select several task-irrelevant texts
containing shortcut tokens as suffixes to be added
to the test set text and reverse the sentiment polar-
ity of the added text to the test set labels on SST-2
(see Table 7.2). For example, "The food tastes
delicious." is added if the ground-truth label is 0
(terrible), while "The food tastes unpalatable." is
added if the ground-truth label is 1 (great). The
significantly degraded performance suggests that
the model utilizes a large number of shortcuts. To
our surprise, these shortcuts do not disappear as
the training data increases but are more fully ex-
ploited by the model, resulting in an accuracy of
almost 0 after training on the full dataset. Obvi-
ously, continuous prompts of SST-2 are just baiting
the PLM to output the target token terrible/great,

not caring whether it is really a review of the movie
or a review of food, cats, or something else. We
present this phenomenon in the hope that it will
attract more attention and research in the future.

8 Cross-Model Transfer

Due to the inconsistent embedding dimensions and
semantic spaces of different PLMs, cross-model
transfer of continuous prompts is tricky. With
our proposed interpretable framework that estab-
lishes connections between continuous and discrete
prompts, it becomes feasible to transfer continuous
prompts from source PLMs to target PLMs without
extra training signals on target PLMs. Considering
a scenario to transfer continuous prompts of the
source PLM Ma to the target PLM Mb, we can
first get the decoupling results r using the method
presented in §3.3. Then the continuous prompts
transferred to Mb are r⊤Eb, where Eb is the dis-
crete prompt matrix of Mb.

Following this idea, we investigate the feasibil-
ity of cross-model transfer from BERTbase (De-
vlin et al., 2019) to BERTlarge, RoBERTabase and
RoBERTalarge (Liu et al., 2019) respectively in Ta-
ble 8. Considering that only discrete templates are
capable of cross-model transfer without extra train-
ing signals on target PLMs in existing studies, we
choose (1) select the nearest tokens to continuous
prompts; (2) manually designed templates that per-
form best on BERTbase; and (3) automatically gen-
erated templates using LM-BFF (Gao et al. (2021))
as the baselines. For LM-BFF, we automatically
generate templates using T5base (Raffel et al., 2020)
in the 100-shot scenario for cross-model transfer.
Detailed results on the baseline (2) and (3) can be
found in Appendix E.

As can be seen, our method outperforms base-
lines in most scenarios, especially on tasks like
AGNews where it is tricky to construct discrete
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Prompt 1 Prompt 2 Prompt 3

Nearest Ours Nearest Ours Nearest Ours

SST-2

the something 0.867 of dark 0.245 the involving 0.649
his those 0.010 the taste 0.168 is seem 0.130
of horror 0.004 his material 0.047 of things 0.046
. what 0.004 is quality 0.330 was touching 0.033

him bad 0.004 him drama 0.275 several working 0.018

IMDB

was he 0.334 was highly 1.295 was anything 0.345
. during 0.309 . how 0.220 were ##ness 0.229

The someone 0.087 were particularly 0.144 the atmosphere 0.200
were having 0.072 the himself 0.051 of ##ful 0.163
the obviously 0.062 The acted 0.048 The theater 0.105

Amazon

. he 0.856 seemed completely 1.316 seemed became 0.451
, guy 0.098 performance heat 0.100 was down 0.354

the having 0.086 seems How 0.097 him ##le 0.238
their kid 0.080 him nearly 0.075 became seemed 0.089
of terrible 0.066 became totally 0.059 would scene 0.080

AGNews

National Free 1.335 National future 0.970 National should 1.109
2005 than 0.941 2005 senior 0.004 2004 control 0.046
2004 toward 0.223 2004 Free 0.004 government Department 0.008
2006 Chief 0.031 Central ##ive 0.003 2006 might 0.006
senior likely 0.011 national Top 0.002 2005 Research 0.004

Table 6: Intuitive comparison of interpretations on various continuous prompts, where Nearest selects the five
nearest tokens to continuous prompts in the Euclidean space and ours selects the five largest values and their
corresponding tokens using our proposed method.

