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Abstract

Multilingual Pretrained Language Models
(MPLMs) perform strongly in cross-lingual
transfer. We propose Prompts Augmented
by Retrieval Crosslingually (PARC) to im-
prove zero-shot performance on low-resource
languages (LRLs) by augmenting the context
with prompts consisting of semantically similar
sentences retrieved from a high-resource lan-
guage (HRL). PARC improves zero-shot perfor-
mance on three downstream tasks (sentiment
classification, topic categorization, natural lan-
guage inference) with multilingual parallel test
sets across 10 LRLs covering 6 language fami-
lies in unlabeled (+5.1%) and labeled settings
(+16.3%). PARC also outperforms finetuning
by 3.7%. We find a significant positive cor-
relation between cross-lingual transfer perfor-
mance on one side, and the similarity between
high- and low-resource languages as well as the
amount of low-resource pretraining data on the
other side. A robustness analysis suggests that
PARC has the potential to achieve even stronger
performance with more powerful MPLMs.

1 Introduction

Multilingual pretrained language models (MPLMs)
(Devlin et al., 2019; Conneau et al., 2020; Liu et al.,
2020; Xue et al., 2021; Shliazhko et al., 2022),
pretrained on multilingual corpora with >100 lan-
guages, exhibit strong multilinguality on down-
stream tasks (Hu et al., 2020).

Low-resource languages, for which little text
data is available for pretraining monolingual pre-
trained language models (PLMs), benefit from
MPLMs. However, the lack of LRL data leads
to an imbalanced language distribution in the
pretraining corpora of MPLMs (Wu and Dredze,
2020). LRLs are therefore under-represented in
pretraining, resulting in bad performance. Further-
more, the scarcity of domain- or task-specific an-
notated data of LRLs makes it difficult to apply the

⋆ Equal Contribution.

(a) Retrieval from high-resource language corpora

(b) Prediction with a retrieval-augmented prompt

Figure 1: Main idea of PARC: we enhance zero-shot
learning for low-resource languages (LRLs) by cross-
lingual retrieval from labeled/unlabeled high-resource
languages (HRLs). (a) An LRL input sample is taken
as query by the cross-lingual retriever to retrieve the
semantically most similar HRL sample from the HRL
corpus. The label of the retrieved HRL sample is ob-
tained either from the corpus (labeled setting) or by
self-prediction (unlabeled setting). (b) The retrieved
HRL sample together with its label and the input sample
are reformulated as prompts. The cross-lingual retrieval-
augmented prompt is created by concatenation and taken
by the MPLM for prediction. Our experiments show
that PARC outperforms other zero-shot methods and
even finetuning.

pretraining-finetuning paradigm to LRLs (Lauscher
et al., 2020). Given that the pretraining-finetuning
paradigm always has a high demand for domain-
specific labeled data, another line of research –
prompt-based learning – emerges, focusing on ex-
ploiting large pretrained language models by re-
formulating the input. The prompt is designed to
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help PLMs “understand” the task better and “recall”
what has been learned during the pretraining. In
particular, Brown et al. (2020) propose a simple in-
context learning approach without any finetuning,
which adds training examples as additional context
to test examples. Instead of using random exam-
ples as context, KATE (Liu et al., 2022a) and SOUP
(Liu et al., 2022b) retrieve semantically similar ex-
amples as prompt for monolingual in-context learn-
ing. The above mentioned prompt-based learning
techniques require no parameter updating, while
there is also work employing sampled similar ex-
amples for prompt-based funetuning (Gao et al.,
2021). Unlike Brown et al. (2020) who created
prompts with manually selected examples, these
approaches augment the context by retrieving re-
lated information from external corpora, allowing
the PLMs to capture more domain- or task-specific
knowledge. The prompt-based method offers a new
form of zero-shot or few-shot learning in multilin-
gual NLP studies. It involves performing a specific
task using prompts, without labeled data in the
target language and has the potential of being an
effective method for LRLs lacking annotated data.

