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Abstract
Speech-to-speech translation is a typical
sequence-to-sequence learning task that natu-
rally has two directions. How to effectively
leverage bidirectional supervision signals to
produce high-fidelity audio for both directions?
Existing approaches either train two separate
models or a multitask-learned model with low
efficiency and inferior performance. In this pa-
per, we propose a duplex diffusion model that
applies diffusion probabilistic models to both
sides of a reversible duplex Conformer, so that
either end can simultaneously input and out-
put a distinct language’s speech. Our model
enables reversible speech translation by simply
flipping the input and output ends. Experiments
show that our model achieves the first success
of reversible speech translation with significant
improvements of ASR-BLEU scores compared
with a list of state-of-the-art baselines.

1 Introduction

Direct speech-to-speech translation (S2ST) (Lee
et al., 2021; Inaguma et al., 2022), transforming a
source language’s speech to the target language’s
speech, is essential for online international com-
munications and is friendly to numerous languages
that do not have their own writing systems or tex-
tual vocabularies. S2ST circumvents a cascaded
architecture (Lavie et al., 1997; Nakamura et al.,
2006; Wahlster, 2000) of combining automatic
speech recognition (ASR) of the source speech,
textual source-to-target machine translation (MT),
and target text-to-speech (TTS) synthesis where
multiple types of datasets are required, error prop-
agates, latency is high, and unavailable for thou-
sands of (spoken) languages who do not have a
writing system.

For S2ST, speech-to-speech parallel data is re-
quired, and it is costly to collect a comparable size
dataset with textual counterparts. To alleviate the
data scarcity problem, self-supervised pre-training
and data augmentation techniques were used by

Popuri et al. (2022), and unsupervised and weakly-
supervised speech and text data under Translatotron
2 (Jia et al., 2021) were leveraged by Jia et al.
(2022a). Techniques such as multi-task learning
(Weiss et al., 2017), pseudo labeling (Pino et al.,
2020), and knowledge distillation (Inaguma et al.,
2021) have also been adapted and achieved promis-
ing results.

From S2ST architecture’s point of view, In-
aguma et al. (2022) describes four categories, (1)
Translatotron (Jia et al., 2019) style which includes
a speech encoder and a spectrogram decoder, (2)
Translatotron2+ (Jia et al., 2021) style which in-
serts a first-pass text decoder followed by a TTS
encoder between the two modules of Translatotron,
(3) speech-to-unit translation (S2UT) (Lee et al.,
2021) that uses discrete clustered units of the target
language speech instead of spectrogram, and (4)
UnitY (Inaguma et al., 2022) that inserts a first-
pass text decoder followed by a text-to-unit (T2U)
encoder between the two modules in S2UT.

In this paper, following the motivations of textual
duplex machine translation (Zheng et al., 2021), we
leverage S2ST’s two directions: effectively utiliz-
ing supervision signals from both directions is esti-
mated to both relieve the pain of data scarcity and
bring novel architectures of training and inferenc-
ing. Existing architectures (e.g., Translatotron1/2,
S2UT, and UnitY) either train two separate models
or a multitask-learned model with low efficiency
and inferior performance. In contrast, we propose a
duplex diffusion model that applies diffusion proba-
bilistic models to both sides of a reversible duplex
Conformer, so that either end can simultaneously
input and output a distinct language’s speech. Our
model enables reversible speech translation by sim-
ply flipping the input and output ends. Experiments
show that our model achieves the first success of
reversible speech translation with significant im-
provements of ASR-BLEU scores compared with
a list of strong baselines.
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Our contributions are concluded as follows:

• a novel reversible duplex Conformer that ex-
tends the widely used Conformer (Gulati et al.,
2020) architecture from ASR to S2ST, with
reversible and symmetrical forward/reverse
building blocks;

• a novel duplex diffusion model that jointly
train one reversible duplex Conformer in dif-
fusion ways to fit two translation directions;

• significantly better or comparable ASR-
BLEU scores are achieved by comparing
with a list of state-of-the-art baselines includ-
ing Translatotron, Translatotron2, S2UT, and
UnitY.

2 Backgrounds

2.1 REDER

REDER, REversible Duplex TransformER, was
proposed by Zheng et al. (2021) for reversible tex-
tual machine translation through duplex sequence-
to-sequence (seq2seq) learning. A neural network
with a parameter set θ is duplex when it satisfies the
following conditions. First, the network has two
ends, each end can take one language as its input
or output. Second, the network defines a forward
mapping function f→θ : X 7→ Y , and a backward
(reverse) mapping function f←θ : Y 7→ X , that
satisfies two reversibilities: f←θ = (f→θ )−1 and
f→θ = (f←θ )−1. Third, the network satisfies the
cycle consistencies: ∀x ∈ X : f←θ (f→θ (x)) = x
and ∀y ∈ Y : f→θ (f←θ (y)) = y.