50-shot 100-shot Full

(Raw Test Set) 71.11 78.36 86.91

The food tastes delicious/unpalatable. 57.50 52.28 2.53
Those cats seem to be great/terrible. 47.28 45.58 9.50
Something dark is of good/bad quality. 43.71 40.03 3.84

Table 7: Performance of continuous prompts on the SST-
2 test set with shortcut tokens. Three task-irrelevant
texts are selected to be added to the test set texts with
sentiment polarity opposite to the ground-truth labels.

templates using prior knowledge. This enables
zero-shot transfer of continuous prompts across ar-
bitrary models without the restrictions of vector
dimensionality and semantic space. For the poor
performance on SST-2, we consider that the con-
tinuous prompts learned using BERTbase inherently
contain a large number of shortcuts, which may
no longer be applicable after being captured by
the interpretations and transferred to larger PLMs.
Therefore, the performance of cross-model transfer
is affected by the robustness of the source prompts.
If continuous prompts are trained on larger PLMs
and datasets, better performance will be obtained
using our interpretations and is expected to be ap-
plied to areas such as model compression.

9 Further Analysis

Effect of Gamma. We analyze the effect of hy-
perparameter γ, i.e., the trade-off between prompt
fidelity and downstream fidelity (Eq.6). Intuitively,
as γ increases, the prompt fidelity decreases while
the downstream fidelity goes up. When γ is 0,
our method degenerates to use only prompt fi-
delity as the optimization objective. Fig. 3 shows
the results of the grid search using the interpre-
tations described in §3. As expected, the accu-
racy on BERTbase improves as gamma increases
since the interpretations are directly optimized on
it. Nonetheless, when γ is larger than 0.09, the
performance of the interpretations for cross-model
transfer decreases. As a consequence, we choose
γ = 0.09 in this paper.

10 Conclusion

In this paper, we present a novel view that inter-
prets continuous prompts as a combination of dis-
crete prompts. Contrary to the previous perspective
which attempts to discover a one-to-one mapping
between continuous prompts and discrete prompts,
we demonstrate the continuous prompt to be an em-
bedding lookup table with the one-hot restriction
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SST-2 IMDB Amazon AGNews

P-tuning on Ma 78.36 71.50 78.08 86.46

Transferred Model Mb Mc Md Mb Mc Md Mb Mc Md Mb Mc Md

P-tuning 74.52 87.70 73.09 77.02 80.70 88.84 85.25 92.21 84.07 86.66 85.63 82.82
Random 50.58 50.01 50.03 61.67 73.37 76.54 61.20 79.88 77.16 42.95 61.64 53.96

Nearest 50.19 50.52 49.97 57.02 59.29 62.38 51.41 87.03 75.80 56.37 51.38 44.34
Manually 54.20 72.54 83.91 53.68 56.58 70.12 51.78 53.30 78.23 71.29 46.22 48.64
LM-BFF 75.12 81.38 86.05 61.30 73.13 75.94 60.85 83.30 85.48 58.03 57.21 59.50
Ours 69.58 69.74 74.63 72.52 75.69 80.18 75.02 82.30 90.33 76.04 69.91 68.75

Table 8: Performance of cross-model transfer, including P-tuning on source PLMs, non-transferred baselines
(P-tuning and random prompts), transferred baselines (Nearest, Manually Designed and LM-BFF) and our proposed
method, where Ma, Mb, Mc, and Md refer to BERTbase, BERTlarge, RoBERTabase, and RoBERTalarge, respectively.
All experimental setups are similar to Table 6, with BERTbase adopted as the source PLM in 100-shot scenario.
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Figure 3: Effect of γ for downstream fidelity (blue) and
cross-model transfer (others) on SST-2.

