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Abstract
The Wav2Vec and its variants have achieved
unprecedented success in computational audi-
tory and speech processing. Meanwhile, neu-
ral encoding studies that link representations
of Wav2Vec to brain activities have provided
novel insights into how auditory and speech
processing unfold in the human brain. Most ex-
isting neural encoding studies treat each trans-
former encoding layer in Wav2Vec as a sin-
gle artificial neuron (AN). That is, the layer-
level embeddings are used to predict neural re-
sponses. The layer-level embedding aggregates
multiple types of contextual attention captured
by multi-head self-attention (MSA). Thus, the
layer-level ANs lack fine-granularity for neu-
ral encoding. To address this limitation, we
define the elementary units, i.e., each hidden di-
mension, as neuron-level ANs in Wav2Vec2.0,
quantify their temporal responses, and couple
those ANs with their biological-neuron (BN)
counterparts in the human brain. Our experi-
mental results demonstrated that: 1) The pro-
posed neuron-level ANs carry meaningful neu-
rolinguistic information; 2) Those ANs anchor
to their BN signatures; 3) The AN-BN anchor-
ing patterns are interpretable from a neurolin-
guistic perspective. More importantly, our re-
sults suggest an intermediate stage in both the
computational representation in Wav2Vec2.0
and the cortical representation in the brain.
Our study validates the fine-grained ANs in
Wav2Vec2.0, which may serve as a novel and
general strategy to link transformer-based deep
learning models to neural responses for probing
sensory processing in the brain.

1 Introduction

The Wav2Vec model and its variants (Schneider
et al., 2019; Baevski et al., 2020) have achieved
superb performance in learning acoustic informa-
tion representations and on a variety of downstream
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tasks such as automatic speech recognition. Mean-
while, recent studies that link the computational
representations in Wav2Vec to neural responses
recorded by functional brain imaging techniques
have provided novel insights into the model’s inter-
pretability and neural sensory perception of acous-
tic information(Li et al., 2022; Millet et al., 2022;
Tuckute et al., 2022; Millet and Dunbar, 2022).

Such studies can be formulated as a general
framework of brain encoding and decoding (Nase-
laris et al., 2011; Huth et al., 2016; Yamins and Di-
Carlo, 2016). In brief, a predictive model is trained
to build a mapping between the computational fea-
ture representation (the feature space, referred to
artificial neurons, ANs) of the input stimuli and the
brain activities (the brain activity space, referred
to biological neurons, BNs) evoked by the same
set of stimuli. The fitness of the predictive model,
also known as the "brain score", is used to infer the
correspondence between specific features and the
underlying brain regions.

In most existing studies that link audio-
transformers to brain responses, the layer-level
contextual embeddings in the transformer encod-
ing layers are used as the feature space (Li et al.,
2022; Millet et al., 2022; Tuckute et al., 2022).
The layer-level representations aggregate multiple
types of attentional relationships among the input
sequences captured by multi-head self-attention
(MSA) modules (Vaswani et al., 2017). The ag-
gregation operation results in comprehensive rep-
resentations. However, these representations lack
specificity. Thus, treating each encoding layer as
a single AN is relatively coarse and consequently
degenerates the capability of audio-transformers in
brain encoding and decoding studies.

Multi-level visualizations of transformer atten-
tions (Vig, 2019b; Clark et al., 2019; Aken et al.,
2020) may provide some inspirations to address
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this problem. For example, BertViz visualizes the
attention at the model-level, head-level and neuron-
level(Vig, 2019a). More specifically, the neuron-
level visualization factorizes the attention score
matrix in each head into a set of element-wise
product matrices corresponding to the hidden di-
mensions. The neuron-level visualization enables
computational interpretation of transformers with
fine granularity. However, whether each hidden
dimension can be defined as a fine-grained AN for
neural encoding and decoding study is not clear.
Do those ANs carry meaningful linguistic informa-
tion? Do those ANs anchor to their BN signatures
in the human brain? Are the coupled AN-BN pairs
interpretable from a neurolinguistic perspective?

We sought to answer these questions in this
study. To this end, we propose a general framework
for coupling the fine-grained ANs in Wav2Vec2.0
(Baevski et al., 2020) and the BNs in the human
brain. We adopt the pre-trained Wav2Vec2.0 to
embed the spoken story stimuli in the Narratives
functional magnetic resonance imaging (fMRI)
dataset (Nastase et al., 2021). The temporal re-
sponse of an AN is then quantified according to
the element-wise product of the queries and keys.
Functional brain networks (FBNs) are identified
from the fMRI data and each FBN is regarded as
a single BN. Afterwards, the coupling relationship
between ANs and BNs are built by maximizing the
synchronizations between their temporal responses.