However, building duplex seq2seq networks is
non-trivial and must satisfy the following con-
straints, reversibility and homogeneity. First,
vanilla encoder-decoder network, such as fre-
quently used Transformer (Vaswani et al., 2017)
and its variants, is irreversible. It is not feasible
for the output end of the decoder side to take in
input signals to exhibit the encoding functional-
ity and vice versa. Second, the natural network
architectures of the non-autoregressive encoder
and the autoregressive decoder are heterogeneous.
Therefore, REDER, leverages reversible Trans-
former layers (Gomez et al., 2017a) and fully non-
autoregressive modeling without explicit encoder
and decoder division, is designed to solve these
two challenges. As reported in (Zheng et al., 2021),
REDER worked in a duplex way that better ex-
ploited the bidirectional supervisions for achieving
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Figure 1: The Markov chain of forward diffusion (back-
ward reconstruction) process of generating a sample by
step-by-step adding (removing) noise. Image adapted
from (Ho et al., 2020).

better downstream reversible machine translation
tasks’ performance.

The architecture of REDER is a stack of L re-
versible duplex transformer layers where the 1-st to
L/2-th layers are mirror of the (L/2+1)-th to L-th
layers to ensure the whole model being symmetric.
In particular, each layer contains a multi-head self-
attention (MHSA) module and a feed-forward net-
work (FFN) module with a novel reversible design
to ensure duplex behavior, where the input and out-
put tensors of such a layer are split into two halves,
Hl−1 = [H

(1)
l−1;H

(2)
l−1] and Hl = [H

(1)
l ;H

(2)
l ], re-

spectively. Formally, the regular form of the l-th
layer Fl performs as follow:

[H
(1)
l ;H

(2)
l ] = Fl([H

(1)
l−1;H

(2)
l−1]), (1)

H
(1)
l = H

(1)
l−1 + MHSA(H

(2)
l−1), (2)

H
(2)
l = H

(2)
l−1 + FFN(H

(1)
l ). (3)

The reverse form F−1l can be computed by sub-
tracting the residuals:

[H
(1)
l−1;H

(2)
l−1] = F−1l ([H

(1)
l ;H

(2)
l ]), (4)

H
(2)
l−1 = H

(2)
l − FFN(H

(1)
l ), (5)

H
(1)
l−1 = H

(1)
l −MHSA(H

(2)
l−1). (6)

2.2 DDPM

We briefly introduce the diffusion and reconstruc-
tion processes in Denoising Diffusion Probabilistic
Models (DDPM). Given a data point x0 sampled
from a real data distribution q(x) (x0 ∼ q(x)), Ho
et al. (2020) define a forward diffusion process in
which small amount of Gaussian noise is added to
sample x0 in T steps to obtain a sequence of noisy
samples x0, ..., xT . A predefined (hyper-parameter)
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variance schedule {βt ∈ (0, 1)}Tt=1 controls the
step sizes:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI); (7)

q(x1:T |x0) :=
T∏

t=1

q(xt|xt−1). (8)

When T → ∞, xT is equivalent to following an
isotropic Gaussian distribution. Note that, there
are no trainable parameters used in this forward
diffusion process.

Let αt = 1 − βt and ᾱt =
∏t

i=1 αi, we can
express an arbitrary step t’s diffused sample xt by
the initial data sample x0:

xt =
√
ᾱtx0 +

√
1− ᾱtϵt. (9)

Here, noise ϵt ∼ N (0, I) shares the same shape
with x0 and xt.

In order to reconstruct from a Gaussian noise
input xT ∼ N (0, I), we need to learn a model pθ
to approximate the conditional probabilities to run
the reverse diffusion (reconstruction) process:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t));

pθ(x0:T ) := p(xT )
T∏

t=1

pθ(xt−1|xt). (10)

Note that the reverse conditional probability is
tractable by first applying Bayes’ rule to three
Gaussian distributions and then completing the
“quadratic component” in the exp(·) function:

q(xt−1|xt, x0) = N (xt−1; µ̃t(xt, x0), β̃tI) (11)

= q(xt|xt−1, x0)
q(xt−1|x0)
q(xt|x0)

(12)

∝ exp(− 1

2β̃t
(xt−1 − µ̃t)

2). (13)

Here, variance β̃t is a scalar and mean µ̃t depends
on xt and noise ϵt:

β̃t =
1− ᾱt−1
1− ᾱt

βt; (14)

µ̃t =
1√
αt

(xt −
1− αt√
1− ᾱt

ϵt). (15)

Intuitively, q(xt−1|xt, x0) acts as a reference to
learn pθ(xt−1|xt). We can use the variational
lower bound (VLB) to optimize the negative log-
likelihood:

− logpθ(x0) ≤ −logpθ(x0)+
DKL(q(x1:T |x0) ∥ pθ(x1:T |x0)). (16)
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Figure 2: Forward (a) and reverse (b) building blocks
for one layer in our reversible duplex Conformer.

