
Findings of the Association for Computational Linguistics: ACL 2023, pages 7841–7857
July 9-14, 2023 ©2023 Association for Computational Linguistics

Benchmarking Diverse-Modal Entity Linking with Generative Models

Sijia Wang1∗, Alexander Hanbo Li2†, Henry Zhu2, Sheng Zhang2, Chung-Wei Hang2,
Pramuditha Perera2, Jie Ma2, William Wang2, Zhiguo Wang2, Vittorio Castelli2

Bing Xiang2, Patrick Ng2

1 Virginia Tech 2 AWS AI Labs
sijiawang@vt.edu

{hanboli,henghui,zshe,cwhang,pramudi,jieman,wyw, zhiguow,vittorca,bxiang,patricng}@amazon.com

Abstract

Entities can be expressed in diverse formats,
such as texts, images, or column names and cell
values in tables. While existing entity linking
(EL) models work well on per modality config-
uration, such as text-only EL, visual grounding,
or schema linking, it is more challenging to
design a unified model for diverse modality
configurations. To bring various modality con-
figurations together, we constructed a bench-
mark for diverse-modal EL (DMEL) from ex-
isting EL datasets, covering all three modali-
ties including text, image, and table. To ap-
proach the DMEL task, we proposed a gener-
ative diverse-modal model (GDMM) follow-
ing a multimodal-encoder-decoder paradigm.
Pre-training GDMM with rich corpora builds a
solid foundation for DMEL without storing the
entire KB for inference. Fine-tuning GDMM
builds a stronger DMEL baseline, outperform-
ing state-of-the-art task-specific EL models by
8.51 F1 score on average. Additionally, exten-
sive error analyses are conducted to highlight
the challenges of DMEL, facilitating future
research on this task.

1 Introduction

Linking ambiguous mentions to unambiguous ref-
erent in a knowledge base (KB) such as Wikipedia,
known as Entity linking (EL) (Shen et al., 2015),
is an essential component for applications like ques-
tion answering (Ferrucci, 2012; Chen et al., 2017;
Lewis et al., 2020) and recommendation systems
(Yang et al., 2018). Diverse-Modal Entity Link-
ing (DMEL) extends the scope of interest from tex-
tual entity linking to heterogeneous input formats,
such as linking visual and textual expressions to
KB (Adjali et al., 2020b,a; Moon et al., 2018; Gan
et al., 2021a; Zheng et al., 2022; Wang et al., 2022d;
Gan et al., 2021a; Cui et al., 2021) and linking men-
tions in natural language to tables or database (DB)
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Figure 1: DMEL examples for (a) textual EL, (b) textual-
visual EL, and (c) tabular schema linking.

schema (Liu et al., 2021; Katsakioris et al., 2022;
Shi et al., 2020; Lei et al., 2020; Chen et al., 2020;
Wang et al., 2022a). Figure 1 demonstrate three
examples of DMEL, including (a) classical tex-
tual entity linking, (b) textual-visual entity linking
in which the question or mentions are paired with
image(s), and (c) tabular schema linking in which
the mentions are linked to column names or cell
values.

Retrieval-based contrastive learning or ranking
mechanism is the mainstream for early visual en-
tity linking by leveraging a matching score between
the mention and the KB entities (Cui et al., 2021;
Wang et al., 2022d; Zheng et al., 2022). However,
these methods require storage of dense represen-
tations of all KB entities, and when the size of
entities increases (e.g. Wikipedia has 6M articles),
it raises concerns for space complexity and also
inference-time latency. Meanwhile, linking men-
tions to tables or DB schemes, known as schema
linking, remains an important but under-explored
task. For example, in text-to-SQL generations, in-
correct schema linking usually counts for a large
portion of the errors (Zhong et al., 2017; Yu et al.,
2018; Shi et al., 2020; Lei et al., 2020; Taniguchi
et al., 2021). Previous string matching heuristic
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(Chen et al., 2020) or embedding matching meth-
ods (Chen et al., 2020; Wang et al., 2022a; Guo
et al., 2019; Wang et al., 2020) lack semantic and
schema understanding, and can hardly generalize
well to new domains. Last but not the least, pre-
vious endeavors of entity linking are limited to in-
dividual tasks including textual EL, textual-visual
EL, or schema linking, and lack a general view for
the DMEL problem.

To this end, we propose a unified DMEL task
that includes existing EL datasets on all three
modalities – text, image, and table. The unified
DMEL task is challenging because the model
needs to handle a wide spectrum of modality con-
figurations together. On the modeling side, because
storing all entity information (e.g. all the images in
the entire KB) is expensive at inference time, we
propose to use a unified generative model that can
take diverse-modal input and generate entity names
in an autoregressive fashion. Additionally, the men-
tion diversity and ambiguity issue in schema link-
ing can be addressed by pre-training the generative
model.