Our work improves the zero-shot transfer learn-
ing performance of LRLs on three different classi-
fication tasks by taking advantage of cross-lingual
information retrieval and the multilinguality of
MPLMs. Specifically, we retrieve semantically
similar cross-lingual sentences as prompts and use
the cross-lingual retrieval information to benefit
the LRLs from the multilinguality of MPLMs and
achieve better performance in the zero-shot set-
ting1. Our main contributions are: (1) We propose
Prompts Augmented by Retrieval Crosslingually
(PARC), a pipeline for integrating retrieved cross-
lingual information into prompt engineering for
zero-shot learning (Figure 1). (2) We conduct ex-
periments on several multilingual tasks, showing
that PARC improves the zero-shot performance on
LRLs by retrieving examples from both labeled
and unlabeled HRL corpora. (3) To find an optimal
configuration of our PARC pipeline, we conduct
a comprehensive study on the variables that affect
the zero-shot performance: the number of prompts,
the choice of HRL, and the robustness w.r.t. other
retrieval methods and MPLMs.

1Different from the zero-shot cross-lingual transfer learn-
ing where MPLMs are finetuned on HRLs (Hu et al., 2020),
our zero-shot setting does not involve finetuning. Details in
§6.4

2 Related Work

Retrieval methods External knowledge ex-
tracted by information retrieval is often leveraged
to solve NLP tasks. Two types of representations
have been used for retrieval: (1) sparse bag-of-
words representations (Chen et al., 2017; Wang
et al., 2018), and (2) dense representation learned
by neural networks (Qu et al., 2020). Dense repre-
sentations come either from contextual token em-
beddings (May et al., 2019; Zhang et al., 2020)
or from sentence encoders (Conneau et al., 2017;
Cer et al., 2018). Reimers and Gurevych (2019)
propose sentence transformers to create seman-
tically meaningful sentence embeddings by ap-
plying siamese and triplet network structures to
transformer-based pretrained language models. By
using knowledge distillation, sentence transformers
can be expanded to support various languages as
multilingual sentence transformers (Reimers and
Gurevych, 2020), allowing for cross-lingual re-
trieval.

Retrieval augmented prompt Brown et al.
(2020) show that large-scale pretrained language
models such as GPT-3 can learn to perform a task
by putting examples of input-output pairs into the
input as context. The in-context learning method
simply concatenates the input with examples ran-
domly extracted from the training set. Recent stud-
ies (Gao et al., 2021; Liu et al., 2022a,b) augment
the prompts for pre-trained models by sampling
semantically similar examples. They apply the
retrieval augmented method to discrete prompts,
which are represented by tokens instead of vectors
in a continuous space. They use them either for fine-
tuning in few-shot settings or for zero-shot learning.
Chowdhury et al. (2022) use a similar kNN-based
retrieval method for tuning the soft prompts in a
continuous space with a standard supervised train-
ing setup. Previous work focused on monolingual
retrieval-augmented prompts. Our work applies
cross-lingual retrieval to discrete prompts in a sce-
nario without parameter updating. To the best of
our knowledge, our work is the first to investigate
prompt learning augmented by cross-lingual re-
trieval.

Multilingual prompt learning Despite the suc-
cess of prompting in English, prompting in multilin-
gual tasks has not been extensively studied. Winata
et al. (2021) show the multilingual skills of LMs
mainly trained on English data in prompt learning
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by giving them a few English examples as context
but testing them on non-English data. Some recent
works investigate the prompt learning with multilin-
gual PLMs (Zhao and Schütze, 2021; Huang et al.,
2022). Unlike our work, they focus on finetuning
or prompt tuning requiring parameter updating. We
apply our method to LRLs in a zero-shot setting
without adjusting the model parameters.

3 Methodology

This work aims to improve the performance of
MPLMs on LRLs in the zero-shot setting by lever-
aging retrieved cross-lingual contents from HRLs.
For that, we design the PARC pipeline that can
be applied to labeled and unlabeled scenarios, i.e.,
the HRL information can be retrieved from either
labeled or unlabeled corpora.