Using the definitions of q(x1:T |x0) in Equation
8 and pθ(x0:T ) in Equation 10, a loss item Lt (1 ≤
t ≤ T − 1) is expressed by:

Lt = DKL(q(xt|xt+1, x0) ∥ pθ(xt|xt+1)) (17)

= Ex0,ϵt

[∥ µ̃t − µθ(xt, t) ∥2
2 ∥ Σθ(xt, t) ∥22

]
.

We further reparameterize the Gaussian noise term
instead to predict ϵt from time step t’s input xt and
use a simplified objective that ignores the weight-
ing term:

Lsimple
t = Et∼[1,T ],x0,ϵt

[
∥ ϵt − ϵθ(xt, t) ∥2

]
(18)

3 Reversible Duplex Conformer

In this paper, we extend the widely used Conformer
(Gulati et al., 2020) architecture for encoding the
speech signals into dense and compact represen-
tations of both ends. Conformer has achieved im-
pressive results in supervised ASR by leveraging
transformer’s capturing of content-based global
interactions and convolutional neural network’s
exploiting of local features. In Conformer, two
macaron-like FFN layers with half-step residual
connections sandwich the MHSA and convolution
(CNN) modules followed by a post layer normaliza-
tion. Besides supervised ASR, Conformer has also
been successfully used in self-supervised Wav2Vec
(Schneider et al., 2019; Baevski et al., 2020) pre-
training for downstream application tasks’ fine-
tuning.

3.1 Forward and Reverse Building Blocks

Following (Gomez et al., 2017b; Zheng et al.,
2021), we split the l-th layer’s (left-end) input
tensor into two parts, Hl−1 = [x(1);x(2)]. The
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(right-end) output tensor is split in the same way,
Hl = [z(1); z(2)]. Thus, the forward target of this
REDER-style Conformer layer is [x(1);x(2)] 7→
[z(1); z(2)].

We introduce two intermediate tensors, y(1) and
y(2), for intuitive understanding and mathematical
convenient. Both Conformer’s four sub-modules
(two FFNs, one MHSA and one CNN) and four
residual connections are kept in our reversible du-
plex Conformer.

Figure 2 depicts the forward (a) and reverse (b)
building blocks for one layer in our proposed re-
versible duplex Conformer. In Figure 2, the reverse
block is a mirror of the forward block with sym-
metrical network connections and subtract residual
connections. The forward block can be formally
expressed as follows:

y(1) = x(1) + 0.5× FFN(x(2)); (19)

y(2) = x(2) + MHSA(y(1)); (20)

z(1) = y(1) + CNN(y(2)); (21)

z(2) = y(2) + 0.5× FFN(z(1)). (22)

Symmetrically, the reverse block is expressed by:

y(2) = z(2) − 0.5× FFN(z(1)); (23)

y(1) = z(1) − CNN(y(2)); (24)

x(2) = y(2) −MHSA(y(1)); (25)

x(1) = y(1) − 0.5× FFN(x(2)). (26)

We employ Layer Normalization (LN) (Ba et al.,
2016) at the beginning of each module, i.e., PreLN
(Xiong et al., 2020). The FFN module processes
the input tensor x by six components:

FFN(x) = p2 ◦W2 ◦ p1 ◦ SiLU ◦W1 ◦ LN(x).

Here, ◦ means a layer takes ◦’s right-hand-side
network’s output (e.g., LN(x)) as the input of
◦’s left-hand-side network (e.g., W1 to perform
W1(LN(x))). W1 and W2 are two linear lay-
ers that preforms h 7→ 4h and 4h 7→ h linear
projections, respectively. Two dropout layers p1
and p2 are used. The Sigmoid Linear Unit (SiLU)
(Elfwing et al., 2017) activation function is inserted
between the two linear layers. The MHSA module
contains three components:

MHSA = p ◦ Attention ◦ LN(x).

We use multi-head attention with relative positional
embedding (Shaw et al., 2018) for the “Attention”
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Figure 3: Symmetric architecture using reversible du-
plex Conformer building blocks for duplex speech-to-
speech translation.

component. Note that, the attention module is ex-
tendable to cross-attention cases where a source
sequence’s encoded representation acts as memory
(i.e., key and value) to the target sequence. Finally,
the CNN module utilizes two types of convolutions,
pointwise (PW) and 1D depthwise (DW), to cap-
ture local-range dependencies of the input speech.
The idea of employing attention for global con-
text modeling and convolution for local context
modeling is also inspired by the long-short range
attention mechanism used in the lite transformer
(Wu et al., 2020). Formally,

CNN(x) = p ◦ PW2 ◦ Swish ◦ BN

◦ DW ◦ Glu ◦ PW1 ◦ LN(x).