In this work, we build a generic diverse-
modal architecture for end-to-end DMEL. The
DMEL dataset is constructed from five existing
datasets, including GERBIL benchmark, WikiDi-
verse, MELBench-Wikipedia, Squall, and SLSQL,
covering diverse EL tasks. The proposed gener-
ative diverse-modal model (GDMM) is first pre-
trained on large-scale text corpus BLINK and im-
ages corpus from Wikipedia KB, offering profound
prior knowledge. Extensive experiments are then
conducted on the DMEL benchmark to compare
our proposed generative model to previous state-
of-the-art methods. Experimental results show
that GDMM achieves strong performance on the
DMEL dataset and outperforms state-of-the-art
task-specific EL models. Our contributions in-
clude:

• We define a novel diverse-modal Entity Link-
ing task, which links an entity mention within
heterogeneous information sources to a knowl-
edge base. A unified dataset is constructed for
rigorous DMEL examination.

• A generative diverse-modal model GDMM
is proposed following a multimodal-encoder-
decoder structure. The multimodal encoder
allows collective representation between each
modality. The autoregressive structure en-
ables us to directly predict the entity name

Dataset Modality Size

#L #V #U

GERBIL L → L 42,854 0 0
WikiDiverse LV → L 7,823 6,924 0
MELBench LV → L 18,880 18,880 0
Squall LU → L 11,274 0 2,108
SLSQL LU → L 8,034 0 166

DMEL LVU → L 88,865 25,804 2,274

Table 1: Comparison of existing datasets. Statistics
for modality, (L)anguage, (V)ision, and Tabl(U)r, are
shown.

without storing the entire KB. The pre-training
experimental results confirm that a candidate
trie created from entity names is sufficient for
inference.

• The experimental results show that the pro-
posed model obtains state-of-the-art perfor-
mance on (almost) each individual EL task.

2 Problem Formulation

We assume to have a KB (e.g., Wikipedia or a DB
schema) where each entity is a unique entry in the
KB. We formulate the following DMEL problem:
given a multimodal input {xi,vi,ui} of textual
(L), visual (V), and tabular (U) modality respec-
tively, an entity mention mi within the input, and
a candidate set Ci = {c1i , · · · , cKi }, the task is to
link the mention mi to one entity in Ci. We assume
the entity span is given. Sometimes the candidate
set can be the entire entity collection E . Particular
instances of DMEL problem include but are not
limited to: Textual Entity Disambiguation where a
given mention mi in xi will be linked to one entity
in Ci; Textual-Visual Entity Disambiguation where
the mi and a given image vi will be linked to one
entity in Ci; Schema linking where a mi in a SQL
query will be linked to table schema, i.e., a column
name within given tables ui. If the mention is not
a valid entity or not in Ci, the target label is “nil”.

3 DMEL Benchmark

We build the DMEL benchmark from five existing
datasets, including GERBIL benchmark (Verborgh
et al., 2018), WikiDiverse (Wang et al., 2022d),
MELBench-Wikidata (as MELBench in the rest of
the paper) (Gan et al., 2021a), Squall (Shi et al.,
2020), and SLSQL (Lei et al., 2020). We evaluate
textual-visual entity disambiguation capability on
WikiDiverse and MELBench, and evaluate tabular
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Figure 2: Overall GDMM architecture (left) and constrained decoding illustration (right).

Dataset Modality # Sentences / Tables
Train Valid Test

GERBIL L → L 18,448 4,791 19,614
WikiDiverse VL → L 6,312 755 757
MELBench VL → L 13,216 1,888 3,776
Squall LU → L 9,028 2,246 -
SLSQL LU → L 7,000 1,034 -

Table 2: Data statistics. Modalities include (L)anguage,
(V)ision, and Tabl(U)r modality.

schema linking on Squall and SLSQL. All datasets
are in English, and we summarize the data statistics
in Table 1. We will release this benchmark.

We assume that the mention span is given across
all datasets, thus (1) on GERBIL benchmark, we
investigate textual entity disambiguation using the
same candidate sets as in Le and Titov (2018) and
De Cao et al. (2021). (2) On WikiDiverse, we in-
vestigate entity disambiguation performance with
retrieved Top-10 candidates by Wang et al. (2022d)
(3) On MELBench-Wikidata, we follow the origi-
nal setting in which the given entity mention will
be linked to its referent in the knowledge base. (4)
On Squall, the given entity mention in the natural
question will be linked to column names in the tar-
get table. (5) On SLSQL, the entity mention in the
natural question will be linked to the column name
within multiple tables.

Statistics for each individual EL task are shown
in Table 2. Note that for the GERBIL benchmark,
the training split refers to AIDA-train, the valida-
tion split refers to AIDA-dev, and the test split
includes all test split as in (De Cao et al., 2021).