As Figure 1 shows, the PARC pipeline consists
of two steps: (a) Cross-lingual retrieval from high-
resource language corpora, and (b) prediction with
a retrieval-augmented prompt. Figure 1 shows an
example: A Telugu input sentence from a senti-
ment classification task is firstly fed into the cross-
lingual retriever to fetch the semantically closest
sample from the HRL corpus, i.e. English in this
case. In the second step, the retrieved HRL sample
together with its label and the LRL input sentence
are transformed into a prompt. For prompt-based
classification, we need (i) a pattern which converts
the input sentence into a cloze-style question with
a mask token, and (ii) a representative word (called
verbalizer) for each possible class. Converting the
classification task into a cloze-style question aligns
seamlessly with the framework of our proposed
PARC method, because it not only performs zero-
shot learning well but, more significantly, facili-
tates better integration of the retrieved cross-lingual
contexts.

In our example, we use the pattern P (X) = X◦
“In summary, the product was [MASK].”
to convert the retrieved English sentence into
“Wonderful! Works as stated! In summary,
the product was [MASK].”, where ◦ is the string
concatenation operator. A verbalizer such as {pos
→ “great”, neg→ “terrible”}, which maps the orig-
inal labels {pos, neg} onto words in the vocabulary,
is then used to replace the [MASK] token with the
verbalized label word “great”, standing for the cor-
rect label pos of this sentence. We call the resulting
English sentence (in our example: “Wonderful!
Works as stated! In summary, the product

was great.”) the “cross-lingual context”. At last,
we fill the same pattern with the input Telugu sen-
tence and append it to the cross-lingual context.
We feed this cross-lingual retrieval augmented in-
put to the MPLM. The MPLM returns for each of
the verbalizers its probability of being the masked
token.

More formally, let XL
i ∈ DL be the input sam-

ple from the LRL test set, (XH
j , yj) ∈ DH

lb and
XH

j ∈ DH
un denote the HRL data from the labeled

and unlabeled corpora, respectively, where Xj is
the text sample and yj its class label from a la-
bel set Y . As Eq. (1) shows, the cross-lingual
retriever CLR takes the HRL corpora DH and a
given LRL input sentence XL

i . It returns an ordered
list of HRL sentences DRi according to the seman-
tic similarity. We then have (XRi

k , yRi
k ) ∈ DRi

lb and
XRi

k ∈ DRi
un for labeled and unlabeled scenarios,

respectively, where XRi
k is the k-th most similar

HRL sentence to the LRL input XL
i .

DRi = CLR(XL
i , D

H) (1)

The prompt pattern P (.) converts an HRL input
sentence XRi

k into a cloze-style form with a mask
token. The verbalizer v(.) is a bijective mapping
from the set of class labels Y to a set of verbalized
words V from the HRL vocabulary. We use the
verbalized label word to fill in the mask token in
the prompt pattern, and construct the cross-lingual
context Ci

k for the input XL
i with the k-th most

similar HRL sample XRi
k :

Ci
k = P (XRi

k , v(yRi
k )) (2)

The cross-lingual context Ci
k is then concate-

nated with the prompted LRL input as the input I
to the MPLM:

Ii = Ci
k ◦ P (XL

i ) (3)

The MPLM M performs masked token predic-
tion and returns the probabilities p = M(Ii) of all
candidate words for the masked token in Ii. We
predict the class ŷ whose verbalizer v(ŷ) received
the highest probability from model M :

ŷ = argmax
y∈Y

p(v(y)) (4)

In the labeled scenario, we obtain the correct
label yRi

k of the HRL sentence from DRi
lb . In the

unlabeled scenario, we predict the label using the
same prompt-based classification method without
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cross-lingual context, similar to Eq. (4). We call
this the self-prediction method:

ŷRi
k = argmax

y∈Y
M(P (XRi

k ), v(y)) (5)

In order to use more cross-lingual information,
we retrieve the K most similar HRL samples. With
each sample, we obtain verbalizer probabilities as
described above and retrieve the class whose ver-
balizer has the largest sum of probabilities. We
call this method the Bag-of-Retrieval (BoR) strat-
egy. We also tried concatenating the different cross-
lingual contexts (CONC method), but the resulting
performance has been worse (see Table 15 in the
Appendix).

