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Abstract

Expressive text-to-speech aims to generate
high-quality samples with rich and diverse
prosody, which is hampered by dual chal-
lenges: 1) prosodic attributes in highly dy-
namic voices are difficult to capture and model
without intonation; and 2) highly multimodal
prosodic representations cannot be well learned
by simple regression (e.g., MSE) objectives,
which causes blurry and over-smoothing pre-
dictions. This paper proposes Prosody-TTS,
a two-stage pipeline that enhances prosody
modeling and sampling by introducing several
components: 1) a self-supervised masked au-
toencoder to model the prosodic representation
without relying on text transcriptions or local
prosody attributes, which ensures to cover di-
verse speaking voices with superior generaliza-
tion; and 2) a diffusion model to sample diverse
prosodic patterns within the latent space, which
prevents TTS models from generating samples
with dull prosodic performance. Experimental
results show that Prosody-TTS achieves new
state-of-the-art in text-to-speech with natural
and expressive synthesis. Both subjective and
objective evaluation demonstrate that it exhibits
superior audio quality and prosody naturalness
with rich and diverse prosodic attributes. 1

1 Introduction

Text-to-speech (TTS) (Wang et al., 2017; Ren et al.,
2019; Kim et al., 2020; Huang et al., 2023) aims
to generate human-like audios using text and auxil-
iary conditions, which attracts broad interest in the
machine learning community. TTS models have
been extended to more complex scenarios, requir-
ing more natural and expressive voice generation
with improved prosody modeling (Min et al., 2021;
Chen et al., 2021; Li et al., 2021). A growing num-
ber of applications, such as personalized voice as-
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1Audio samples are available at https://
improve-prosody.github.io/.

sistants and game commentary, have been actively
developed and deployed to real-world applications.

Expressive text-to-speech aims to generate sam-
ples with natural, rich, and diverse prosodic at-
tributes (e.g., duration, pitch, and energy), which
is challenged by two major obstacles: 1) Prosody
patterns (Qian et al., 2021; Wang et al., 2018) in
human speech are often very sparse, which are dif-
ficult to capture and model without supervision
signals (i.e., detailed transcriptions); 2) machine
learning models (Li et al., 2018; Wang et al., 2022)
usually learn a mean distribution over input data,
resulting a dull prediction with prosody learners
which fails to produce natural and diverse prosodic
styles in the generated speech. Although recent
studies (Choi et al., 2021; Kim et al., 2021; Ren
et al., 2022) have proposed several ways to enhance
prosody for high-fidelity TTS, there still exist dual
challenges:

• Prosody capturing and modeling. Researchers
leverage several designs to capture and model
prosodic attributes: 1) Local prosody features.
Ren et al. (2020) and Choi et al. (2021) introduce
the idea of predicting pitch and energy explicitly.
However, those signal processing-based prosodic
attributes may have inevitable errors, which make
the optimization of TTS models difficult and de-
grade performance. 2) Variational latent repre-
sentations. A series of works (Sun et al., 2020;
Kenter et al., 2019; Liu et al., 2022) utilize condi-
tional variational auto-encoder to model prosody
in a latent space, where global, local, or hierarchi-
cal features are sampled from a prior distribution.
Nevertheless, they generally request speech-text
parallel data for modeling prosody, which con-
strain the learned representation to the paired
TTS data.

• Prosody producing and sampling. Most
works (Wang et al., 2017; Min et al., 2021;
Yang et al., 2021a) utilize regression losses (e.g.,
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MSE) for prediction and assume that the latent
space follows a unimodal distribution. However,
the highly multimodal (a phoneme may be pro-
nounced in various speaking styles) prosodic rep-
resentations cannot be well modeled by these
simple objectives, which causes blurry and over-
smoothing predictions.

To address the above dual challenges for
prosody-enhanced expressive text-to-speech, we
propose Prosody-TTS, a two-stage TTS pipeline
that improves both prosody modeling and sampling
by introducing several novel designs:

• Self-supervised prosody pre-training. To han-
dle different acoustic conditions for expres-
sive speech, we propose prosody masked au-
toencoders (Prosody-MAE), a transformer-based
model that captures prosody patterns (e.g., local
rises and falls of the pitch and stress) in a self-
supervised manner. It is trained on audio-only
data, which avoids inevitable errors and ensures
to cover diverse speech corpora with superior
generalization.

• Generative diffusion modeling in latent space.
A diffusion model is explored to bridge TTS in-
puts (i.e., text and target speaker) and speaking
prosody in latent space. We formulate the gener-
ative process with multiple conditional diffusion
steps, and thus we expect our model to exhibit
better diversity and prevent generating samples
with dull prosodic performance.

Experimental results on LJSpeech and Lib-
riTTS benchmarks demonstrate that our proposed
Prosody-TTS achieves new state-of-the-art results
for text-to-speech with natural and expressive syn-
thesis. Both subjective and objective evaluations
demonstrate that Prosody-TTS exhibits superior au-
dio quality and prosody naturalness with rich and
diverse prosodic attributes.