4 GDMM Model

We build a generative entity linking model that
enables diverse-modal vision, language and table
understanding and inference. We show how this
can be achieved with a generative encoder-decoder
structure.

4.1 Input Processor

As shown in Figure 2, our model can process
inputs of three modalities, including texts, images,
and tables. Formally, given a multimodal input
{xi,vi,ui}, the input processor serves to encode
the data and group the modalities as follows. (1)
Text Given an input text xi, we first tokenize and
embed it into a list of word vectors xxxi following
Devlin et al. (2019). (2) Image Given an input
image vi, we first resize it to a fixed size and
split it into patches, following Kim et al. (2021).
(3) Table We follow the table representation
proposed in TAPEX (Liu et al., 2022). The table is
flattened and represented as u∗

i = [head], col1,
· · · , colM , [ROW], 1, cell11, · · · , cell1M , [ROW]
· · · , where [head] and [ROW] are special tokens
denoting the beginning of table headers and rows,
and the number after [ROW] is used to denote the
row index. cellij represents a cell in ith row and
jth column. Then the table representation u∗

i

will be tokenized and embedded into uuui. Finally,
given the multimodal input {xi,vi,ui}, our input
processor outputs {xxxi

⊕
uuui, vvvi}, where

⊕
is a

concatenation operator.

4.2 GDMM Model Architecture

Multimodal Encoder The multimodal encoder
consists of an image encoder, a text encoder, and
a fusion encoder, following previous work (Singh
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et al., 2022; Yang et al., 2022). The text encoder
and image encoder use the same ViT architecture
(Dosovitskiy et al., 2021) with different parameters.
The text input and visual input {xxxi

⊕
uuui, vvvi} are

passed into the text encoder and vision encoder
individually. The text hidden state vectors {hhhLUi }
and the image embeddings {hhhVi } are then projected
and concatenated into a single list. A fusion en-
coder is applied to the concatenated list, which
allows cross-attention between the projected uni-
modal representations and fuses the two. The out-
put is a list of hidden states {hhhMi }. The multimodal
encoder parameters are initialized with pre-trained
FLAVA (Singh et al., 2022) parameters.

Decoder We exploit the transformer architecture
(Vaswani et al., 2017) for the decoder. Previous
study (Rothe et al., 2020) points out that combining
models with same vocabulary has stronger overall
performance, thus we initialize the decoder with the
BERT (Devlin et al., 2019) pre-trained parameters.

Training and Inference The GDMM is trained
with standard autoregressive objective, i.e.,
maximizing the output sequence likelihood
pθ(yyyi|xxxi, vvvi,uuui) with respect to the model’s pa-
rameters θ. We rank each candidate cki ∈ Ci by
computing a score with an autoregressive formu-
lation: score(cki |xxxi, vvvi,uuui) = pθ(yyy

k
i |xxxi, vvvi,uuui) =∏N

j=1 pθ(y
k
j |yk<j ,xxxi, vvvi,uuui), where N is the num-

ber of tokens of cki . If the score is lower than a
threshold θ, the prediction becomes “nil”. The
threshold will be decided by the development set.

Constrained decoding When the candidate set
Ci is very large (e.g., the entire entity space E),
naturally, it is intractable to compute a score for
every element. Thus we exploit Constrained Beam
Search (Sutskever et al., 2014; De Cao et al., 2021),
a tractable decoding strategy to efficiently search
the valid entity space. It is tractable as the average
time cost depends on beam size and the average
length of entity representations (e.g. 6 BPE tokens
on average for entities in Wikipedia KB), instead
of the size of Ci. An entity trie Ti for Ci will be
created so that the output is limited to the target
space. The constraint is defined as, for each node
t ∈ T , its children indicate all allowed continua-
tions from the prefix traversing from root to t. For
example, as shown in Figure 2, given four can-
didates Manchester United F.C., Manchester
City F.C., Manchester City W.F.C, and City
College Manchester, a candidate trie will be cre-

ated as shown in the figure. The decoding will
strictly follow the top-down order in the trie with a
certain beam size.

4.3 Pre-training GDMM
Pre-training is critical to our architecture though
the encoder and decoder are initialized with pre-
trained weights because the mapping between the
encoder and decoder are randomly initialized and
they have not been pre-trained simultaneously with
the encoders and the decoder.