Our experimental results show that those fine-
grained ANs carry meaningful linguistic informa-
tion and well synchronize to their BN signatures,
and the anchored AN-BN pairs are interpretable.
More importantly, our results suggest an intermedi-
ate stage in both the computational representation
in Wav2Vec2.0 and the cortical representation in
the brain. The proposed fine-grained ANs may
also serve as a general strategy to link transformer-
based deep learning models to neural responses for
probing the sensory processing in the brain.

2 Related works

Features from computational models have long
been used to model the feature space for explor-
ing the auditory neural encoding. Conventional
hand-crafted features that capture low-level acous-
tic properties (e.g., sound intensity, timbre, rhythm,
pitch, and spectrograms) have been found to be
closely correlated to brain responses (Potes et al.,
2012; Daube et al., 2019; Alluri et al., 2012; Cong

et al., 2013; Santoro et al., 2014; Toiviainen et al.,
2014; Hu et al., 2017; Pasley et al., 2012; Leaver
and Rauschecker, 2010; Berezutskaya et al., 2017;
Ylipaavalniemi et al., 2009; Norman-Haignere
et al., 2015). Some studies replicate similar find-
ings for the combinations of those low-level fea-
tures optimized for specific tasks such as auditory
attention (Bordier et al., 2013) and melodic pitch
expectations (Pearce et al., 2010).

The deep neural networks (DNNs) developed
for auditory and speech processing bring new op-
portunities to model the feature space. The model
architecture and the training objective are two basic
ingredients of DNNs. Existing studies have inves-
tigated the similarity between brain responses and
DNNs in different architectures including convolu-
tional neural network (CNN) (Saddler et al., 2021;
Francl and McDermott, 2022; Kell et al., 2018;
Güçlü et al., 2016; Huang et al., 2018; Thompson
et al., 2021), convolutional auto-encoder (CAE)
(Wang et al., 2022), generative adversarial network
(GAN) (Beguš et al., 2022), CNN followed by
recurrent neural network (RNN) (Li et al., 2022;
Tuckute et al., 2022; Vaidya et al., 2022; Millet and
King, 2021), spiking neural networks (Khatami and
Escabí, 2020), and transformers (Li et al., 2022;
Millet et al., 2022; Tuckute et al., 2022; Vaidya
et al., 2022). The training objectives include unsu-
pervised, self-supervised and supervised by various
tasks such as musical genre prediction, acoustic
scene classification, and speech recognition.

These studies have provided fruitful insights into
neural auditory encoding, model interpretation, and
brain-like model development. For example, cor-
relating the hierarchical representations derived
from CNN-based models for automatic music tag-
ging have revealed the representational gradients
in the superior temporal gyrus (STG). The anterior
STG (aSTG) and posterior STG (pSTG) have been
shown to be more sensitive to low-level and high-
level features encoded in shallow and deep layers,
respectively (Güçlü et al., 2016). By optimizing a
CNN-based model for dual-task of word and music
genre classification, Kell et al. showed that the best-
performing network may resemble the hierarchical
organization of the human auditory cortex. That
is, brain responses in the primary and non-primary
auditory cortices are most well predicted by mid-
dle and late CNN layers, respectively (Kell et al.,
2018). By modeling the feature space via CNN-
RNN-based DeepSpeech2 (Amodei et al., 2016) op-
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timized for acoustic scene classification and speech-
to-text with different types of inputs (i.e., English,
Dutch and Bengali), Millet et al. replicated such
a hierarchy and suggested that the brain utilizes
sound-generic representations in the first process-
ing stage of its hierarchy, and then builds speech-
specific representations in higher-level processing
stages (Millet and King, 2021).