2 Related Works

2.1 Prosody Modeling in Text-To-Speech
Prosody modeling has been studied for decades in
the TTS community. The idea of pitch and energy
prediction (Łańcucki, 2021; Ren et al., 2020) rep-
resents a popular way to address the one-to-many
mapping challenges. Wang et al. (2019) utilize the
VQ-VAE framework to learn a latent representation
for the F0 contour of each linguistic unit and adopt
a second-stage model which maps from linguistic

features to the latent features. Choi et al. (2021)
further use a new set of analysis features, i.e., the
wav2vec and Yingram feature for self-supervised
training. However, these signal processing-based
prosodic attributes have inevitable errors, which
make the optimization of TTS models difficult
and result in degraded TTS performance. Instead
of relying on local prosody attributes, a series of
works (Sun et al., 2020; Kenter et al., 2019; Liu
et al., 2022) utilize conditional variational auto-
encoder to model prosody in a latent space, where
global, local, or hierarchical features are sampled
from a prior distribution. Nevertheless, they gener-
ally request speech-text parallel data for modeling
prosody, which constrained the learned representa-
tion to the paired TTS data and explicit poor gen-
eralization (Wang et al., 2022). Ren et al. (2022)
introduces a prosody encoder to disentangle the
prosody to latent vectors, while the requirement of
a pre-trained TTS model hurts model generaliza-
tion. In this work, we propose to learn the prosodic
distribution given speech-only corpora without re-
lying on pre-trained TTS models or text transcrip-
tions.

2.2 Self-Supervised Learning in Speech
Recently, self-supervised learning (SSL) has
emerged as a popular solution to many speech pro-
cessing problems with a massive amount of unla-
beled speech data. HuBERT (Hsu et al., 2021) is
trained with a masked prediction with masked con-
tinuous audio signals. SS-AST (Gong et al., 2022)
is a self-supervised learning method that operates
over spectrogram patches. Baade et al. (2022)
propose a simple yet powerful improvement over
the recent audio spectrogram transformer (SSAST)
model. Audio-MAE (Xu et al., 2022) is a simple
extension of image-based Masked Autoencoders
(MAE) (He et al., 2022) for SSL from audio spec-
trograms. Unlike most of the speech SSL models
which capture linguistic content for style-agnostic
representation, we focus on learning prosodic rep-
resentation in expressive speech, which is relatively
overlooked.

2.3 Diffusion Probabilistic Model
Denoising diffusion probabilistic models
(DDPMs) (Ho et al., 2020; Song et al., 2020a)
are likelihood-based generative models that have
recently advanced the SOTA results in several
important domains, including image (Dhariwal and
Nichol, 2021; Song et al., 2020a), audio (Huang
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et al., 2022c; Liu et al., 2021; Huang et al.,
2022d), and 3D point cloud generation (Luo
and Hu, 2021). In this work, we investigate
generative modeling for latent representations
with a conditional diffusion model. Unlike
regression-based prediction, it generates realistic
results that match the ground-truth distribution and
avoid over-smoothing predictions.

3 Prosody-TTS

In this section, we first overview the Prosody-TTS
framework, introducing several critical designs
with prosody masked autoencoder (Prosody-MAE),
latent diffusion model, and the vector quantization
layer. Finally, we present the pre-training, training,
and inference pipeline, which supports high-fidelity
speech synthesis with natural, rich, and diverse
prosodic attributes.

3.1 Problem Formulation

Expressive text-to-speech aims to generate high-
fidelity speech samples with natural and diverse
prosody (e.g., duration, pitch, and energy). Since
the duration attribute has been inherently well-
studied in non-autoregressive literature (Ren et al.,
2020; Min et al., 2021; Huang et al., 2021, 2022b),
we mainly explore prosody on rises and falls of
the pitch and stress in this work.

3.2 Overview

As illustrated in Figure 1, to address the afore-
mentioned dual challenges for prosody-enhanced
expressive text-to-speech, we introduce a multi-
stage pipeline with the following key designs: 1)
a prosody masked autoencoder (Prosody-MAE)
to capture and model prosody feature in a self-
supervised manner. 2) a generative diffusion model
to produce and sample prosody in latent space.
Specifically:

1) In the pre-training stage, the Prosody-MAE
captures prosodic information from large-scale un-
paired speech data without relying on transcriptions
or local prosody attributes. The self-supervised
training manner ensures Prosody-MAE learns dis-
criminative prosody representations covering di-
verse speech corpora; 2) In training TTS mod-
els, the converged prosody encoder derives style
representations z for optimizing the latent diffu-
sion model (LDM), which bridges the TTS con-
ditions (i.e., textual features and target speaker)
and prosody representations via diffusion process

q(zt|zt−1); 3) In inference time, the LDM samples
diverse latent representations within the prosodic
space through reverse denoising pθ(zt−1|zt). It
breaks the generation process into several condi-
tional diffusion steps, which exhibits better diver-
sity and prevents generating dull samples with a
constrained prosodic distribution. We describe
these designs in detail in the following subsections.

3.3 Self-supervised Prosody Pre-training
In this part, we propose Prosody-MAE, a self-
supervised autoencoder (AE) consisting of an en-
coder and decoder that can effectively capture and
model prosodic style given speech samples without
relying on text annotations. Moreover, we design
several techniques to learn prosodic representation
in a self-supervised manner:

• Information flow. Through analysis of speech at-
tributes, Prosody-MAE enjoys a carefully-crafted
bottleneck design to disentangle linguistic and
speaker information, ensuring the prosody stream
to learn discriminative style-aware representa-
tions.

• Multi-task learning. Auxiliary style (i.e., pitch
and energy) classifications have been included
in training SSL models, and it guarantees
to discover style representation aware of the
pitch/stress rises and falls.