4 Experimental Setup

4.1 Datasets
Base Datasets Three representative classification
tasks are selected for evaluation in this work: bi-
nary sentiment analysis on Amazon product re-
views (Keung et al., 2020), topic classification on
AG News texts (Zhang et al., 2015), and natural lan-
guage inference on XNLI (Conneau et al., 2018).

Amazon Reviews dataset categorizes the shop-
ping reviews into 5 star ratings from 1 to 5. In order
to satisfy a binary classification setting, we select
the reviews with rating 1 as negative (0) and 5 as
positive (1) for our experiments. The following
pattern P (X) and verbalizer v are defined for an
input review text X:

• P (X) = X ◦ “All in all, it was [MASK].”

• v(0) = “terrible”, v(1) = “great”

AG News is a collection of more than 1 million
news articles for topic classification. The news
topic categories contained in the dataset are World
(0), Sports (1) , Business (2), and Tech (3). The
pattern and verbalizers are as follows:

• P (X) = “[MASK] News: ” ◦X

• v(0) = “World”, v(1) = “Sports”,
v(2) = “Business”, v(3) = “Tech”

XNLI is a multilingual version of the MultiNLI
dataset (Williams et al., 2018). We use a subset
of the original XNLI dataset in our experiment.
The text in each data item consists of two parts.
Sentence A is the premise and sentence B is the
hypothesis. The NLI task is to predict the type

of inference between the given premise and hy-
pothesis among the three types: entailment (0),
neutral (1) and contradiction (2). For a given
sentence pair X1 and X2, we design the pattern
and verbalizer as:

• P (X1, X2) = X1 ◦ “? [MASK],” ◦X2

• v(0) = “Yes” , v(1) = “Maybe” , v(2) =
“No”

Construction of Multilingual Parallel Test Sets
Parallel test datasets for evaluating cross-lingual
transfer performance on LRLs are rare. However,
recent research conducted by Hu et al. (2020); Liu
et al. (2022c) shows that automatically translated
test sets are useful for measuring cross-lingual per-
formance. Hence, we adopt their methodology and
construct datasets for different tasks by automati-
cally translating English test sets to targeted LRLs.
We use the Python API of the Google Translate Sys-
tem to implement the construction of multilingual
parallel test sets in our experiment. We also vali-
date the translation effectiveness and quality. The
original XNLI datasets include two low-resource
languages that are used in our experiments (Swahili
and Urdu), so we use them as the “gold” standard
for our translation validation. We compare the
cross-lingual transfer performance on translation
test sets and original test sets of XNLI. We also
measure the translation quality by using the orig-
inal sets as gold standard. Through the validation
conducted on these two languages within the XNLI
task, we infer that the translation method is effec-
tive and could be generalized to other languages
and tasks. Detailed results are shown in Appendix
§A.

Following Wu and Dredze (2020), we regard
languages with a WikiSize2 of less than 7 as LRLs.
We construct a test set consisting of 10 LRLs in 6
language families: Indo-European (Afrikaans - af,
Urdu - ur), Austronesian (Javanese - jv, Tagalog -
ta), Altaic (Mongolian - mn, Uzbek - uz), Dravidian
(Tamil - tl and Telugu - te), Sino-Tibetan (Burmese
- my), and Niger-Congo (Swahili - sw). Table 18 in
the Appendix shows more information on the test
sets.