Here, BN stands for batch normalization. Two
types of activation functions, Glu (Dauphin et al.,
2016) and Swish (Ramachandran et al., 2017), are
inserted between convolution networks.

3.2 Symmetric Network Architecture
As depicted in Figure 3, the forward and reverse
building blocks are arranged symmetrically in the
whole architecture to achieve homogeneous com-
putations. Specifically, in the L building blocks,
the 1-st to L/2-th layers are set to be reverse blocks
whereas the (L/2 + 1)-th to L-th layers be the reg-
ular forward form:

f→θ (x) = FL ◦ · · · ◦ FL/2+1

◦ F−1L/2 ◦ · · · ◦ F
−1
1 (x);

f←θ (z) = F1 ◦ · · · ◦ FL/2

◦ F−1L/2+1 ◦ · · · ◦ F
−1
L (z).

This design makes our reversible duplex Con-
former to be homogeneous: the forward compu-
tational operation chain reads as a palindrome
string < fcmf · · · fcmf |fmcf · · · fmcf > and
so does the reverse chain, where f,m, c denotes
FFN, MHSA and CNN, respectively.
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Algorithm 1: Duplex Diffusion Model
(DDM) Training Algorithm - One Step

1 Given: x, y, Ex, Ey
2 x0 = Ex(x) ▷ encode by pretrained

wav2vec models
3 y0 = Ey(y) ▷ encode by pretrained

wav2vec models
4 t ∼ Uniform(1, ..., T )
5 ϵx ∼ Nx(0, I), ϵy ∼ Ny(0, I)
6 xt =

√
ᾱt,xx0 +

√
1− ᾱt,xϵx

7 yt =
√
ᾱt,yy0 +

√
1− ᾱt,yϵy

8 ϵθx =
←−−Mθ(xt, t,y0) ▷ reverse, given y0

9 ϵθy =
−−→Mθ(yt, t,x0) ▷ forward, given x0

10 LDDM = λ1 ∥ ϵx − ϵθx ∥2 +λ2 ∥ ϵy − ϵθy ∥2

There are several selections of input types of
the source and target ends in Figure 3. Popuri
et al. (2022) explores self-supervised pretrained
models such as (1) wav2vec2 (Baevski et al., 2020)
to encode the source speech and (2) Unit mBART
(Liu et al., 2020a) to encode the target discrete units
(Lee et al., 2021), and then translate source speech
into target clustered units through fine-tuning. The
generated discrete unit sequence is then sent to
an independently trained “text”-to-speech (TTS)
model to obtain the final waves.

In this paper, we follow the usage of discrete
units that are generated by first using pretrained
HuBERT (Hsu et al., 2021) to encode the target
speech and then perform k-means clustering. Then,
we use the DiffWave (Kong et al., 2020b) vocoder
to generate the final waves.

4 Duplex Diffusion Model

Cycle consistency has been utilized in textual neu-
ral machine translation (Zheng et al., 2021) and
image-to-image translation (Su et al., 2022). In
this paper, we propose a duplex diffusion model
that alternatively optimizes both directions by two
diffusion processes.

The training algorithm is described in Algorithm
1. Generally, we borrow DDPM (Ho et al., 2020)’s
architecture and extend it to a duplex scenario
where sequences of two ends are diffused alterna-
tively during training. At the beginning, the source
sequence x and target sequence y are encoded
into dense representations by pretrained wav2vec
models Ex, Ey through self-supervised learning on
monolingual datasets, respectively. Then, time t

and two normal Gaussian noise signals ϵx, ϵy are
sampled. Note that the lengths of the source and
target sequences are diverse. We pre-define two
variance schedules {βt,x ∈ (0, 1)}Tt=1 and {βt,y ∈
(0, 1)}Tt=1, for the source and target languages, re-
spectively. Thus, we have αt,x = 1− βt,x, ᾱt,x =∏t

i=1 αi,x, αt,y = 1− βt,y and ᾱt,y =
∏t

i=1 αi,x,
as used in Algorithm 1.

The variance schedules, initial sequence repre-
sentations and normal Gaussian noises work to-
gether to give us diffused representations, xt and
yt, respectively. They are then sent to the reversible
duplex Conformer architectureMθ (Figure 3) to
predict the noises.