3.3.1 Information Flow
Most voice reconstruction tasks (Choi et al., 2021;
Polyak et al., 2021) can be defined by synthesizing
and controlling three aspects of voice, i.e., linguis-
tic, speaker, and prosody encoder. It motivates us
to develop an autoencoder that can analyze voice
into these properties and then synthesize them back
into a speech (transformer decoder).

Linguistic Encoder. Learning the linguistic con-
tent C from the speech signal is crucial to construct
an intelligible speech signal, and we obtain lin-
guistic representation using a pre-trained XLSR-53.
Since SSL representation (Choi et al., 2021; Qian
et al., 2022; Gat et al., 2022) contain both linguistic
and acoustic information, we perturb the speaker
and prosody patterns in audios by randomly shift-
ing pitch and shaping energy values, ensuring it
only provides the linguistic-related (i.e., prosodic-
agnostic) information. More details have been in-
cluded in Appendix E.

Speaker Encoder. Speaker S is perceived as
the timbre characteristic of a voice. It has been
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Figure 1: In subfigure (a), the publicly-available pre-trained modules are printed with a lock. In subfigure (b), the
converged prosody encoder from Prosody-MAE is denoted with dotted lines and included only for training TTS
models.

reported that (Choi et al., 2021) the features from
the first layer of XLSR-53 perform as clusters rep-
resentation for each speaker.

Prosody Encoder. Prosody is a vital part of the
domain style, where different emotions or styles
have distinctive prosody patterns. In the multi-
layer transformer prosody encoder, 1) speech is
first transformed and embedded into spectrogram
patches, and 2) the encoders f : X 7→ P take
patches X as input and effectively capture prosodic
latent representations p1, . . . ,pT for T time-steps.
3) Some tokens are masked by randomly replacing
them with a learned masking token (mi illustrated
in Figure 1(a)). In practice, we mask by shuffling
the input patches and keeping the first 1 − p pro-
portion of tokens.

Transformer Decoder. As illustrated in Fig-
ure 1(a), we conduct the element-wise addition
operation between the linguistic content C, speaker
S and the prosody P representations before pass-
ing through the transformer decoder with a series
of transformer blocks. To this end, the carefully
crafted bottleneck design in Prosody-MAE disen-
tangles linguistic, speaker, and prosody attributes
and then synthesizes them back into a speech with
a transformer decoder, ensuring the prosody stream
to learn discriminative prosody-aware representa-
tions agnostic to linguistic content and speaker.

3.3.2 Multi-task Learning
For training autoencoders, reconstruction loss Lg

is calculated as a mean squared error between the
output of the linear reconstruction head and the
input patches. Contrastive head (Gong et al., 2022)

creates an output vector vi similar to the masked in-
put patch xi but dissimilar to other masked inputs,
where we consider different masked inputs as neg-
ative samples and implement the InfoNCE (Oord
et al., 2018) as a criterion.

Moreover, to enhance the model in deriving
style attributes, we explore the frame-level style
(i.e., pitch Lp, energy Le) classification with cross-
entropy criterion (Oord et al., 2018) as the comple-
mental tasks. To formulate the classification target,
we respectively 1) quantize the fundamental fre-
quency (f0) of each frame to 256 possible values
pi in log-scale; and 2) compute the L2-norm of
the amplitude of each short-time Fourier transform
(STFT) and then quantize to 256 possible values ei
uniformly. On that account, Prosody-MAE better
discovers prosodic representations which are aware
of the pitch/stress rises and falls.

3.4 Generative Modeling of Prosodic
Representations

To produce and sample prosodic representation z
within the latent space learned in Prosody-MAE,
we implement our prosody generator over La-
tent Diffusion Models (LDMs) (Rombach et al.,
2022; Gal et al., 2022), a recently introduced
class of Denoising Diffusion Probabilistic Models
(DDPMs) (Ho et al., 2020) that operate in the latent
space. As illustrated in Figure 1(c), the denoising
WaveNet θ conditions on phonetic representation,
breaking the generation process into several condi-
tional diffusion steps. The training loss is defined
as the mean squared error in the noise ϵ ∼ N (0, I)
space, and efficient training is optimizing a random
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term of t with stochastic gradient descent:

Lθ =

∥∥∥∥ϵθ
(
αtz0 +

√
1− α2

tϵ

)
− ϵ

∥∥∥∥
2

2

(1)

To this end, our prosody generator produces and
samples prosody faithfully, which strongly matches
the ground-truth distribution and exhibits better
diversity. It avoids incorrect unimodal distribution
assumptions by regression objectives (e.g., MSE)
and prevents generating samples with dull prosodic
performance. We refer the reader to Section 4.2 for
summary of our findings.

3.5 Vector Quantization
It has been reported (Rombach et al., 2022) that due
to the expressiveness of diffusion models, the pro-
duced latent spaces z could be highly variant and
diverse. To avoid instability, we impose a vector
quantization (VQ) layer after the latent diffusion
for regularization.

Denote the latent space e ∈ RK×D where K is
the size of the discrete latent space (i.e., a K-way
categorical), and D is the dimensionality of each
latent embedding vector ei. Note that there are
K embedding vectors ei ∈ RD, i ∈ 1, 2, . . . ,K.
To make sure the representation sequence com-
mits to an embedding and its output does not grow,
we add a commitment loss following previous
work (van den Oord et al., 2017):

Lc = ∥z− sg[e]∥22 , (2)

where sg stands for stop gradient.