Pre-training data A pre-training corpus is con-
structed from BLINK (Wu et al., 2020) and images
in Wikipedia KB. BLINK is a commonly used cor-
pus for textual entity linking pre-training, includ-
ing 9M unique annotations of document-mention-
entity triples from Wikipedia. Meanwhile, the
images in Wikipedia KB are naturally linked to
their respective entity names. The two together
are well-suited for pre-training DMEL models.
Aside from text-only BLINK, we construct LV-
paired pre-training data by linking BLINK and
Wiki-images. An image pool (Wiki-images) is
collected from Wikipedia KB if the entity can be
linked to mentions in BLINK. The image pool con-
tains 797,436 downloaded images of 495,149 enti-
ties in Wikipedia KB. We then randomly attach an
image of the target entity, if exists, to each mention
in BLINK. In total, the LV-paired pre-training data
includes 5,445,264 mentions and 678,385 distinct
images in the training set, and 5,816 mentions and
5,414 images in the development set.

Pre-training details We pre-train GDMM on
text-only BLINK and LV-paired pre-training data
in two stages. Note that not all the BLINK enti-
ties appear in Wiki-images. There are over 2.5M
BLINK mentions not covered by LV-paired pre-
training data. To fully leverage the BLINK anno-
tations, we first pre-train on text-only BLINK and
then pre-train on the LV-paired data. With text-only
BLINK, we freeze parameters in the image encoder
and fusion layers and only update parameters in the
text encoder and decoder. In the second stage, all
the parameters are updated.

4.4 Unified Learning
Upon the pre-trained model, one straightforward
strategy for downstream tasks is single-task fine-
tuning. We take one step further and investigate
unified learning. Specifically, we’ll investigate
(1) single-task finetuning (ST-F), which refers to
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Figure 3: The effect of the number of paired BLINK
and Wiki-images pre-training data on GDMM-base.

finetuning on individual tasks; (2) multi-task fine-
tuning (MT-F) which combines the mixed training
data of all datasets (Raffel et al., 2022); and (3) mul-
titask fine-tuning with prefixes (MT-FP), where we
prepend task-specific prefixes like “entity linking”
and “schema linking” to the input context.

5 Experiments

Model Variants We primarily report results on
two model variants: GDMM-base where the de-
coder is initialized with BERT-base parameters,
and GDMM-large where the decoder is initial-
ized with BERT-large parameters. To investigate
which modality provides dominant information for
visual-text entity linking, three configurations are
explored: L+V where both visual and textual in-
formation are given, L where only textual input
are given, and V where only image are given. We
report experimental results with a single generic
model for the three modality settings. It is achieved
by randomly masking out one modality during
training. Implementation details are in Appendix
B.

5.1 Results

Pre-training The pre-training of GDMM con-
sists of two stages, text-only pre-training and LV-
paired pre-training. The pre-training performance
is investigated with two methods: zero-shot or
fine-tuned on WikiDiverse. Zero-shot refers to di-
rectly evaluating on WikiDiverse without training,
while fine-tuned refers to further fine-tuning on
the WikiDiverse. The first-stage pre-trained check-
point is directly evaluated on WikiDiverse with
only text information (note that WikiDiverse is a
dataset with both image and text input), achieving

75.43 zero-shot F1 score. It greatly outperform
the baseline model in (Wang et al., 2022d) by 4.36
F1 score, even though only text information are
leveraged. The evaluation demonstrates that pre-
training on BLINK builds a strong foundation for
the proposed model. After that, we investigate the
effect of paired pre-training data size in the second
stage and visualize it in Figure 3. It shows that
the pre-training data size has a positive effect on
inference with both image and text modality (L+V)
and with only image modality (V). Text-only (L)
performance is not affected even though the visual
modality is introduced in the second pre-training
stage.

Experimental results on DMEL benchmark
The experimental results of the proposed GDMM
on DMEL are shown in Table 3. We compare
visual-language entity disambiguation result on
WikiDiverse with LXMERT (Wang et al., 2022d),
and visual-language entity linking performance
on MELBench with Gan et al. (2021a). GDMM
achieves better performance on both datasets, espe-
cially on MELBench. GDMM strikingly improves
the F1 score by over 31%, demonstrating the effec-
tiveness of the proposed architecture.

The schema linking performance is evaluated
on Squall and SLSQL. For schema linking, we
compare our model with the baseline model
GENRE (De Cao et al., 2021), as it has competitive
performance in entity disambiguation. For a fair
comparison, we fine-tune GENRE with their pre-
trained checkpoint on BLINK and investigate two
options, one without a flattened table (GENRE)
and another with the flattened table (GENRE+)
where the table content is leveraged identically as
in GDMM. Only experimental results for GENRE+
are reported in Table 3 since it has better perfor-
mance than GENRE. The fact that the flattened
table has better performance demonstrates the ef-
fectiveness of the table representation. Detailed
results can be found in Appendix C.