Originally in Figure 3, we are intended to pro-
duce x0 from y0 in the reverse process of

←−−Mθ.
Now, we have two additional inputs, t and xt. The
output also changes from predicting x0 to estimat-
ing ϵθx which shares the same shape with x0.

We thus have two ways to organize the network←−−Mθ: (1) reuse Figure 3’s architecture and pre-
dicting ϵθx from y0 by taking xt as the “memory”
which acts as key and value in the cross-attention
network in Conformer, or (2) follow traditional
stable diffusion models (Rombach et al., 2021)
and predict ϵθx from xt by taking y0 as the con-
ditional “memory”. That is, in the MHSA func-
tion, we set query xt to be and key/value to be
y0, MHSA(q = xt, k = y0, v = y0), so that the
identical lengths of q = xt and ϵθx are ensured.
Note that, in the second choice used in our experi-
ments, we are not limited to use a reversible duplex
Conformer, i.e., any transformer architecture with
cross-attention are applicable. These two options
still hold during inferencing from given y0, T , and
xT to iteratively reconstruct x0.

Since the lengths of the source and target se-
quences are diverse, we follow textual duplex trans-
lation (Zheng et al., 2021) and double the source
end’s length by a upsampling convolutional net-
work.

We only describe the reverse process
←−−Mθ and the

forward process
−−→Mθ shares the similar strategies.

To achieve a full cycle consistency, predicting the
target Gaussian noise from source sequence by tak-
ing target noisy sequence as the “conditional mem-
ory” is more appropriate in current scenario setting
so that both translation directions are achieved in
one duplex diffusion model.

After the reverse and forward processes, we can
compute the MSE losses of between the two pairs
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of reference and predicted noises. They are inter-
polated together by hyper-parameter weights λ1

(=0.5) and λ2 (=0.5) to the final loss LDDM to be
optimized.

5 Training

Our reversible duplex Conformer is largely inspired
by REDER (Zheng et al., 2021). The novel parts
are that (1) we select and reconstruct convolution-
enhanced Conformer (Gulati et al., 2020) to syn-
thetically capture global information by attentions
and local context by convolutions, and (2) we ex-
tend from textual duplex machine translation to
(dense) duplex speech-to-speech translation. When
training our reversible duplex Conformer, we bor-
row and adapt the losses that are used in REDER
to fit our scenario.

In REDER, three types of losses were used. The
first loss is to model the variable-length of source
and target sequences by a latent alignment ap-
proach, i.e., the Connectionist Temporal Classifica-
tion (CTC) (Graves et al., 2006). Starting from the
conditional independence assumption, CTC is capa-
ble of efficiently (by dynamic programming) find-
ing all valid (yet monotonic) alignments a which
derives from the target y by allowing consecutive
repetitions and inserting blank tokens. The CTC
loss is defined by:

LCTC = −logpCTC(y|x; θ) = −log
∑

a

pθ(a|x).

We adapt this loss for speech translation when the
target are clustered unit sequences. We use the
MSE loss instead when the target is a sequence of
mel-spectrogram. Also, to ensure the source se-
quence is always longer than the target sequence,
we upsample the source sequences by convolu-
tional layers before sending them to the reversible
duplex Conformer.

The second loss measures the layer-wise
forward-backward agreement (fba, measured by co-
sine similarity) of between the forward l-th layer’s
representation

−→
Hl = Fl(

−→
Hl−1) and the reverse rep-

resentation
←−
Hl = Fl(

←−
Hl+1). Thus,

Lfba(y|x; θ) =
1

L

L∑

l=1

{
1− cos(

−→
Hl, sg(

←−
Hl))

}
,

where sg denotes the stop-gradient operation.
The third loss explicitly describe the cycle con-

sistency of a pair of seq2seq tasks, i.e., we mini-
mize the distance between the original x and its

reconstruction f←θ (f→θ (x)) by,

Lcc(x; θ) = distance(x, f←θ (f→θ (x))).

For speech translation, the source sequence can be
expressed by mel-spectrogram or clustered units so
that MSE loss or CTC loss can be applied to them,
respectively. Finally, these three types of losses are
doubled to two directions and interpolated together
for the final loss. That is, when predicting discrete
units, the final loss function is:

Lunit = w1 ∗ LCTC(y|x) + w2 ∗ LCTC(x|y)
+ w3 ∗ Lfba(y|x) + w4 ∗ Lfba(x|y)
+ w5 ∗ Lcc(y) + w6 ∗ Lcc(x).

When predicting mel-spectrograms, the final loss
function is:

Lmel = w1 ∗ LMSE(y|x) + w2 ∗ LMSE(x|y)
+ w3 ∗ Lfba(y|x) + w4 ∗ Lfba(x|y)
+ w5 ∗ Lcc(y) + w6 ∗ Lcc(x).