3.6 Pre-training, Training and Inference
Procedures

3.6.1 Pre-training and Training
We pre-train the Prosody-MAE to derive prosodic
representation in a self-supervised manner with
the following objectives: 1) reconstruction loss Lg:
the MSE between the estimated and ground-truth
sample; 2) contrastive loss Ld: the discriminative
gradient to pick the correct patch for each masked
position from all patches being masked, and 3)
frame-level style (i.e., pitch, energy) classification
losses Lp,Le: the cross entropy error between the
estimated and ground-truth style attributes.

In training Prosody-TTS, the final loss terms con-
sist of the following parts: 1) duration loss Ldur:
MSE between the predicted and the GT phoneme-
level duration in log scale; 2) diffusion losses in
prosody generator Lldm and mel decoder Ldec: cal-
culating between the estimated and gaussian noise

according to Equation 1; 3) commitment loss Lc:
regularizing vector quantization layer according to
Equation 2.

3.6.2 Inference

As illustrated in Figure 1, Prosody-TTS generates
expressive speech with natural, rich, and diverse
prosody in the following pipeline: 1) The text en-
coder takes the phoneme sequence as input, which
is expanded according to the predicted durations;
2) conditioning on linguistic and speaker informa-
tion, the prosody generator randomly samples a
noise latent and iteratively denoises to produce a
new prosodic representation in latent space, and 3)
the mel decoder converts randomly sampled noise
latent and iteratively decodes to expressive mel-
spectrograms.

4 Experiments

4.1 Experimental Setup

4.1.1 Pre-training Prosody-MAE

In the pre-training stage, we utilize the commonly-
used LibriSpeech (Panayotov et al., 2015) dataset
with labels discarded, which provides 960 hours
of audiobook data in English, read by over 1,000
speakers. We convert the 16kHz waveforms into
128-dimensional log-Melfilterbank features with a
frame length of 25 ms and frame shift of 10 ms.
The spectrogram is then split into 16×16 patches.

By default, we use an encoder with 6 layers
and a decoder of 2 layers, both using 12 heads
and a width of 768. We train Prosody-MAE for
up to 400k iterations on 8 NVIDIA V100 GPUs
using the publicly-available fairseq framework (Ott
et al., 2019), and the pre-training takes about 5 days.
For downstream evaluation, we use the standard
SUPERB (Yang et al., 2021b) training and testing
framework. More detailed information has been
attached in Appendix C.

4.1.2 Training Prosody-TTS

Dataset. For a fair and reproducible comparison
against other competing methods, we use the bench-
mark LJSpeech dataset (Ito, 2017), which consists
of 13,100 audio clips from a female speaker for
about 24 hours in total. For the multi-speaker sce-
nario, we utilize the 300-hour LibriTTS (Zen et al.,
2019) dataset derived from LibriSpeech. We con-
vert the text sequence into the phoneme sequence
with an open-source grapheme-to-phoneme conver-
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Method LJSpeech LibriTTS
MOS-P MOS-Q MCD NDB JSD MOS-P MOS-Q MCD NDB JSD

GT 4.36±0.05 4.39±0.06 / / / 4.38±0.05 4.42±0.06 / /
GT(voc.) 4.31±0.06 4.25±0.06 1.67 19 0.02 4.35±0.04 4.22±0.05 1.52 41 0.01

FastSpeech 2 3.92±0.07 3.84±0.06 3.88 45 0.05 3.89±0.06 3.81±0.07 4.35 74 0.04
StyleSpeech 3.94±0.06 3.88±0.05 5.54 41 0.07 3.95±0.07 3.91±0.08 3.78 58 0.01
Glow-TTS 3.88±0.06 3.91±0.06 3.54 34 0.03 3.91±0.08 3.86±0.08 5.38 61 0.03
Grad-TTS 3.91±0.07 3.92±0.06 5.01 49 0.13 3.96±0.06 3.97±0.05 3.93 71 0.05
YourTTS 3.97±0.06 3.96±0.06 5.09 47 0.08 3.99±0.07 3.99±0.06 4.61 73 0.06

Prosody-TTS 4.10±0.06 4.03±0.05 3.52 30 0.04 4.12±0.07 4.09±0.06 3.39 52 0.01

Table 1: Performance (audio quality and prosody naturalness) comparison with other models. We report
the evaluation metrics including MOS(↑), MCD(↓), NDB(↓), and JSD(↓). The mel-spectrograms are converted to
waveforms using Hifi-GAN (V1).

Model Prosody Capturing Prosody Sampling

FastSpeech 2 Local Prosody Regression
StyleSpeech Local Prosody Regression
Glow-TTS Local Prosody Generative
Grad-TTS Local Prosody Generative
YourTTS Variational Generative

Prosody-TTS Self-Supervised Generative

Table 2: Prosody modeling and sampling approaches
comparison with other models.

sion tool (Sun et al., 2019) 2.
Following the common practice (Chen et al.,

2021; Min et al., 2021), we conduct preprocessing
on the speech and text data: 1) convert the sam-
pling rate of all speech data to 16kHz; 2) extract
the spectrogram with the FFT size of 1024, hop
size of 256, and window size of 1024 samples; 3)
convert it to a mel-spectrogram with 80 frequency
bins.