Unified learning As mentioned in Section 4.4,
we report unified learning results for ST-F, MT-F,
and MT-FP in Table 4. To confirm whether the
pre-trained checkpoints build a competitive foun-
dation for visual-language entity linking, zero-shot
(ZS) performance is also reported in the same ta-
ble. The pre-trained checkpoint is competitive be-
cause the zero-shot performance (i.e. ZS column)
outperforms previous state-of-the-art fine-tuned re-
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Data Task Modality Previous SOTA GDMM-base GDMM-large

GERBIL ED L → L 88.8 (De Cao et al., 2021) 86.11±0.24 82.57±0.22
WikiDiverse VED LV → L 71.07 (Wang et al., 2022d) 79.10±0.35 78.69±0.33
MELBench VED LV → L 40.5 (Gan et al., 2021a) 68.01±0.75 72.41±0.65

Squall SL LU → L 82.10±2.41 (GENRE+) 89.69±0.77 89.12±1.03
SLSQL SL LU → L 82.80 (GENRE+) 81.48±1.06 84.43±0.92

Avg. 72.93 80.88 81.44

Table 3: Benchmark results on DMEL data

Dataset GDMM-base
ZS ST-F MT-F MT-FP

GERBIL 84.00 93.75 ±0.26 93.63 ±0.14 93.56±0.52
WikiDiverse 76.92 80.97±0.39 80.02±0.29 80.65±0.35
MELBench 54.76 67.41±0.97 63.64±2.04 65.64±1.44
SQUALL 47.52 89.69±0.77 88.00±1.31 88.37±0.99
SLSQL 30.92 81.48±1.06 83.59±1.90 83.60±0.85

Avg. 58.82 82.66 81.78 82.36

Table 4: Unified learning results. Best scores and
second-best scores are highlighted in Bold and under-
lined. Variance does not apply to zero-shot F1 scores
because the pre-trained checkpoint is unique. We report
results on the development set.

Figure 4: Error breakdown on WikDiverse validation
set.

sults for WikiDiverse in Table 8 and MELBench
in Table 9. On average, ST-F and MT-FP achieve
the best and the second-best performance, with a
small gap between the two. It is expected that ST-F
achieves the best performance as each fine-tuned
model is able to fit the target dataset distribution.
Considering ST-F trains five models while MT-FP
trains a single model, the competitive MT-FP per-
formance suggests that model efficiency can be
achieved at the cost of a minor performance drop,
that is, 0.30 average F1 score drop for GDMM-
base. Additionally, the fact that MT-FP constantly
outperforms MT-F aligns with previous findings
that task-specific prefixes is effective in informing
the model of the target tasks (Dong et al., 2019;
Raffel et al., 2022).

5.2 Error Analysis

Figure 4 shows the error breakdown on WikiDi-
verse. The errors are divided into four categories:
retrieval error where the target entity is not in the
candidates; misidentification where the prediction
does not match the ground truth entity; under pre-
dict where the model predicts “nil” and the ground
truth entity is not “nil”; over prediction where the
ground truth entity is “nil”.

Representative error examples are presented in
Table 5 for (a) retrieval error, (b) misidentification,
(c) over prediction, and (d) under prediction. Error
type (a) contributes to over half of the errors, em-
phasizing the need for a good retriever. It cannot be
addressed by our model, because the ground truth
entity is not in the set. Example (b) is due to candi-
date confusion, as Cape Canaveral Air Force Sta-
tion is a previously used name for Cape Canaveral
Space Force Station from 1974 to 1994 and from
2000 to 2020. Such errors indicate the necessity
for a coreference system at inference time. The
over-prediction example as shown in (c) calls for a
better discrimination strategy for plausible candi-
dates. Example (d) is a challenging example, which
asks future models to possess more profound prior
knowledge.

Table 6 further shows four types of errors for
schema linking, name ambiguity, inference diffi-
culty, prime key confusion, and unknown strings.
(a) Name ambiguity is a common challenge for
schema linking especially when the column names
have overlapped tokens. (b) Sometimes the model
fails to make inferences on subtle entity expres-
sions. (c) Another common error type for schema
linking is the confusion in prime keys, as the prime
key “pet id” is shared by multiple tables in the ex-
ample. (d) Another challenge is unknown strings
or composite tokens since it is usually intractable
to recover the original expression from those men-
tions.
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ID (a) (b) (c) (d)

Image

Text
Australians before the

competition started for the
day at the bottom of the hill

spacecraft aboard lifts off at
Cape Canaveral Air Force

Station at 6:01 p.m

pilgrims at Mecca’s
Grand Mosque in 2008

Histopathologic image of
Hodgkin’s lymphoma.

GT Nor-Am Cup ; Copper
Mountain (Colorado)

Cape Canaveral
Space Force Station

nil Histopathology

Pred (L+V) Competition ;
The Hill ( Film )

Cape Canaveral
Air Force Station

Pilgrims ( Plymouth
Colony )

nil

Table 5: Examples for (a) retrieval error, (b) misidentification, (c) over prediction, and (d) under prediction.