We reuse the default hyper-parameter values de-
scribed in REDER (Zheng et al., 2021) for setting
weights w1 to w6.

In our experiments, we first train the reversible
duplex Conformer architecture by a predefined K1

(=200,000) iterations and then apply the duplex dif-
fusion training algorithm as shown in Algorithm 1.
After another predefined K2 (=200,000) iterations,
we fix the diffusion processes and focus on updat-
ing the reversible duplex Conformer only so that
traditional search algorithms such as beam search
can be used for seeking target hypotheses.

6 Experimental Setups

6.1 Data
To compare with state-of-the-art baselines’ re-
ported results, we align with UnitY (Inaguma et al.,
2022) and use three S2ST datasets: (1) Fisher
Es→En (Post et al., 2013) with 170-hour Spanish
(Es) conversational telephone speech with textual
transcriptions in Es and En. The English speech is
synthesized by a single-female-speaker TTS model.
(2) CVSS-C (Jia et al., 2022b), a public multilin-
gual S2ST corpus from CoVoST2 (Wang et al.,
2020). Again, a single-female-speaker TTS model
is employed to synthesize the target speech. (3)
Multi-domain En↔Es corpora (Popuri et al., 2022).
We follow (Inaguma et al., 2022) to collect 1983-
hour source speech for En→Es and 1404-hour
source speech for Es→En.
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6.2 Pre-training and Pre-processing

We use the pretrained wav2vec2.0 (Baevski et al.,
2020) with a 24-layer Conformer (Gulati et al.,
2020) self-trained on the Libri-Light dataset (Kahn
et al., 2019), HuBERT (Hsu et al., 2021), mHu-
BERT (Popuri et al., 2022), and mBART (Liu et al.,
2020b) given in Table 9 of (Inaguma et al., 2022).

For acoustic feature extraction, discrete unit ex-
traction (100 clusters) and text normalization (e.g.,
for evaluation score computing), we follow (Popuri
et al., 2022; Inaguma et al., 2022).

6.3 Vocoder

Instead of using the HiFi-GAN vocoder (Kong
et al., 2020a; Polyak et al., 2021) which con-
verts mel-spectrograms or discrete units to wave-
form sequences for TTS and direct speech-to-
spectrogram/unit models, we borrow a comparable
diffusion based vocoder, DiffWave (Kong et al.,
2020b), for reconstructing waveforms from spec-
trogram or unit sequences.

6.4 Training and Decoding Configurations

We implement our models based on the Fairseq
toolkit1 (Ott et al., 2019). All our models are opti-
mized with a mixed precision training for footprint
saving. Our reversible duplex Conformer uses the
settings of Conformer-Large with 135.1M param-
eters (Gulati et al., 2020). The two diffusion vari-
ance schedules used in our duplex diffusion model
follow stable diffusion (Rombach et al., 2021). We
use a NVIDIA DGX-A100*8 workstation to per-
form the training with a total of 2,500 GPU hours.

During inferencing, we set the beam size to be 10
which aligns with most of the baselines for fair com-
parison. Other configurations not mentioned here
follow their default settings in their open-source
repositories.

6.5 Evaluation

We use a pre-trained ASR model to transcribe
the target speech into texts and then calculate 4-
gram BLEU scores (Papineni et al., 2002), de-
noted as ASR-BLEU. The target languages’ ASR
models are fine-tuned from pretrained wav2vec2.0
(Baevski et al., 2020) models with the CTC objec-
tive (Graves et al., 2006) when we taking discrete
unit sequences as the prediction target. The same
criterion has been used in (Inaguma et al., 2022).

1https://github.com/facebookresearch/fairseq

Model dev dev2 test
ASR-MT-TTS 42.1 43.5 43.9
S2TT-TTS, C 47.8 48.9 48.3
S2TT-TTS, C-w2v2 51.0 52.2 52.1
S2Sp-Tn, C 43.9 44.4 43.8
S2Sp-Tn, C-w2v2 45.5 47.6 46.3
S2Sp-Tn2+, C 50.4 51.1 50.8
S2Sp-Tn2+, C-w2v2 58.4 59.5 58.6
S2Sp-RDC (Ours) 46.1 47.3 47.0
S2Sp-RDC, w2v2 50.7 51.5 51.0
S2Sp-DDM (Ours) 52.4 55.1 54.8
S2Sp-DDM, w2v2 58.9 59.8 59.1
S2U, C 46.2 47.6 47.4
S2U, C-w2v2 53.4 53.9 53.7
UnitY, C 50.5 51.6 51.4
UnitY, C-w2v2 55.1 56.5 55.9
S2U-RDC (Ours) 48.1 49.0 48.5
S2U-RDC, w2v2 50.8 52.1 51.8
S2U-DDM (Ours) 52.2 53.6 53.1
S2U-DDM, w2v2 56.3 58.0 57.4

Table 1: ASR-BLEU (%) on the Fisher Es→En corpus.
S2Sp = speech-to-spectrogram, S2U = speech-to-unit,
Tn = Translatotron, C = Conformer, RDC = reversible
duplex Conformer (Section 3), DDM = duplex diffusion
model (Section 4), and w2v2 = wav2vec2.0.