Model Configurations. Prosody-TTS con-
sists of 4 feed-forward transformer blocks for the
phoneme encoder. We add a linear layer to trans-
form the 768-dimensional prosody latent represen-
tation from Prosody-MAE to 256 dimensions. The
default size of the codebook in the vector quanti-
zation layer is set to 1000. The diffusion model
comprises a 1x1 convolution layer and N convolu-
tion blocks with residual connections to project the
input hidden sequence with 256 channels. For any
step t, we use the cosine schedule βt = cos(0.5πt).
More detailed information has been attached in
Appendix A.

Training and Evaluation. We train Prosody-
TTS for 200,000 steps using 4 NVIDIA V100
GPUs with a batch size of 64 sentences. Adam opti-
mizer is used with β1 = 0.9, β2 = 0.98, ϵ = 10−9.
We utilize HiFi-GAN (Kong et al., 2020) as the
vocoder to synthesize waveform from the mel-

2https://github.com/Kyubyong/g2p

spectrogram in our experiments.
We conduct crowd-sourced human evaluations

on the testing set via Amazon Mechanical Turk,
which is reported with 95% confidence intervals
(CI). We analyze the MOS in two aspects: prosody
(naturalness of pitch, energy, and duration) and
audio quality (clarity, high-frequency and original
timbre reconstruction), respectively scoring MOS-
P and MOS-Q. We further include objective evalua-
tion metrics: MCD (Kubichek, 1993) measures the
audio and prosody quality, NDB and JSD (Richard-
son and Weiss, 2018) explore the diversity of gen-
erated mel-spectrograms. More details have been
attached in Appendix F.

Baseline Models. We compare the quality of
generated audio samples with other systems, in-
cluding 1) GT, the ground-truth audio; 2) GT (voc.),
we first convert the ground-truth audio into mel-
spectrograms and then convert them back to audio
using HiFi-GAN (V1) (Kong et al., 2020); 3) Fast-
Speech 2 (Ren et al., 2020): a model that predicts
local prosody attributes; 4) Meta-StyleSpeech (Kim
et al., 2020): the finetuned multi-speaker model
with meta-learning; 5) Glow-TTS (Kim et al.,
2020): a flow-based TTS model trained with mono-
tonic alignment search; 6) Grad-TTS (Popov et al.,
2021): a denoising diffusion probabilistic models
for speech synthesis. 7) YourTTS (Casanova et al.,
2022): an expressive model for zero-shot multi-
speaker synthesis which is built upon VITS (Kim
et al., 2021). We list the prosody modeling and
sampling approaches in baseline models in Table 2.

4.2 Quantitative Results

Both objective and subjective evaluation results
are presented in Table 1, and we have the fol-
lowing observations: 1) In terms of audio qual-
ity, Prosody-TTS achieves the highest perceptual
quality with MOS-Q of 4.03 (LJSpeech) and 4.09

8023

https://github.com/Kyubyong/g2p


GT

Prosody-TTS

SC-GlowTTS

YourTTS Grad-TTS

Meta-StyleSpeechFastSpeech 2

Figure 2: Visualizations of the generated mel-spectrograms. The corresponding text of generated speech samples is
“there was not a worse vagabond in Shrewsbury than old Barney the piper.”.

(LibriTTS). For objective evaluation, Prosody-TTS
also demonstrates the outperformed performance
in MCD, superior to all baseline models. 2) For
prosody diversity and naturalness, Prosody-TTS
scores the highest overall MOS-P with a gap of
0.21 (LJSpeech) and 0.23 (LibriTTS) compared
to the ground truth audio. Prosody-TTS scores
the superior NDB with scores of 30 (LJSpeech)
and 52 (LibriTTS), producing samples covering
diverse prosodic patterns (e.g., local rises and falls
of the pitch and stress). Informally, by breaking
the generation process into several conditional dif-
fusion steps, generative latent modeling prevents
TTS from synthesizing samples with dull prosodic
performance.

The evaluation of the TTS models is very chal-
lenging due to its subjective nature in perceptual
quality, and thus we include a site-by-site AXY test
in Table 3. For each reference (A), the listeners are
asked to choose a preferred one among the samples
synthesized by baseline models (X) and proposed
Prosody-TTS (Y), from which AXY preference
rates are calculated. It indicates that raters prefer
our model synthesis against baselines in terms of
prosody naturalness and expressiveness. Without
relying on text transcriptions or local prosody at-
tributes, Prosody-TTS is trained on an audio-only
corpus in a self-supervised manner, covering di-
verse speaking styles and avoiding dull synthesis
with similar patterns.

4.3 Qualitative Findings

As illustrated in Figure 2, we plot the mel-
spectrograms and corresponding pitch tracks gen-
erated by the TTS systems and have the follow-

Baseline 7-point score X Neutral Y

FastSpeech 2 1.13 ±0.19 21% 10% 69%
StyleSpeech 1.50±0.11 33% 12% 55%
Glow-TTS 1.11±0.11 13% 22% 65%
Grad-TTS 1.20±0.08 19 % 21% 60%
YourTTS 1.42±0.10 28% 13% 59%

Table 3: The AXY preference test results. The scale
ranges of 7-point are from “X is much closer" to “Both
are about the same distance" to “Y is much closer", and
can naturally be mapped on the integers from -3 to 3.

ing observations: 1) Prosody-TTS can generate
mel-spectrograms with rich details in frequency
bins between two adjacent harmonics, unvoiced
frames, and high-frequency parts, which results
in more natural sounds. 2) Prosody-TTS demon-
strates its ability to generate samples with diverse
prosodic styles. In contrast, some baseline models
have difficulties addressing the dual challenges of
prosody modeling and sampling: some of them
learn a mean pitch contour (YourTTS, Grad-TTS)
or incomplete sampling (FastSpeech 2), others suf-
fer from a perturbed distribution with acute contour
(SC-GlowTTS, Meta-StyleSpeech).