More recently, the transformer based on multi-
head self-attention (MSA) has emerged as a power-
ful DNN architecture to learn comprehensive con-
textual representations (Vaswani et al., 2017). In
this context, audio-transformers such as Wav2Vec
2.0 have also been used to model the feature space
(Millet et al., 2022; Li et al., 2022; Tuckute et al.,
2022; Vaidya et al., 2022). For example, Millet et
al. compared Wav2Vec 2.0 to neural activities in
a large cohort, and found that the representational
hierarchy of Wav2Vec 2.0 aligns with the cortical
hierarchy of speech processing. More specifically,
Wav2Vec2.0 learns sound-generic, speech-specific
and language-specific representations that are anal-
ogous to those of the temporal and prefrontal cor-
tices (Millet et al., 2022). Li et al. compared the
representational similarity of HuBERT (Hsu et al.,
2021), Wav2Vec 2.0 (Baevski et al., 2020) and
DeepSpeech2 (Amodei et al., 2016) with different
training objectives to the human auditory pathway.
They showed that the representational hierarchy in
the DNNs correlates well to the ascending auditory
pathway, and unsupervised models achieve opti-
mal neural correlations (Li et al., 2022). Tuckute
et al. examined brain-DNN similarities within the
auditory cortex for a large set of models based on
various architectures and trained on different tasks.
They found that most DNNs predicted brain re-
sponses in the auditory cortex better than the filter-
bank models as a baseline, and the models trained
on multiple tasks produced the best overall predic-
tions. More importantly, they showed that most
of the DNNs exhibited a correspondence between
model stages and brain regions, for example, the
neural responses in lateral, anterior and posterior
non-primary auditory cortices were better predicted
by deeper layers (Tuckute et al., 2022).

Despite those fruitful findings, the feature space
defined in existing studies that assess the represen-
tational similarity between Wav2Vec2.0 and brain
responses relies on layer-level embeddings. That
is, these studies implicitly treat each layer as a sin-
gle artificial neuron. Considering the heterogeneity

of the attentional heads, this operation may lose
the specificity of each head, which is designed to
capture different types of contextual attention. As
argued in the field of natural language processing
(NLP), a fine decomposition of a model’s com-
ponents into elementary units is among the keys
for mapping computational models to their neuro-
biological counterparts (Hale et al., 2022; Poep-
pel, 2012). This demand also applies to audio-
transformers. Meanwhile, our previous study has
shown the validity of fine-grained ANs defined as
the hidden dimensions of the pre-trained BERT
model (Liu et al., 2023). However, whether those
fine-grained ANs hold similar premises in audio-
transformers is unknown. Thus, the key objective
of this work is to validate those fine-grained ANs
in Wav2Vec 2.0 for neural encoding studies.

3 Methods

3.1 Synchronization between ANs and BNs
Similar to that in our previous study (Liu et al.,
2023), the bridge that connects ANs in Wav2Vec2.0
and BNs in brain responses is defined as the syn-
chronization between their temporal responses to
the same set of external stimuli. Let F : X→Ya
represent ANs, and fi(X) represent the temporal
response of AN fi to stimuli X. Similarly, let G : X
→ Yb represent BNs, and gj(X) denote the tempo-
ral response of BN gj to X. The best synchronized
BN for an AN fi is identified according to Eq.1.

Sync(fi, G) = argmax
gj∈G

δ(fi, gj) (1)

where δ(·) measures the synchronization between
the two responses. Similarly, the best synchronized
AN for a BN gi is identified according to Eq.2.

Sync(gi, F ) = argmax
fi∈G

δ(gi, fj) (2)

In this study, we adopt the Pearson correlation co-
efficient (PCC) as δ(·) to measure the temporal
synchronization. The ANs and BNs, as well as
their temporal responses to the inputs are detailed
in the following sections.

3.2 ANs and Their Temporal Responses
The transformer aggregates multiple attentional re-
lationships captured by the MSA module. The
attention score in a head is formulated as
A = softmax(QTK/

√
d) (Fig. 1a), where

Q = {q1, q2, · · · , qn} is the query set, K =
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{k1, k2, · · · , kn} is the key set, d is the hidden
dimension in a head, and n is the number of to-
kens in the input sequence. After removing the
softmax operation for simplification, a single en-
try in the attention matrix is formulated as aij =

qi · kj =
∑d

1 qi · ×kj (Fig. 1b), where ·× denotes
element-wise product. This means that the atten-
tion matrix can be factorized into d element-wise
product (EP) matrices (Fig. 1c). Each EP matrix
characterizes how the query-key interactions in a
hidden dimension contribute to the attention ma-
trix. Thus, an intuitive idea is to define each hidden
dimension as a single AN, which largely increases
the granularity of ANs. For example, we can de-
fine NL×NH × d (e.g., 9216 in Wav2Vec2.0) ANs
in audio-transformers, where NH and NH are the
numbers of layers and heads, respectively.