ID Error Type Text GT Prediction

(a) Column name ambiguity
show the name and the release year of the

song by the youngest singer .
singer # song name singer # name

(b) Lack of inference
which model be lighter than 3500 but not

build by the ’ Ford Motor Company ’ ?
cars data # weight model list # model

(c) Prime key confusion
find the id of the pet own by student whose

last name be ‘ Smith ’ .
has pet # pet id pets # pet id

(d) Unknown strings ... list the car makeid and make name . car names # make id car names # make

Table 6: Case study on schema linking errors. The hash symbol connects the table name and column name.

ID (a) (b) (c) (d) (e)

Image

Text Australia and Japan at
the 2006 World Cup

... around the Little
Missouri (highlighted)

and Caddo rivers.

... iconic sign at current
Metropolitan Police

headquarters.

Real Madrid players
including Ronaldo go for
the ball following a foul.

Tseng with the
trophy

Pred(L+V)
=GT

Australia national soccer
team ; Japan national

football team

Little Missouri River
(Arkansas)

Scotland Yard Cristiano Ronaldo Yani Tseng

Pred (L) Australia ; Japan
Little Missouri River

Bridge
Headquarters

Ronaldo ( Brazilian
Footballer )

Sam Tseng

Table 7: Ablation on when the visual content is indispensable for entity disambiguation.

5.3 Ablation Study

We further discuss the indispensability of infor-
mation within each modality through an ablation
study on WikiDiverse. Three evaluations are con-
ducted under settings: (1) L+V where both text and
image are leveraged; (2) L where only texts are
used for prediction; (3) V where only images are
used for prediction. The experimental results are
reported in Table 8. It shows each model achieves
the best performance with both text and image
modalities (L+V). While textual content provides
the most inference clues, visual content provides
complementary information. Additionally, the
proposed model GDMM outperforms LXMERT
with a single generic model trained for various con-

figurations, while three modality-specific models
for each configuration (L+V, L, V) are trained in
LXMERT. This observation demonstrates the effec-
tiveness of the proposed model for various modality
configurations.

Table 7 shows several misinformation examples
where the model fails without visual information.
In (a), the image of a soccer stadium provides ex-
tra semantics when the model misses the semantic
indicator from “the 2006 World Cup.” The im-
age in example (b) is in Wiki-KB and has been
used for pre-training. Its visibility during the pre-
training makes the image a strong indicator of the
target entity. The optical character “NEW SCOT-
LAND YARD” in example (c) is indispensable for
the mention to be correctly identified. Without the
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Method F1

L+V L V

LXMERT
(Wang et al.,
2022d)

71.07 63.65 40.16

GDMM-base 79.10±0.35 76.79±0.32 40.59±2.32
GDMM-large 78.69±0.33 77.05±0.29 37.65±0.25

Table 8: Ablation study on WikiDiverse.

optical features, inferring the mention of “head-
quarters” is challenging given the ambiguous text.
Examples (d) and (e) emphasize the dependence
on facial features for entity disambiguation. In
the absence of the image in (d), it is impossible
to disambiguate between “Cristiano Ronaldo” and
“Ronaldo ( Brazilian Footballer )” as both players
served Real Madrid.

6 Related Works

Textual Entity Linking Early entity linking re-
searches (Hoffart et al., 2011; Daiber et al., 2013)
reply on probabilistic approaches, based on textual
similarity and corpus occurrence. A more recent
line of research is neural networks based retrieval-
reranking approaches (El Vaigh et al., 2020; Zhang
et al., 2022; Mrini et al., 2022), which first retrieve
top candidates given the input text, and then score
each candidate with semantic similarity or correla-
tion. End-to-end entity linking models (Broscheit,
2019; Martins et al., 2019; El Vaigh et al., 2020) ap-
proach this problem by directly detecting the entity
mentions and linking them to their corresponding
entities in the KB. For example, autoregressive en-
tity linking models (De Cao et al., 2021; De Cao
et al., 2021; Petroni et al., 2021; Mrini et al., 2022)
formulate entity linking as a language generation
problem using an encoder-decoder model.

Textual-Visual Entity Linking The growing
trend towards multimodality significantly advanced
research in multimodal entity linking. Due to the
difficulty in collecting and cleaning multimodal en-
tity linking data, previous researchers limit their
attention to a specific domain such as social me-
dia data (Adjali et al., 2020b,a; Moon et al., 2018;
Gan et al., 2021a) and news domain(Zheng et al.,
2022; Wang et al., 2022d), or a limited scope like
person and organization recognition (Gan et al.,
2021a; Cui et al., 2021). Previous work (Wang
et al., 2022d) represents each entity with one image,
which limits the visual expression of entities. We

overcome this limitation by pre-training GDMM
with multiple images per entity to obtain diverse
visual representations.