4.4 Ablation Studies and Model Properties

In this section, we conduct ablation studies to
demonstrate the effectiveness of several designs to
alleviate the dual challenges in prosody-enhanced
text-to-speech:

• For prosody capturing and modeling, we
explore Prosody-MAE with different model
properties in the style-aware downstream chal-
lenges, including the frame-level pitch and
energy recognition on the commonly-used
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Objective PA PM EM

Lg 70.0 8.35 4.63
+Ld 73.1 7.50 3.13
+Ld + Lp + Le 75.2 7.22 1.76

(a) Pretext Task

IF IP PA PM EM

%% 73.0 7.50 3.13
"% 74.9 7.76 6.26
"" 75.2 7.22 1.76

(b) Information Flow

Model CMOS-P CMOS-Q

Prosody-MAE 0.00 0.00
w/o LDM -0.11 -0.04
w/o VQ -0.04 -0.08

Local Prosody -0.12 -0.02
Variational Inference -0.10 -0.03

(c) Prosody Sampling

Table 4: Ablation studies and model propagates. For prosody capturing and modeling, we report accuracy
(PA↑), mean absolute error (PM↓) in pitch recognition, and mean absolute error (EM↓) in energy recognition. For
prosody producing and sampling, we evaluate through human ratings with CMOS-P/CMOS-Q (↑). In table (b),
we use IF and IP to denote the carefully-crafted information flow design and the perturbation. More ablations have
been attached in Appendix B, and details on evaluation metrics are included in Appendix F.

dataset IEMOCAP (Busso et al., 2008).

• For prosody producing and sampling, we in-
vestigate the generative modeling in Prosody-
TTS with diffusion prosody generator and vec-
tor quantization modulewith through CMOS
evaluation.

4.4.1 Prosody capturing and modeling
Pretext task. We investigate the impact of differ-
ent pretext tasks for pre-training the Prosody-MAE,
and find that 1) the additional contrastive objective
Ld leads to better performance for all tasks, and
2) the joint multi-task learning with frame-level
style classification Lp,Le has witnessed a distinct
promotion of downstream accuracy, demonstrat-
ing its efficiency in learning style-aware prosody
representations.

Information flow. We conduct ablation studies
to demonstrate the effectiveness of the carefully-
crafted information flow in learning prosodic style
attributes: 1) Dropping the linguistic and speaker
encoder has witnessed a distinct degradation of
downstream performance, proving that they dis-
entangle the linguistic and speaker information,
ensuring the prosody stream to learn style-aware
representations; and 2) Removing the information
perturbation also decreases accuracy, demonstrat-
ing that the perturbation assists to selectively pro-
vide only the linguistic (i.e., prosodic-agnostic) and
eliminate undesired information.

More ablations on masking strategies, network
architecture, and further comparision with other
state-of-the-art have been attached in Appendix B

4.4.2 Prosody producing and sampling
To verify the effectiveness of prosody producing
and sampling in Prosody-TTS, we respectively re-
place the latent diffusion model and remove the

vector quantization module. The CMOS evaluation
results have been presented in Table 4(c), and we
have the following observations: 1) Replacing the
diffusion prosody generator with regression-based
predictor results in decrease prosody naturalness,
suggesting that generative latent diffusion avoids
producing blurry and over-smoothing results. 2)
Removing the vector quantization layer has wit-
nessed a distinct drop in audio quality, verifying
that the VQ compression layer is efficient in reg-
ularizing latent spaces and preventing arbitrarily
high-variance predictions. 3) Since baseline mod-
els with local attributes have inevitable errors, and
variational inference requires parallel speech-text
data which constrains learned representation, they
both lead to the degradation in prosody naturalness.

5 Conclusion

In this work, we propose Prosody-TTS, improving
prosody with masked autoencoder and conditional
diffusion model for expressive text-to-speech. To
tackle dual challenges of prosody modeling and
sampling, we design a two-stage pipeline to en-
hance high-quality synthesis with prosperous and
diverse prosody: 1) Prosody-MAE was introduced
to pre-train on large-scale unpaired speech datasets
to capture prosodic representations without relying
on text transcriptions. It ensured that the model cov-
ered diverse speaking voices and avoided inevitable
error. 2) The latent diffusion model was adopted to
produce diverse patterns within the learned prosody
space. It broke the generation process into sev-
eral conditional diffusion steps, avoiding generat-
ing samples with dull prosodic performance. Ex-
perimental results demonstrated that Prosody-TTS
promoted prosody modeling and synthesized high-
fidelity speech samples, achieving new state-of-
the-art results with outperformed audio quality and
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prosody expressiveness. For future work, we will
further extend Prosody-TTS to more challenging
scenarios such as multilingual prosody learning.
We envisage that our work serve as a basis for fu-
ture prosody-aware TTS studies.