We then quantify the temporal response of an
AN. It is notable that the ANs respond to the input
tokens (25ms per token with 5ms overlap) but the
fMRI observes the brain in the temporal resolution
of repetition time (TR, 1.5s in the Narratives fMRI
dataset). Thus, it is a prerequisite to temporally
align the ANs’ responses to fMRI volumes to mea-
sure the synchronization between them. To this end,
the input audio stories are tokenized via the convo-
lutional layers in Wav2vec2.0, and partitioned into
subsets according to the TR. Let {t1, t2, · · · , tm}
denote the m tokens (m=75 in this study) in the
j-th subset (corresponding to the j-th time point in
fMRI), Ql,h

j = {ql,h1 , ql,h2 , · · · , ql,hm } and Kl,h
j =

{kl,h1 , kl,h2 , · · · , kl,hm } denote the queries and keys
in the h-th head and l-th layer in Wav2Vec2.0, re-
spectively. The i-th dimension of the correspond-
ing element-wise product EPl,h,i

j ∈ Rm×m (Fig.
1c) measures how a single AN selectively responds
to all the m queries and m keys. Thus, we define
the response of a single AN at time point j as the
mean of the entries in EPl,h,i

j (Fig. 1d). The tempo-
ral response of an AN to the entire input sequence
is derived by iterating through all the token subsets
(time points). Afterwards, it is convoluted with a
canonical hemodynamic response function (HRF)
implemented in SPM1 to count for compensation
for hemodynamic latency in fMRI.

3.3 BNs and Their Temporal Responses

The human brain is intrinsically organized as a
complex networked system, and brain functions
essentially rely on functional interactions among

1https://www.fil.ion.ucl.ac.uk/spm/

Figure 1: The definitions of AN and its response. The
attention matrix (a) can be factorized as the summation
of the element-wise products of queries and keys over
hidden dimensions (b). A fine-grained AN is defined as
each hidden dimension (c). The response of an AN can
be derived from its element-wise product matrix (d).

functional brain networks (FBNs) (Park and Fris-
ton, 2013). Compared to the isolated voxels (an
elementary structural unit in fMRI) that are used to
quantify the brain activity space in most existing
neural encoding studies (Tuckute et al., 2022; Mil-
let et al., 2022; Vaidya et al., 2022), FBNs capture
inter-regional functional interactions. Thus, we de-
fine each FBN as a single BN in neural recordings.

Various methods have been developed to identify
FBNs in fMRI. Here, we adopt an open access
model, the volumetric sparse deep belief networks
(VS-DBN) 2 to identify FBNs (Dong et al., 2019).
In brief, the VS-DBN learns a set of latent variables
embedded in fMRI. Each latent variable consists of
voxels exhibiting similar fluctuation patterns over
time and represents the spatial map of an FBN.

The VS-DBN consists of an input layer and three
layers of restricted Boltzmann machines (RBMs).
It takes an fMRI volume as a feature and each time
frame as a sample. The first RBM is with N visible
units, where N is the number of voxels in a volume.
The number of hidden units (m) in the third RBM
determines the number of FBNs. The weights in
RBMs are trained layer-wisely. The linear combi-
nation that performs successive multiplication of
weights from the third to the first RBM is used to
generate the global latent variables W. Each col-
umn in W represents an FBN’s spatial map. The
responses of a single hidden unit in the third RBM
to the entire input fMRI sequence are the corre-
sponding time series of an FBN and are regarded
as the temporal response of an FBN.

2https://github.com/QinglinDong/vsDBN
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4 Experiments

4.1 Dataset and Preprocessing
We use the open source “Narratives” fMRI dataset
(Nastase et al., 2021) in the experiments. The “Nar-
ratives” fMRI data were acquired while human sub-
jects listened to 27 diverse spoken stories. We se-
lect two sessions with moderate duration, the “Pie
man” (Pieman) and “The Man Who Forgot Ray
Bradbury” (Forgot). The Pieman is a story about a
journalist writing reports of a man with supernatu-
ral abilities (duration 422s, word count 957). FMRI
data were acquired for 82 subjects (282 volumes,
spatial resolution 3 × 3 × 4mm3, TR=1.5s). The
Forgot is about a man confronting a gradual loss of
memory (duration 837s, word count 2135). FMRI
data were acquired for 46 subjects (558 volumes,
spatial resolution 2.5× 2.5× 2.5mm3, TR=1.5s).
The "Narratives" fMRI data were released with var-
ious preprocessed versions and we use the AFNI-
smooth version. The spoken story was released
with time-stamped word-level transcripts and the
onset and duration of each phoneme in a word. We
use this information to temporally align phonemes
and fMRI volumes. In addition, we tag phonemes
in the audio-story with typical categories (vowel,
mixed, fricative, affricate, nasal and stop) defined
previously that cover the phonetic inventory of 38
unique phonemes (Hamooni and Mueen, 2014).