removed. Detailed experiments are conducted to
verify that our interpretations faithfully reflect the
reasoning of source prompts with both prompt fi-
delity and downstream fidelity. Furthermore, our in-
terpretations exhibit promising readability and plau-
sibility, which not only provides a tool for under-
standing model decisions but also offers a chance
for discovering potential shortcuts contained in the
prompts. Finally, with the bridge between contin-
uous prompts and discrete prompts, we analyze
the feasibility of cross-model transfer for contin-
uous prompts with the proposed method. Results
show that even trained on a small PLM (BERTbase)
and 100-shot scenario, continuous prompts main-
tain good performance after transferring to various
large PLMs. We hope that this work will bring a
novel view for interpreting continuous prompts and
encourage more research to explore the internal
mechanisms of continuous prompts.
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Limitations

Although the proposed method provides interpreta-
tions for continuous prompts with both faithfulness
and plausibility, it can still only be used as an ap-
proximation to find the most likely combination,
since the process of combining discrete prompts to
continuous prompts is irreversible. Moreover, the
output layer of PLMs tends to degenerate and oc-
cupy an anisotropic cone in the vector space (Wang
et al., 2020; Li et al., 2020b), which significantly
increases the difficulty of finding the correct inter-
pretations. We encourage future research to take
the magnitude of token vectors and the tokens in
their neighborhoods into consideration for a more
robust interpretation.

Due to space and time constraints, we only
perform detailed experiments on P-tuning and
the bidirectional language models like BERT and
RoBERTa, which ignored numerous SOTA works
such as Prefix Tuning (Li and Liang, 2021), Prompt
Tuning (Lester et al., 2021) for continuous prompts
and GPT (Radford et al., 2019), T5 (Raffel et al.,
2020) for PLMs. We encourage future research
to conduct experiments on more prompt methods
and PLMs to investigate the generalizability of our
method.
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Ethical Statement

We propose a novel view to interpret continu-
ous prompts, which have been considered "black
boxes", as combinations of human-understandable
discrete tokens. Since the method itself is unbiased
and faithful, and all experiments are conducted
on publicly available datasets, we believe that our
work does not create any potential ethical risk.

Further, we discover shortcuts latent in continu-
ous prompts, implying that systematic biases or dis-
crimination may also exist in continuous prompts.
These biases may originate from training datasets
which are exploited by continuous prompts as a
shortcut to the acquisition of true labels, or even
originate from artificially implanted backdoors. We
hope this work will provide the possibility to detect
these potential biases in continuous prompts.

Our created artifacts are intended to provide re-
searchers or users with a tool for understanding
decision-making and detecting possible unexpected
shortcuts of continuous prompts, while at the same
time offering the feasibility of cross-model transfer
without extra training signals on target PLMs. They
are compatible with the original access conditions.
All use of existing artifacts is consistent with their
intended use in this paper.
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A Dataset

General descriptions and Statistics of the datasets
we mentioned above are shown in Table 9 and 10.
For few-shot scenarios, We randomly sample the
same dataset for all tasks with the random seed set
to 123.
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Dataset Language Domain

SST-2 English Moive Review
IMDB English Moive Review
Amazon English Product Review
AGNews English News Report

Table 9: General descriptions of datasets.

Dataset Train Valid Test

SST-2 6920 872 1821
IMDB 20000 5000 25000
Amazon 2000000 1600000 400000
AGNews 80000 40000 7600

Table 10: Statistics of datasets.

B Target Tokens

Manual verbalizers are adopted in this paper. We
rank the target tokens by their likelihoods and select
the target token with the maximum likelihood as
the classification output. The used target tokens for
each task are shown in Table 11.

C Usage of Existing Packages

The pre-processing steps and prompt-based meth-
ods are all implemented in OpenPrompt (Ding
et al., 2022), an open-source framework for de-
ploying prompt learning. Our interpretable method
is implemented in PyTorch (Paszke et al., 2019),
an open-source framework for deploying deep
learning algorithms. For PLMs, we use "bert-
base-cased" as the base model, "bert-large-cased",
"roberta-base", "roberta-large" for cross-model
transfer, and "T5-base" for generating templates
in LM-BFF from Huggingface transformers (Wolf
et al., 2020). All licenses of these packages allow
us for normal research use.