6 Limitation

Prosody-TTS adopts generative diffusion models
for high-quality synthesis, and thus it inherently
requires multiple iterative refinements for better
results. Besides, latent diffusion models require
typically require more computational resources,
and degradation could be witnessed with decreased
training data. One of our future directions is to
develop lightweight and fast diffusion models for
accelerating sampling.

7 Ethics Statement

Prosody-TTS lowers the requirements for high-
quality and expressive text-to-speech synthesis,
which may cause unemployment for people with
related occupations, such as broadcasters and radio
hosts. In addition, there is the potential for harm
from non-consensual voice cloning or the genera-
tion of fake media, and the voices of the speakers in
the recordings might be overused than they expect.
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A Details of Models

In this section, we describe hyper-parameters and
details of several modules.

A.1 Model Configurations

We list the model hyper-parameters of Prosody-
TTS in Table 5.

A.2 Diffusion mechanism

x0 xt

⋯
xT

q(xt|xt−1)

Diffusion Denoising

xt−1

pθ(xt|xt−1)

⋯

Figure 3: Graph for Diffusion.

For the training prosody latent diffusion model,
the clean prosodic representation derived by
Prosody-MAE passes through the vector quantifi-
cation layer, which is also adopted to optimize the
latent diffusion model (LDM) via the forward diffu-
sion process. In inference time, the LDM samples
diverse latent representations within the prosodic
space through reverse backward denoising. Accord-
ing to the spectrogram denoiser, sampling from the
Gaussian prior distribution is regarded as a com-
mon assumption. The diffusion decoder receives
the textual hidden representation as a conditional
signal and iteratively denoises Gaussian noise to
reconstruct the target distribution by reverse sam-
pling.

B Downstream Evaluation on Model
Properties

In the fine-tuning phase, we remove the decoder
and only fine-tune the encoder on the commonly-
used dataset IEMOCAP (Busso et al., 2008) that
contains about 12 hours of emotional speech. We
use a fixed learning rate of 1e-4 and max iteration
of 10k and fine-tune on 4 V100 GPUs for 60 epochs
using the SUPERB (Yang et al., 2021b) framework.
We further evaluate the architecture and masking
strategies designs in Prosody-MAE:

Network architecture. Similar to the MAE pa-
per demonstrated for the visual domain, increasing
the decoder depth only provides minor improve-

ments if any, indicating that the decoder depth can
be small relative to the encoder.

Masking strategies. We compare different
masking ratios for pre-training Prosody-MAE, and
observe that a high masking ratio (70% in our case)
is optimal for audio spectrograms. Due to the fact
that audio spectrograms and images are continuous
signals with significant redundancy, and thus SSL
models still could reconstruct results given most to-
kens dropped, which is consistent with the masked
autoencoders (He et al., 2022) in the visual domain.

Comparision with other state-of-the-art. We
compare our proposed Prosody-MAE with prior
state-of-the-art SSL models, including: 1) wav2vec
2.0 (Baevski et al., 2020), 2) hubert (Hsu et al.,
2021), 3) robust hubert (Huang et al., 2022a), and
4) mae-ast (Baade et al., 2022) and find that our
proposed Prosody-MAE achieves the best perfor-
mance across all tasks compared to other systems.
Specifically, the majority of the speech SSL mod-
els focus on learning the linguistic content infor-
mation, which try to disentangle unwanted varia-
tions (e.g. acoustic variations) from the content. In
contrast, we hope to capture prosodic information
from speech, and thus Prosody-MAE exhibits out-
performed capability in capturing style attributes.

C Details of Pre-training and Fine-tuning

We list the pre-training and fine-tuning settings in
Table 7.

Settings Values

Pre-training

Optimizer Adam
Base Learning Rate 0.0001

Batch Size 900
Optimizer Momentum 0.9,0.98

Weight Decay 0.01
Warmup Updates 32000

Fine-tuning
Optimizer Adam

Base Learning Rate 0.0001
Batch Size 4

Table 7: Pre-training and fine-tuning settings.

D Diffusion Probabilistic models

Given i.i.d. samples {x0 ∈ RD} from an un-
known data distribution pdata(x0). In this section,
we introduce the theory of diffusion probabilistic
model (Ho et al., 2020; Lam et al., 2021; Song et al.,
2020a,b), and present diffusion and reverse process
given by denoising diffusion probabilistic models
(DDPMs), which could be used to learn a model
distribution pθ(x0) that approximates pdata(x0).
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Hyperparameter Prosody-TTS

Text Encoder

Phoneme Embedding 192
Encoder Layers 4
Encoder Hidden 256

Encoder Conv1D Kernel 9
Encoder Conv1D Filter Size 1024

Encoder Attention Heads 2
Encoder Dropout 0.1

Duration Predictor
Duration Predictor Conv1D Kernel 3

Duration Predictor Conv1D Filter Size 256
Duration Predictor Dropout 0.5

Prosody Generator

VQ Codebook Size 1000
Latent Diffusion Residual Layers 30

Latent Diffusion Residual Channels 256
Latent Diffusion WaveNet Conv1d Kernel 3
Latent Diffusion WaveNet Conv1d Filter 512

Diffusion Decoder

Diffusion Embedding 256
Residual Layers 20

Residual Channels 256
WaveNet Conv1d Kernel 3
WaveNet Conv1d Filter 512

Total Number of Parameters 53M

Table 5: Hyperparameters of Prosody-TTS models.