4.2 Implementation Details
We use the pre-trained Wav2Vec2.0-base main-
tained by HuggingFace 3 in the experiments. We
partition the stories into short segments by balanc-
ing the token capacity of Wav2Vec2.0 and sentence
integrity. It is notable that the story Forgot is much
longer than Pieman. Thus, we crop the Forgot from
the beginning to have the same number of TRs as
that in Pieman to facilitate a cross-validation. As
such, both spoken stories are partitioned into 25
segments (duration: 16.62±6.74s in Pieman and
15.30±3.50s in Forgot).

We train the VS-DBN model to extract FBNs
for each fMRI session independently. The fMRI
volumes of multiple subjects (randomly selected
75 subjects in Pieman, and all the 46 subjects in
Forgot) are aggregated as samples (20775/25668
in Pieman/Forgot). The parameters are set as fol-
lows: 512/256/128 hidden units in the 1st/2nd/3rd

RBM layer, Gaussian initialization with zero-mean
3https://huggingface.co/docs/transformers/

main/en/model_doc/wav2vec2

and a standard deviation of 0.01, learning rate
0.001/0.0005/0.0005, batch-size 20, L1 weight-
decay rate 0.001/0.00005/0.00005, 100 training
epochs, batch normalization. In each session, the
resulted FBNs in all the subjects share the same set
of spatial maps but have subject-specific temporal
responses. The subject-specific temporal responses
are averaged over subjects to characterize the tem-
poral responses of FBNs in population.

5 Results

5.1 Synchronization between ANs and BNs

We first assess the intra-session synchroniza-
tion between ANs and BNs. The distributions
of the AN’s maximum PCC to BNs for Pie-
man (Pieman-Pieman, 0.3305±0.0042) and Forgot
(Forgot-Forgot, 0.3142±0.0049) are shown in Fig.
2(a). Permutation tests with 5000 randomizations
show that the PCCs are significant (p < 0.01, FDR
corrected) for 9203/9192(99.86%/99.74%) ANs
in Pieman/Forgot. In both sessions, the average
PCC in each layer (Fig. 2b) is relatively stable
in the first ten layers but increases sharply in the
last two layers, indicating that the ANs in the last
two layers better synchronize to BNs. We then
evaluate the inter-session synchronization between
ANs and BNs, which may server as a stronger
baseline control. We identify the best correlated
AN in one session and the BN in the other. The
inter-session PCCs are significantly (p < 10−10)
lower compared to the intra-session one in both
sessions (Pieman-Forgot, 0.1912±0.0016; Forgot-
Pieman, 0.2097±0.0032; Fig. 2a). The AN that
is anchored by an BN is identified according to
Eq. 2. The PCCs (0.4262±0.0027 in Pieman and
0.4199±0.0029 in Forgot) are statistically signifi-
cant (p < 10−10) for all the 128 BNs in both ses-
sions. These observations show that the temporal
responses of ANs and BNs are well synchronized.

5.2 The Global BN anchored by ANs

We identify the global BN as the one that is the
most frequently anchored by ANs after applying a
PCC threshold of 0.25 (Fig. 3a). The spatial distri-
butions of the global BNs in Pieman (BN#47) and
Forgot (BN#42) are similar. They mainly encom-
pass the Heschl’s gyrus (HG) and nearby superior
temporal gyrus (STG), posterior superior temporal
sulcus (pSTS), posterior inferior temporal gyrus
(pITG), temporal pole (TP), temporo-parietal junc-
tion (TPJ), Broca’s and Wernicke’s areas in the in-
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Figure 2: (a) The distributions of intra-session (Pieman-
Pieman and Forgot-Forgot) and inter-session (Pieman-
Forgot and Forgot-Pieman) temporal synchronization
between ANs and BNs. (b) The average temporal syn-
chronization in each layer.

ferior frontal gyrus (IFG), pre-central gyrus (PrG),
and post-central gyrus (PoG) (Fig. 3b-c). These
brain regions well match the cortical anatomy of
the dual-stream language model (Hickok and Poep-
pel, 2007). The earliest stage of neural speech pro-
cessing involves spectrotemporal analysis in HG
and STG, followed by phonological-level represen-
tation in STS. Subsequently, the system diverges
into two streams, a dorsal steam (TPJ, IFG and
sensorymotor cortex of PrG and PoG) and a ventral
stream (pITG and TP) map sensory or phonologi-
cal representations onto articulatory motor repre-
sentations and lexical conceptual representations,
respectively (Hickok and Poeppel, 2007).