HRL Corpora To retrieve rich and diverse in-
formation, a large-scale general corpus or knowl-
edge base in the different HRLs would be the ideal

2WikiSize less than 7 means that the Wikipedia corpus of
the language is smaller than 0.177 GB.
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sentence retrieval pool. In practice, however, a
trade-off is necessary in order to save computa-
tional resources. Following Wang et al. (2022), we
therefore use the task-specific labeled training set
of English as the sentence pool in our experiments.
The selection of the HRL will be discussed in §6.2.

4.2 Baseline
We compare PARC with the following baselines in
both labeled and unlabeled settings:

MAJ The majority baseline. Since we construct
the test sets to be balanced, MAJ is equivalent to
random guess.

Random We randomly retrieve a cross-lingual
sentence as prompt, similarly to the simple in-
context learning using examples without semantic
similarity to the input (Brown et al., 2020).

Direct The pattern filled with the input sample
is directly fed to the MPLM for prediction, without
adding cross-lingual context to the prompts.

Finetune The MPLM is first finetuned with the
retrieved high resource sentences. Then the low-
resource test input is predicted by the finetuned
MPLM. We use the Cross Entropy Loss as the
objective function for finetuning and AdamW for
optimization with a learning rate of 1e-5. Since the
finetuning data is very limited, we only train for a
single epoch to avoid overfitting.

Our test sets are constructed by machine trans-
lation. Therefore we cannot apply a translation
baseline, where we translate the input sample into
the high resource language before feeding it to the
MPLM. The Appendix presents a different experi-
ment where we compare with a translation baseline.

4.3 Models
Cross-Lingual Retriever The retrieval methods
used in monolingual NLP are either based on sparse
or dense representations. Sparse representations
such as BM25 (Manning et al., 2008) which is
based on term frequency, cannot be used for cross-
lingual retrieval as the shared words across dif-
ferent languages are normally scarce. Therefore
dense representations from deep learning methods
such as LASER (Artetxe and Schwenk, 2019) and
sentence-BERT (Reimers and Gurevych, 2019) are
more suitable for our pipeline.

We choose the multilingual sentence trans-
former (Reimers and Gurevych, 2020) version
“paraphrase-multilingual-mpnet-base-v2” as the re-
triever in our experiments. This multilingual re-
triever is based on XLM-R (Conneau et al., 2020)

Amazon AGNews XNLI Avg.

MAJ 50.0 25.0 33.3 36.1
Random 48.2 25.6 32.4 35.4
Direct 53.8 36.3 33.1 41.1
Finetune 68.6 57.9 34.5 53.7

PARC-unlabeled 58.4 46.7 33.5 46.2
PARC-labeled 68.9 67.6 35.8 57.4

Table 1: Overview of results on three classification tasks.
The reported numbers are averaged across 10 evaluation
LRLs. The number of prompts k=1 in relevant baselines
and our methods for all three tasks.

and trained on parallel data from 50+ languages
by employing knowledge distillation. Through the
multilingual sentence transformer, sentences are
represented by embeddings. We use the sentence
embeddings to calculate the cosine similarity be-
tween the LRL inputs and HRL sentences and rank
the most similar ones for retrieval. Robustness
with respect to other cross-lingual retrievers will
be discussed in §6.3.

Multilingual Pretrained Language Model In
order to solve cloze-style classification tasks, we
use the pretrained multilingual BERT model “bert-
base-multilingual-cased” (Devlin et al., 2019). It
contains 178M parameters and was trained on
Wikipedia corpora in 104 languages. In §6.3, we
will also explore XLM-R (Conneau et al., 2020),
another multilingual pretrained language model.

All the models mentioned above were imple-
mented using the Huggingface Transformers li-
brary (Wolf et al., 2020).

5 Results

Table 1 presents an overview of the results on the
three tasks3. PARC outperforms the MAJ, Direct
and Random baseline on all three tasks, in both la-
beled and unlabeled settings: When retrieving from
unlabeled high-resource language corpora, the per-
formance is improved by 4.6%, 10.4% and 0.4%
compared to Direct on Amazon Review, AG News,
and XNLI respectively. When retrieving from la-
beled HRL corpora, the performance is improved
by 15.1%, 31.3% and 2.7%. The Finetune base-
line uses the label of retrieved examples for prompt-
based finetuning. Hence it is fair to compare it with
PARC in the labeled setup rather than the unlabeled
one. PARC-labeled outperforms Finetune by 0.3%,
9.7% and 1.3% on the three tasks respectively.