7 Experimental Results

7.1 Fisher Es→ En

In Table 1, we compare the ASR-BLEU scores
of our systems (RDC and DDM) with three cas-
caded systems, four speech-to-spectrogram base-
lines which are variants of Translatotron (Jia et al.,
2019, 2021), and four speech-to-unit baselines
which are variants of (Lee et al., 2021) and UnitY
(Inaguma et al., 2022). Baseline results are origi-
nally listed in (Inaguma et al., 2022).

We use RDC to denote our reversible duplex
Conformer architecture that are trained in a simi-
lar way with textual REDER (Zheng et al., 2021).
Our DDM further “boost” the quality of pretrained
RDC models by bidirectional diffusion processes
and can be recognized as an integration of the dif-
fusion framework with RDC. Of the three cate-
gories, S2Sp and S2U achieved significantly better
(p < 0.01) ASR-BLEU scores than the three tradi-
tional cascaded systems. In the S2Sp paradigm, our
“S2Sp-DDM, w2v2” model achieves comparable re-
sults with the best baseline “S2Sp-Tn2+, C-w2v2”.
In the S2U paradigm, our model “S2U-DDM,
w2v2” achieves significantly better (p < 0.05) re-
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Model Avg. High Mid Low
S2TT-TTS, ASR 12.7 30.7 18.3 4.4
S2TT-TTS, w2v-b 13.2 21.3 16.1 9.2
S2Sp-Tn2, w2v-b 17.9 32.5 22.9 10.9
S2Sp-Tn2+, w2v-b 20.8 31.6 25.4 15.4
S2Sp-RDC (Ours) 18.2 32.4 22.1 10.2
S2Sp-DDM (Ours) 22.1 33.5 27.4 15.2
S2U, w2v-b 20.8 31.6 25.4 15.4
UnitY, w2v-b 24.5 34.6 28.9 19.3
S2U-RDC (Ours) 22.1 32.5 27.1 17.8
S2U-DDM (Ours) 24.9 35.2 30.2 20.4

Table 2: ASR-BLEU (%) on the CVSS-C corpus. ASR
= ASR pretraining, w2v-b = wav2vec BERT.

sults than the best baseline “UnitY, C-w2v2”, with
1.2%, 1.5% and 1.5% absolute ASR-BLEU points.
These reflects that our proposed duplex seq2seq
learning can be boosted by the bidirectional dif-
fusion processes to better capture the translation
distributions of among the source and target sides.
In addition, wav2vec2.0 acts as an essential com-
ponent for all the model variants.

Table 1 also lists four variants of our models for
ablation study. When we only use S2U-RDC, it
performs better than the S2U+Conformer baseline.
However, this advantage disappears when w2v2
is further employed to these two variants. S2U-
RDC also performs relatively worse than UnitY
which employs two pass decoding of basing on
texts and units whereas our S2U-RDC uses units
only. These reflect that, (1) additional textual infor-
mation brings better results than duplex training,
(2) diffusion processes can partly “hedge” the ben-
efits from two-pass decoding used in UnitY and
enhance the performance of duplex translations.

7.2 CVSS-C

The CVSS-C corpus’s ASR-BLEU scores of six
baselines from three categories and our models
are listed in Table 2. We observe almost the
same tendencies with the result comparisons in the
Fisher task (Table 1). The best baseline is still the
two-pass UnitY model enhanced by a pretrained
wav2vec-BERT model. Our S2U-DDM model im-
proves UnitY by 0.4% ASR-BLEU points on aver-
age, comparable yet not significant.