Tabular Schema Linking Schema linking (Guo
et al., 2019; Wang et al., 2020) is an instance of
entity linking in the context of linking to the rela-
tional database schema. Previous research shows
that good schema linking (Liu et al., 2021; Kat-
sakioris et al., 2022; Shi et al., 2020; Lei et al.,
2020; Chen et al., 2020) can substantially improve
downstream tasks such as Text-to-SQL parsing.
However, entity mentions in existing benchmarks
such as Spider (Yu et al., 2018) can almost exactly
match the corresponding schema entities (Chen
et al., 2020). Therefore, current Text-to-SQL se-
mantic parsers normally address this problem with
string-matching heuristics (Chen et al., 2020) or
embedding matching modules (Chen et al., 2020;
Wang et al., 2022a; Guo et al., 2019; Wang et al.,
2020). However, due to the diversity and ambigu-
ity in natural language mentions, such heuristics
are hard to generalize to new domains (Chen et al.,
2020; Wang et al., 2022a).

Multimodal Models Multimodal models have at-
tracted increasing attention in computer vision and
natural language processing communities. Recent
transformer-based approaches (Kim et al., 2021;
Radford et al., 2021; Singh et al., 2022) that lever-
age the attention between the visual and textual
embeddings manifest the effectiveness of the atten-
tion mechanism. However, the proposed learning
objectives are usually limited to predefined scopes,
such as text-image matching or alignment (Xu et al.,
2021; Radford et al., 2021; Biten et al., 2022; Ho
et al., 2022; Li et al., 2022; Yang et al., 2022;
Huang et al., 2023), semantic segmentation, ob-
ject detection, classification (Xu et al., 2022; Guo
et al., 2022; Assran et al., 2022), and masked lan-
guage modeling (Li et al., 2020; Ni et al., 2022;
Tong et al., 2022; Appalaraju et al., 2021). Instead,
we proposed a generic generative model that is
open to diverse downstream tasks. Additionally,
GDMM differs from previous generative multi-
modal models(Li et al., 2023; Wang et al., 2021)
in that GDMM can process and comprehend in-
formation from heterogeneous instead of a single
source; GDMM differs from VL-T5 (Cho et al.,
2021) and others (Wang et al., 2022b; Bao et al.,
2022; Wang et al., 2022c) in that GDMM enables
thorough encoding for each modality, instead of
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discretizing visual content.

7 Conclusion

In this paper, a novel DMEL problem is for-
mulated, which links the entity mention within
heterogeneous information to a defined KB. A
generic DMEL dataset is built covering diverse
EL tasks. We propose a unified generative model
for DMEL, GDMM. Comprehensive experiments
are conducted over the DMEL dataset. Experi-
mental results show that the proposed GDMM out-
performs state-of-the-art models on almost each
individual EL task.

Broader Impact In contrast to previous work
(Pan et al., 2022; OpenAI, 2022) that only lever-
age textual content, the proposed model has the
potential to deal with misinformation (text only as
a data source might be prone to misinformation
or fake context/information). This research will
lead to a clearer understanding of misinformation
issues and encourage better leverage of multimodal
information.

Limitations

GDMM establishes a compelling starting point for
DMEL research. In spite of this, the proposed ap-
proach has several shortcomings. First, GDMM
currently generates entity name within the entity
candidate set, however, we saw how retrieval er-
rors limit entity linking performance. Thus, how to
work collectively with the retrieval system to dimin-
ish errors takes appropriate action. Second, how to
handle large tables still remains under-explored. It
is infeasible to represent a huge database with the
table flattening technique. In practice, it is possible
to filter out less likely candidates to compress the
search space, but a more promising approach is to
represent the table more efficiently.

GDMM also enables studies on more diverse-
modal tasks. New tasks can be easily framed based
on the proposed architecture, such as visual ques-
tion answering, grounded generation, and diverse-
modal commonsense reasoning. We believe that
with more follow-up work on diverse tasks, this
approach will turn out to be a more comprehensive
generative diverse-modal framework.
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A DMEL Selection

The DMEL benchmark’s datasets were carefully
chosen after conducting extensive research on pub-
licly available datasets. The DMEL benchmark in-
cludes five datasets: GERBIL, WikiDiverse, MEL-
Bench, Squall, and SLSQL. Each of these datasets
is necessary and represents the best option for a
comprehensive evaluation for Diverse-Modal En-
tity Linking. The selected datasets best align with
the DMEL problem, among more than 20 datasets
we looked into. The reasons why other datasets
are excluded in the benchmark are: i) most dataset
collected from social media cannot be reproduced
because some of the data are no longer accessi-
ble. This category includes Twitter-MEL (Adjali
et al., 2020b), SnapCaptionsKB(Moon et al., 2018);
ii) Dataset is not publicly available (Zheng et al.,
2022); iii) Annotated dataset for schema linking
is limited. Existing work that investigates enti-
ties in tables are Text-to-SQL datasets. However,
annotations for schema linking are not available,
such as Spider (Yu et al., 2018), Spider-Syn (Gan
et al., 2021b), Spider-DK (Gan et al., 2021c), Wik-
iSQL(Zhong et al., 2017), ATIS (Price, 1990), Free-
base917 (Cai and Yates, 2013), and WikiTable-
Questions (Pasupat and Liang, 2015). Furthremore,
there is no overlap between the datasets. For tabular
datasets, Squall is built upon WikiTableQuestions,
while SLSQL is based on the Spider text-to-SQL
dataset. Lastly, GENRE is widely recognized as
the standard dataset for the task of textual entity
linking.