Although our proposed methods perform better

3k = 1 unless otherwise specified.
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than the baselines on all three tasks, the degree
of improvement differs. A large improvement is
found on AG News, the topic categorization task,
while XNLI only shows a slight improvement. An
explanation for this could be that the natural lan-
guage inference task is more difficult than topic cat-
egorization, especially in a zero-shot setup. Also,
prior work has shown that designing cloze-style pat-
terns and searching the answer space for NLI tasks
(Schick and Schütze, 2021; Webson and Pavlick,
2022) is difficult.

We also find that PARC-labeled noticeably out-
performs PARC-unlabeled, indicating that the per-
formance of self-prediction is limited by the ca-
pabilities of mBERT. More powerful MPLMs and
better pattern designs might further improve the
performance.

To analyze the performance for every language
in detail, we present the complete experimental re-
sults for the topic categorization task on AG News
in Table 2. Here, we use the BoR method to take
advantage of multiple retrieved HRL sentences. As
expected, PARC outperforms the Direct baseline
on all languages in both labeled and unlabeled set-
tings.

However, it is worth noting that the sensitivity to
cross-lingual retrieval differs from language to lan-
guage. For some LRLs, e.g. Urdu (Ur) and Uzbek
(Uz), PARC’s improvement from cross-lingual re-
trieval is smaller. Others gain more, e.g. Javanese
(Jv). Retrieving more samples increases the per-
formance up to k=30 except for Telugu (Te) and
Swahili (Sw) where the max is reached for k=20.

We now turn to the following two questions: 1)
How does k affect the performance on other tasks
than topic categorization? 2) Which LRLs profit
most from our PARC method and which HRLs are
best suited to retrieve prompts?

6 Analysis

6.1 Effect of k

We investigated how the performance changes as
the number of retrieved HRL samples k increases.
As shown in Figure 2, an abrupt accuracy increase
can be seen in both labeled and unlabeled scenarios
by concatenating the most similar cross-lingual
sample. In labeled scenarios, the performance
tends to increase up to k=20 and then levels off.
This can be explained by the fact that later retrieved
samples are less similar to the input sample, so their
contribution as prompts decreases. In unlabeled

Figure 2: Accuracy on three tasks with different k in
the labeled (LB) and unlabeled (UN) setup.

scenarios, there is no clear improvement beyond
k=1 except for AGNews(UN), where the accuracy
increases monotonically except for k=10. The per-
formance of XNLI is less obviously influenced by
the value of k than binary sentiment analysis and
topic categorization. We assume that this could
be attributed to the difficulty of the inference task.
Unlike the other two single sentence classification
tasks, XNLI identifies the relationship between a
pair of sentences. Transferring knowledge about
sentence relationships is more complicated and re-
quires more samples to learn, in contrast to the
other two tasks where semantic information from
similar cross-lingual sentences can be transferred
directly.

6.2 Effect of Languages
Lauscher et al. (2020) pointed out that two lin-
guistic factors exert crucial effects on cross-lingual
transfer performance: (1) the size of the pretraining
corpus for the target language and (2) the similar-
ity between the source and target language. In our
study, we also consider a third factor: (3) the size of
the pretraining corpus for the source language. In
this section, we conduct a correlation analysis be-
tween PARC’s cross-lingual transfer performance
and the three language-related factors mentioned
above. To achieve that, we have to measure these
factors in a proper way at first. The size of the
pretraining corpus can be easily measured by the
log2 value of the Wikipedia size in MB, as we men-
tioned in §4. Thus the remaining problem is how
to properly represent language similarity.