7.3 Multi-domain En↔Es

The bidirectional multi-domain En↔Es results are
listed in Table 3. We again compare with six state-

Model En→Es E-ST MuST-C
ASR-MT-TTS 36.8 30.8
S2TT-TTS 36.4 33.4
S2Sp-Tn2+ 35.6 33.5
S2Sp-Tn2+, mB 36.9 34.3
S2Sp-RDC (Ours) 35.1 32.7
S2Sp-DDM (Ours) 37.2 34.3
UnitY 35.1 33.7
UnitY, mB 35.3 34.1
S2U-RDC (Ours) 34.7 32.6
S2U-DDM (Ours) 35.8 34.5
Model Es→En CoVoST-2 E-ST
ASR-MT-TTS 32.9 34.2
S2TT-TTS 37.2 34.0
S2Sp-Tn2+ 37.0 23.4
S2Sp-Tn2+, mB 37.2 23.7
S2Sp-RDC (Ours) 34.5 30.6
S2Sp-DDM (Ours) 37.1 32.8
UnitY 35.4 30.8
UnitY, mB 36.4 33.1
S2U-RDC (Ours) 35.1 31.2
S2U-DDM (Ours) 36.7 34.0

Table 3: ASR-BLEU (%) on the multi-domain En↔Es
tasks. mB = mBART, E-ST=Europarl-ST.

of-the-art baselines in three categories. On both
directions, our model variants meet the best perfor-
mances on the two test sets. We notice that the base-
lines perform less stable under the Europarl-ST cor-
pus with ASR-BLEU ranges from 23.4% to 34.2%.
In the S2Sp scenario, both our RDC and DDM vari-
ants perform significantly better (p < 0.01) than
the two baselines. Our S2U-DDM variant performs
significantly better (p < 0.05) than UnitY and is
comparable to the best cascaded system. Note that
we only require one run training for bidirectional
translations.

7.4 Inference Speed

We use a NVIDIA DGX-A100*8 workstation to
perform the inferencing comparison without addi-
tional engineering optimization. We randomly se-
lect 500 utterances from the multi-domain Es→En
dev set. For end-to-end S2ST inferencing, our final
RDC with one-pass decoding achieved 1.72× de-
coding speed-ups over the best-performance UnitY
(Inaguma et al., 2022) baseline which requires a
two-pass text+unit decoding.
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7.5 Human Evaluation
Finally, we performed an audio-only human evalu-
ation to evaluate the translation quality and accep-
tances of the best baseline UnitY and our DDM.
For direct comparison, we use the mTEDx test
with 989 samples. We obtained a mean translation
quality score of 4.202(/5.0) which is comparable to
UnitY’s 4.197 and an acceptable ratio of 92.89%
which is also comparable to UnitY’s 92.94%.

8 Conclusion

Aiming at effectively leveraging bidirectional su-
pervision signals of speech-to-speech translation
(S2ST), we have proposed two models for du-
plex S2ST, a reversible duplex Conformer and a
duplex diffusion model. We compare with cas-
caded S2ST models, single/multi-pass speech-to-
spectrogram/unit models and report significantly
better or comparable ASR-BLEU and human-
evaluated scores, with fewer training time and
faster inference speed.

9 Limitations

Our duplex diffusion model and reversible duplex
Conformer architecture do not explicitly take re-
ordering as an essential challenge. However, de-
picts the language pairs described in the experi-
ments, there are languages such as English and
Japanese which shares subject-verb-object (SVO)
and subject-object-verb (SOV) word orders. These
limit the scalability of our proposed methods and
external pre-ordering (Zhao et al., 2018; Wu et al.,
2011) or post-ordering (Goto et al., 2013) tech-
niques on clustered units of speech should be taken
into consideration in the future work.

Large-scale unlabeled speech data is required to
train self-supervised wav2vec2.0 or HuBERT mod-
els. However, this is frequently not easy to collect.
Moreover, it is even more difficult to collect paired
speech-to-speech data and existing TTS models for
generating speech from text are still under devel-
oping. These are pre-conditions of applying our
proposed approaches.

Finally, we still need to train pair-by-pair for
S2ST which is quadratic to the number of lan-
guages. Our approach is less effective than tex-
tual multilingual machine translation architecture
in which linear number of translation models are
required and achieved comparable results than pair-
wise baselines. Multilingual S2ST requires novel
training architectures and inferencing algorithms.

10 Ethics Statement

Our target is to build direct speech-to-speech trans-
lation systems with a duplex idea of training both
directions in one run. We try our best to reuse exist-
ing pretrained wav2vec2.0, HuBERT, mHuBERT
and mBART models to save energy consuming.
In one run, we require much less GPU-hours for
obtaining S2ST models for both direction usages.
However, compared with textual duplex MT sys-
tems, pre-processing of speech signals still requires
much higher costing of GPU-hours and as listed
in our limitation section (Section 9), smarter ways
of multilingual S2ST architectures are preferred in
the future to reduce the cost of energy from current
quadratic to linear number of models.

Generally, S2ST circumvents traditional cas-
caded systems which concatenate ASR, MT and
TTS with high latency and high requirements of
datasets. There are 3,000 around languages in the
world who do not have their own writing systems
or textual vocabularies. Through our duplex S2ST
models, we hope to be friendly to these languages
so that more and more languages can be covered.
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