Intriguingly, the ANs that synchronize with the
global BN are widely distributed across layers 1-10,
but predominantly located on lower layers (i.e., 1-4,
Fig. 3d). We then assess the phonemic patterns
of query-key pairs that those ANs selectively re-
spond. In each of the 25 audio segments we select
1500 query-key pairs that have top values in the
EP matrix corresponding to each of the ANs, and
construct a 38 × 38 phoneme distribution matrix
(PDM), in which rows are queries and columns
are keys. Each entry in the PDM is the proportion
of the query-key pairs falling into the entry. The
average PDMs over all the ANs are quite homoge-
neous in both sessions (Fig. 3e), showing that the
global BN responds to general attentional relation-
ships among phonemes. Meanwhile, some ANs
are selective to phonemic relationships (e.g., vowel-
vowel, see details in section 5.4, Fig. 8). Taken
together, these observations reinforce the prevalent
functional interactions (Cloutman, 2013; Bhaya-
Grossman and Chang, 2022) among the brain re-
gions covered by the global BN and suggest that
the lower layers in Wav2Vec2.0 are responsive to
learn phonemic relationships.

Figure 3: (a) The number of ANs that are anchored by
a BN. The BN that is the most frequently anchored is
considered as the global BN (#47 in Pieman and #42 in
Forgot). (b) The BN#47 in Pieman. (c) The BN#42 in
Forgot. (d) The distribution of the global BN in differ-
ent layers. (e) The average phoneme distribution matrix.
Left/right: Pieman/Forgot. HG: Heschl’s gyrus; STG:
superior temporal gyrus; pSTS: posterior superior tem-
poral sulcus; pITG: posterior inferior temporal gyrus;
TP: temporal pole; TPJ: temporo-parietal junction; PoG:
post-central gyrus; PrG: pre-central gyrus.

5.3 The Local BNs in Each Layer

We then identify the frequently anchored BN in
each layer (local BNs). We define the anchoring
frequency of a BN in a layer as the ratio between
the number of ANs it anchors in that layer and
the total number of anchored AN-BN pairs in that
layer. The BNs’ anchoring frequency shows dis-
tinctive patterns across layers (Fig. 4). In lower
layers 1-5 and upper layers 11-12, the local BNs
are very sparse and limited to one or two predomi-
nant BNs. For example, the anchoring frequency
of the BN#47 is much higher compared to those of
the rest in layers 1-5. Meanwhile, the local BNs in
layers 6-10 are widely spread. That is, the ANs in
those layers tend to anchor to different BNs. We
highlight the local BNs in each layer by circles
and show their spatial maps in Fig. 5 for Pieman.
The BN#47 is referred Fig. 3(b). The anchoring
frequency and the local BNs in Forgot are shown
in Fig. A.1-A.2, respectively.

The global BN (BN#47) is identified as the local
BN in layers 1-5, however, its anchoring frequency
decreases as the layer goes deeper (Fig. 6a). The
BN#54 encompasses the working memory network
(WM, retains short-term temporal memory) and
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Figure 4: The BN’s anchoring frequency in each layer.
In each subplot, the x-axis is BN index and the y-axis is
anchoring frequency. Circles highlight local BNs.

the language network (Broca’s and Wernicke’s ar-
eas), reflecting the functional interactions between
them. It is identified as the local BNs in the inter-
mediate layers 6-10 and its anchoring frequency
increases and reaches the peak in layer 10 (Fig.
6b). The BN#67 involves the activations in PrG
and the deactivations in PrG and HG/STG, reflect-
ing the functional competition between them. It is
identified as the local BNs in layers 7-9. Its anchor-
ing frequency indicates that it is widely anchored
by ANs in layers 1-9 but fades out sharply in the
last three layers (Fig. 6c). The BN#83, which is
one of the local BNs in layer 10, exhibits activa-
tions in precuneus cortex (PcC, which is consid-
ered as part of the brain’s semantic system (Binder
et al., 2009)) and frontal pole (FP), as well as de-
activations in PrG and PoG. The BN#42 reflects
functional interactions among the primary auditory
cortex (HG/STG), the language network and visual
cortex (intracalcarine cortex, IcC, and PcC) and
it predominates the local BNs in layer 11. There
are two local BNs in layer 12, BN#30 and BN#37.
The BN#30 shows complex co-activations in the
ventral and dorsal streams in speech processing,
and semantic related regions including the angular
gyrus (AG), posterior supramarginal gyrus (SmGp),
and lateral occipital cortex (LOCs). The BN#37
mainly covers the ventral and dorsal streams in
speech processing.