Identical hyperparameters are adopted regardless
of the dataset. Detailed setups for P-tuning and our
interpretable method are already shown in §4.1.

Dataset Target Tokens

SST-2 terrible, great
IMDB bad, good
Amazon bad, good
AGNews politics, sports, business, technology

Table 11: Target tokens of classification tasks.

For the LM-BFF baseline, we fix the target tokens
and only use T5base to search for the best discrete
template with the training epochs of 10, learning
rate of 0.00001, batch size of 2, and beam width of
100.

D Experimental Details

For all the experiments mentioned in this paper,
we use 2 NVIDIA GeForce GTX 1080 Ti GPUs
with 11G memory each. For training our inter-
pretable framework, an additional linear layer with
n× v parameters is introduced besides the source
PLM, where n denotes the number of continuous
prompts and v denotes the vocabulary size. In this
paper, we set n = 3, v = 1500, which means only
4,500 extra parameters are introduced. Compared
to large-scale PLMs such as BERT or RoBERTa,
these parameters are almost negligible.

E Performance of Discrete Templates

The performance of the manually designed tem-
plates (the first five rows of each table) and the
templates generated by LM-BFF (the last row of
each table) on each task and PLM is shown in Table
12-15. For manually designed templates, the best-
performing templates on BERTbase are selected as
the baseline templates for cross-model transfer.

7816



Templates BERTbase BERTlarge RoBERTabase RoBERTalarge

{x}The sentiment :{y}. 50.25 50.36 56.07 74.74
{x}Terrible or great :{y}. 50.69 49.92 59.69 69.52
{x}Overall, it is a{y}film . 50.14 58.05 73.15 71.94
{x}It feels{y}about the film . 50.63 53.27 73.15 84.68
{x}The feeling of the review is{y}. 50.80 54.20 72.54 83.91

{x}It’s{y}. 64.85 75.12 81.38 86.05

Table 12: Performance of discrete templates on SST-2.

Templates BERTbase BERTlarge RoBERTabase RoBERTalarge

{x}The sentiment:{y}. 50.35 50.92 72.98 79.18
{x}Bad or good:{y}. 59.01 53.68 56.58 70.12
{x}Overall, it is a{y}film. 57.04 63.17 77.48 83.95
{x}It feels{y}about the film. 50.54 51.75 72.22 72.46
{x}The feeling of the review is{y}. 50.48 57.40 73.51 72.58

{x}Very{y}. 57.91 61.30 73.13 75.94

Table 13: Performance of discrete templates on IMDB.

Templates BERTbase BERTlarge RoBERTabase RoBERTalarge

{x}The sentiment:{y}. 50.25 50.73 53.29 85.27
{x}Bad or good:{y}. 58.83 51.78 53.30 78.23
{x}Overall, it is a{y}product. 50.17 57.60 77.67 78.35
{x}It feels{y}about the product. 50.72 56.29 79.05 83.13
{x}The feeling of the review is{y}. 50.09 53.99 73.09 66.54

{x}Very{y}. 59.05 60.85 83.30 85.48

Table 14: Performance of discrete templates on Amazon.

Templates BERTbase BERTlarge RoBERTabase RoBERTalarge

{x}The topic is about{y}. 68.76 71.29 46.22 48.64
{x}The type of the news is{y}. 41.57 51.66 50.70 59.96
{x}News category:{y}. 51.95 75.29 80.78 79.64
{x}Overall, it is{y}news. 45.75 46.14 52.96 37.72
{x}What type is the news?{y}. 64.95 63.21 69.79 77.63

{x}in{y}. 55.37 58.03 57.21 59.50

Table 15: Performance of discrete templates on AGNews.
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