B Implementation Details

For every dataset in DMEL dataset, the fine-tuning
procedure runs for 5 epochs with a batch size of
16. For both pre-training and fine-tuning, the learn-
ing rate is 3 × 10−5, with a linear scheduler with
0.1 warmup ratio. Fine-tuning takes 5 hours for
WikiDiverse, 2 for MELBench-Wiki, 1 for Squall,
and 2 for SLSQL.

We run each setting 5 times and report the mean
and variance unless stated otherwise (except the
zero-shot setting when evaluated with the pre-
trained checkpoint, since there is no randomness
with the pre-trained checkpoint ). One MELBench,
since the dataset split is not given along with the
released MELBench-Wikidata data, we randomly
split the dataset according to their split statistics
and repeat the experiment 5 times to get average
evaluation metrics. On Squall, we reported a 5-fold

cross-validation result following the released split.
For Squall and SLSQL, all the hyperparameters are
tuned on the training set since there is no test set.

Additionally, Wikipedia images are collected
through hyperlinks shared by Wang et al. (2022d)
at https://github.com/wangxw5/wikidiverse.
Annotations on SLSQL are adapted from Spider,
excluding train_others.json that are from Restau-
rants, GeoQuery, Scholar, Academic, IMDB, and
Yelp prepared by (Finegan-Dollak et al., 2018).
For GERBIL benchmark results, we report aver-
age F1 scores on six test sets, including Aida-
test, MSNBC-test AQUAINT-test, ACE2004-test,
WNED-CWEB-test, and WNED-WIKI-test follow-
ing De Cao et al. (2021).

C Detailed Experimental Results

Experimental results for each individual dataset
are shown in this section. Specifically, Table 9
shows results for MELBench, Table 10 shows the
experimental result for Squall, and Table 11 shows
the experimental result for SLSQL.

D Domain Adaption Results

We investigate zero-shot performance in unseen
domains on the WikiDiverse dataset. Specifically,
we choose the five domains as seen domains, in-
cluding politic, crime, sports, entertainment, and
technology, and the rest five domains as the un-
seen domains, including disaster, health, economy,
weather, and education. Training data includes in-
stances from the seen domain, and the instances
from the unseen domains are randomly split into
validation and test set. Note that the data used for
this experiment is from the WikiDiverse training
and validation set, the data in the test set are ex-
cluded.

The domain adaption result on WikiDiverse is
shown in Table 12. These experiments facilitate
studying knowledge transfer between seen and un-
seen domains. The experiment results show that
(a) pre-training is indispensable for new domains
as it provides profound prior knowledge for the
MEL task in general; (b) knowledge learned from
seen domains can indeed transfer to the unseen
domain as the average F1 score improves by 3.61
percentage points.
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Method F1

Top-1 Top-10

MELBench (Gan et al.,
2021a) 40.5 69.6

GDMM-base 68.01±0.75 73.31±0.77
GDMM-large 72.41±0.65 76.34±0.78

Table 9: Results of entity linking on MELBench

Method F1

GENRE 75.92±4.29
GENRE+ 82.10±2.41

GDMM-base Zero-shot 47.52±1.06
Finetuned 89.69±0.77

GDMM-large Zero-shot 49.14±1.26
Finetuned 89.12±1.03

Table 10: Results of schema linking on Squall.
GENRE+ denotes augment table representations to the
input text as described in Section 4.1

Method F1

GENRE 70.41
GENRE+ 82.80

GDMM-base Zero-shot 30.92
Finetuned 81.48±1.06

GDMM-large Zero-shot 28.44
Finetuned 84.43±0.92

Table 11: Results of schema linking on SLSQL

Domain F1
FT w/o PT PT FT with PT

Health 40.37 76.19 82.48
Weather 39.80 79.79 78.84

Economy 46.67 78.95 84.17
Disaster 34.67 78.81 81.04

Education 40.23 73.49 81.48

Overall 39.17 78.05 81.66

Table 12: Evaluation on unseen domains in WikiDiverse
with GDMM-base. FT and PT stand for fine-tuning on
seen domains and pre-training.
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