Using cumulative attention diagonality (CAD)
applied to head-level attention score, Shim et al.
have shown distinctive global and local attention
patterns in lower (1-8) and upper (9-16) layers in
Wav2Vec2.0, respectively. The former integrates
long-range attention to form phonetic localization,
while the latter focuses on short-range diagonal

attention for language identification (Shim et al.,
2021). We apply the same metric to the EP matrix
of ANs rather than the head-level attention score.
Fig. 7 shows the average CAD over top 1% and
top 2% ANs in each layer for a randomly selected
segment in the two sessions. We identify a transient
stage (layers 6-10) between global (layers 1-4) and
local (layers 11-12) ones. Combined with the fade-
out of BN#47 (layers 1-5) and the fade-in of BN#54
(layers 6-10) along the layer depth (Fig. 6), we sug-
gest that there is an intermediate level between the
global and local ones in Wav2Vec2.0. That is, the
layers 6-10 may gradually integrate global phonetic
localization encoded in the early stages of cortical
speech hierarchy (BN#47) through the functional
interactions between WM and the language net-
work (BN#54) to form local language localization.
In addition, the good predictive performance in
WM has rarely been reported in exiting neural en-
coding studies of Wav2Vec2.0 (Li et al., 2022; Mil-
let et al., 2022; Tuckute et al., 2022; Vaidya et al.,
2022), which may be partly due to the relatively
coarse layer-level ANs used in these studies. Thus,
the fine-grained ANs defined in this study enable
us to preliminarily reveal this intermediate-level
representation in Wav2Vec2.0 and map it to its neu-
robiological counterparts.

Figure 5: The local BNs in Pieman. WM: working
memory; FP: frontal pole; IcC: intra-calcarine cortex;
PCC: posterior cingulate cortex; AG: angular gyrus;
SmGp: posterior supramarginal gyrus; LOCs:lateral
occipital cortex; SPL: superior parietal lobule; PcC:
precuneus cortex.
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Figure 6: The anchoring frequency of three local BNs
in different layers. (a) BN#47. (b) BN#54. (c) BN#67.

Figure 7: The average cumulative attention diagonality
(CAD) of each layer. Left/right: Pieman/Forgot.

5.4 Phoneme-selective AN-BN Paris

We identify some ANs that are selective to differ-
ent categories of phonemes, as shown in Fig. 8
for some examples. In each example, we show
the phoneme distribution matrix (PDM) of the AN,
and the BN anchored by the AN. It is notable that
the ANs in the two sessions are identical and the
corresponding BNs are similar, showing good re-
producibility across sessions. Brain regions includ-
ing HG/STG, STS and sensorimotor areas are fre-
quently observed in those BNs, which is partly in
line with previous studies (Kim et al., 2021).

Despite some interesting findings in computa-
tional interpretation of audio-transformers (Shim
et al., 2021; Yang et al., 2020), the neural basis
of phoneme-selectivity in the brain is still under
debate (Mesgarani et al., 2014; Gwilliams et al.,
2022; Bhaya-Grossman and Chang, 2022; Sohoglu,
2019). What we intend to convey here is that the
fine-grained ANs defined in this study, applied in a
neural encoding framework, may provide an alter-
native strategy to probe this problem.

6 Discussion and Conclusion

We proposed to define fine-grained artificial neu-
rons (ANs) in the audio-transformer Wav2Vec2.0
and map them to their neurobiological counter-
parts. Our experimental results showed that the
fine-grained ANs carried meaningful linguistic in-
formation and well synchronized to their BN sig-

Figure 8: Phoneme-selective AN-BN pairs. (a) Pieman.
(b) Forgot. The indices of AN and BN in a pair are
below the phoneme distribution matrix. L2H12D29-#47
denotes that the AN located on layer 1, head 12, and
dimension 29 synchronizes with BN#47.

natures. Moreover, the anchored AN-BN pairs are
partly interpretable in a neurolinguistic view.