Layers PA PM EM

2 75.2 7.22 1.76
4 75.3 7.41 2.01
6 75.5 7.73 2.25
8 74.6 7.85 2.52

(a) Network Architecture

Mask Ratio PA PM EM

80% 75.2 7.22 1.76
70% 75.2 7.11 1.65
60% 74.9 7.05 2.11
50% 74.6 7.34 2.82

(b) Masking Strategies

Model PA PM EM

wav2vec 2.0 70.7 7.34 3.21
HuBERT 69.9 8.00 5.63

Robust HuBERT 69.5 7.95 5.37
MAE-AST 73.1 8.17 5.43

Prosody-MAE 75.2 7.22 1.76

(c) Comparision with other state-of-the-art

Table 6: Ablations and model properties. We report the evaluation metrics including accuracy (PA↑), mean
absolute error (PM↓) in pitch recognition, and mean absolute error (EM↓) in energy recognition to evaluate model
properties.

Diffusion process Similar as previous work (Ho
et al., 2020; Song et al., 2020a), we define the
data distribution as q(x0). The diffusion process is
defined by a fixed Markov chain from data x0 to
the latent variable xT :

q(x1, · · · ,xT |x0) =
T∏

t=1

q(xt|xt−1), (3)

For a small positive constant βt, a small Gaus-
sian noise is added from xt to the distribution of
xt−1 under the function of q(xt|xt−1).

The whole process gradually converts data x0
to whitened latent xT according to the fixed noise
schedule β1, · · · , βT .

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (4)

Efficient training is optimizing a random term of
t with stochastic gradient descent:

Lθ =

∥∥∥∥ϵθ
(
αtx0 +

√
1− α2

t ϵ

)
− ϵ

∥∥∥∥
2

2

(5)

Reverse process Unlike the diffusion process, re-
verse process is to recover samples from Gaussian
noises. The reverse process is a Markov chain from
xT to x0 parameterized by shared θ:

pθ(x0, · · · ,xT−1|xT ) =
T∏

t=1

pθ(xt−1|xt), (6)

where each iteration eliminates the Gaussian
noise added in the diffusion process:

p(xt−1|xt) := N (xt−1;µθ(xt, t), σθ(xt, t)
2I)

(7)
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E Information Perturbation

XLSR-53 is pre-trained on 56k hours of speech in
53 languages, to provide linguistic information.

We apply the following functions (Qian et al.,
2020; Choi et al., 2021) on acoustic features (i.e.,
pitch, and energy) to create acoustic-perturbed
speech samples Ŝ, while the linguistic content re-
mains unchanged, including 1) formant shifting
fs, 2) pitch randomization pr, and 3) random fre-
quency shaping using a parametric equalizer peq.

• For fs, a formant shifting ratio is sampled uni-
formly from Unif(1, 1.4). After sampling the
ratio, we again randomly decided whether to take
the reciprocal of the sampled ratio or not.

• In pr, a pitch shift ratio and pitch range ra-
tio are sampled uniformly from Unif(1, 2) and
Unif(1, 1.5), respectively. Again, we ran-
domly decide whether to take the reciprocal of
the sampled ratios or not. For more details
for formant shifting and pitch randomization,
please refer to Parselmouth https://github.
com/YannickJadoul/Parselmouth.

• peq represents a serial composition of low-
shelving, peaking, and high-shelving filters. We
use one low-shelving HLS, one high-shelving
HHS, and eight peaking filters HPeak.

F Evaluation

F.1 Subjective Evaluation

For MOS tests, the testers present and rate the sam-
ples, and each tester is asked to evaluate the subjec-
tive naturalness on a 1-5 Likert scale. For CMOS,
listeners are asked to compare pairs of audio gener-
ated by systems A and B and indicate which of the
two audio they prefer, and choose one of the follow-
ing scores: 0 indicating no difference, 1 indicating
a small difference, 2 indicating a large difference
and 3 indicating a very large difference.

For quality evaluation, we explicitly instruct the
raters to “(focus on examining the audio quality
and naturalness, and ignore the differences of style
(timbre, emotion and prosody).)”. For prosody eval-
uation, we explicitly instruct the raters to “(focus
on the naturalness of the prosody and style, and ig-
nore the differences of content, grammar, or audio
quality.)”.

Our subjective evaluation tests are crowd-
sourced and conducted by 25 native speakers via

Amazon Mechanical Turk. The screenshots of in-
structions for testers have been shown in Figure 4.
We paid $8 to participants hourly and totally spent
about $800 on participant compensation. A small
subset of speech samples used in the test is avail-
able at https://Prosody-TTS.github.io/.

F.2 Objective Evaluation
Mel-cepstral distortion (MCD) (Kubichek, 1993)
measures the spectral distance between the synthe-
sized and reference mel-spectrum features.

F0 Frame Error (FFE) combines voicing deci-
sion error and F0 error metrics to capture F0 infor-
mation.

Number of Statistically-Different Bins (NDB)
and Jensen-Shannon divergence (JSD) (Richardson
and Weiss, 2018). They measure diversity by 1)
clustering the training data into several clusters,
and 2) measuring how well the generated samples
fit into those clusters.
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(a) Screenshot of MOS-P testing.

(b) Screenshot of MOS-Q testing.

(c) Screenshot of CMOS-P testing.

(d) Screenshot of CMOS-Q testing.

Figure 4: Screenshots of subjective evaluations.
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