Although a comprehensive mapping of the corti-
cal speech hierarchy is out of the scope of this study,
we observed some interesting results, facilitated by
the fine-grained ANs. First, the alignment between
the computational hierarchy in Wav2Vec2.0 and
the cortical speech hierarchy is largely in line with
existing studies (Li et al., 2022; Millet et al., 2022;
Tuckute et al., 2022; Vaidya et al., 2022). Second,
and more importantly, we preliminarily discovered
an intermediate stage in both the computational rep-
resentation in Wav2Vec2.0 and the cortical repre-
sentation in the brain. It gradually integrates global
phonetic localization encoded in the early stages
of neural speech hierarchy through the functional
interactions between the working memory and lan-
guage networks to form local language localization.
In comparison, a good predictive performance from
computational representation in audio-transformers
to brain activities has rarely been reported pre-
viously. Third, we observed phoneme-selective
neural-level ANs in Wav2Vec2.0, and the associ-
ated BNs are partly in line with existing studies
(Kim et al., 2021). Thus, the fine-grained ANs de-
fined here may potentially provide an alternative
approach to explore whether there are phoneme-
selective neural activities in the brain.

The fine-grained ANs defined in this study may
also serve as the brain-based test-bed to evaluate
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and interpret audio-transformers, and provide neu-
rolinguistic support for better understanding of the
role of self-attention for efficient speech computa-
tion. For example, after interpreting distinctive at-
tentional profiles in different attention heads, Shim
et al. applied a layer-wise attention map reuse strat-
egy to improve model performance (Shim et al.,
2021). A similar but with more fine-grained strat-
egy could further improve model performance.

In conclusion, we defined and validated neuron-
level ANs in Wav2Vec2.0. This definition may
serve as a general strategy to link transformer-based
deep learning models to neural responses for prob-
ing the sensory processing in the brain.

7 Limitation

The current study is has some limitations. First, we
used a single audio-transformer model, the pre-
trained Wav2Vec2.0-base, as a test bed to vali-
date the fine-grained ANs and couple them to their
BN signatures. On the one hand, various audio-
transformers have been proposed in the literature.
On the other hand, the parameters of a pre-trained
model are fine-tuned by downstream tasks and pre-
vious studies have shown that fine-tuning may lead
DNNs to increase their brain similarity (Millet and
King, 2021; Tuckute et al., 2022). Thus, it would be
interesting to explore whether there are consistent
AN-BN coupling patterns across different models,
either pre-trained or fine-tuned. In addition, it is
necessary to investigate these patterns across dif-
ferent languages (e.g., English VS Mandarin).

Second, existing studies have shown that audio-
transformers are able to learn sound-generic,
speech-specific and language-specific representa-
tions and those hierarchical representations are akin
to the cortex (Li et al., 2022; Millet et al., 2022;
Vaidya et al., 2022). Thus, it would be interesting
to explore whether the fine-grained ANs carry such
multi-level representations, and link them to brain
responses.

Third, the reproducibilty between the two ses-
sions was high regarding to most of the results (e.g.,
the global BNs and the phoneme-selective AN-BN
pairs), but it was relatively low in some results
(e.g., the local ANs in some layers). We speculate
that this is the consequence of relatively smaller
fMRI training samples but much larger amount of
VS-DBN model parameters in the session of For-
got, in which the number of subjects is smaller
but the fMRI spatial resolution are higher. Higher

spatial resolution results in much larger number of
valid voxels (120,506) compared to that in Pieman
(50,065) and consequently more visible units in the
VS-DBN model.

Last but not least, the analyses presented in this
study are intrinsically limited by the coarseness of
spatial (voxels in millimeters) and temporal reso-
lution (volumes in seconds) of fMRI data. Map-
ping from sound to an interpretable representation
involves integrating neural activities on different
spatial-scales down to sub-millimeters and on dif-
ferent timescales down to milliseconds. Thus, it
would be of great interest in the future to apply the
fine-grained ANs to auditory magnetoencephalo-
gram (MEG) dataset to disentangle the symbiosis
of model computation and brain responses in both
space and time (Bhaya-Grossman and Chang, 2022;
Gwilliams et al., 2022).
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A Appendix

Figure A.1: The anchoring frequency of BNs in each
layer in Forgot. In each subplot, the x-axis is BN index
and the y-axis is anchoring frequency.Circles highlight
the indices of local BNs.

Figure A.2: The local BNs in Forgot. HG: Heschl’s
gyrus; STG: superior temporal gyrus; STS: superior tem-
poral sulcus; pITG: posterior inferior temporal gyrus;
TP: temporal pole; PrG: pre-central gyrus; IcC: intracal-
carine cortex; DMN: default mode network; SmGp: pos-
terior supramarginal gyrus; OcP: occipital pole; LOC:
lateral occipital cortex; AG: angular gyrus.
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