6.2.1 Measurement of Language Similarity
Malaviya et al. (2017) and Littell et al. (2017) pro-
pose LANG2VEC from linguistic, typological, and
phylogenetic perspectives. LANG2VEC employs
different vectors to represent various types of lin-
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En Af Jv Mn My Sw Ta Te Tl Ur Uz Avg

MAJ 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
Direct 52.5 41.8 27.4 42.5 32.2 31.3 31.5 33.0 31.6 46.9 44.8 36.3

UN

k=1 53.7 52.8 46.2 46.5 46.1 42.8 43.3 44.3 45.0 51.0 49.7 46.7
k=3 55.8 53.6 46.2 47.1 48.2 44.9 44.5 46.3 47.1 52.6 51.0 48.1
k=5 57.1 54.4 47.0 47.0 48.0 46.6 44.8 45.8 48.5 53.1 52.3 48.7

k=10 57.5 55.3 46.3 46.4 47.6 45.6 44.1 46.7 47.7 53.0 51.4 48.4
k=20 59.7 57.2 48.1 46.7 50.0 47.9 46.0 48.9 49.6 55.4 53.2 50.3
k=30 60.1 57.4 49.0 47.4 51.1 49.2 47.1 48.7 50.1 56.5 54.4 51.1

LB

k=1 74.9 75.4 68.1 63.5 68.2 64.0 62.8 65.6 64.8 72.5 71.4 67.6
k=3 77.1 77.1 69.6 65.6 71.1 67.6 65.6 68.4 65.9 74.6 74.4 70.0
k=5 78.1 78.6 69.0 64.4 72.9 68.8 65.9 69.3 66.4 75.8 75.4 70.6

k=10 78.7 79.4 70.5 67.0 72.9 68.3 66.6 70.7 67.2 76.6 75.9 71.5
k=20 79.0 79.7 70.7 67.5 72.5 70.0 67.5 70.7 68.1 77.4 76.3 72.0
k=30 79.0 79.7 71.3 67.6 72.8 69.9 68.1 71.1 69.4 77.2 76.7 72.4

Table 2: Results of topic categorization task on AG News dataset. k is the number of retrieved cross-lingual sample.
MAJ is the majority baseline. Avg is the average accuracy across 10 LRLs. En is the HRL for retrieval. BoR
strategy is adopted.

(a) Zero-Shot Performance (Unlabeled) (b) Language Similarity (c) Zero-Shot Performance (labeled)

Figure 3: Visualization of the correlation between zero-shot performance and language similarity, pretraining
data size of source and target language. On the X(Y)-axis are target(source) languages with an increasing order
of pretraining data size from left(bottom) to right(top). (a) and (c) show the zero-shot performance with PARC-
unlabeled and PARC-labeled on Amazon review task respectively. (b) shows the language similarity of each
pair.

guistic features for different languages. Each lan-
guage is encoded with 5 vectors corresponding to
different linguistic features including three typo-
logical features (syntax, phonology and phonetic
inventory), phylogenetic and geographical features.
In typological vectors, each dimension represents
a linguistic property. For example, one dimension
of the syntax vector represents the word order fea-
ture SVO. If a language has a SVO order, then its
syntax vector would have the value 1 on this di-
mension. Missing values in the typological vectors
could have detrimental effects. Therefore we re-
place them with values predicted from the k most
similar typological vectors (Malaviya et al., 2017).
The phylogenetic vector embodies the position of a
language in the world language family tree (Harald
et al., 2015), while the geographical vector contains
the position information of languages w.r.t. their
speakers.

Following prior work (Rama et al., 2020), we
consider all 5 linguistic features when measuring
the language similarity: syntax (SYN), phonology

(PHO), phonological inventory (INV), language
family (FAM), and geography (GEO). Given these
different types of vectors, we calculate 5 cosine
similarities for each pair of source language (i) and
target language (j) and average them to get the final
language similarity sim(i, j):

sim(i, j) =
1

|F|
∑

f∈F
s(vf (i), vf (j)) (6)

where F is the set of features, vf (i) and vf (j)
stand for the language vectors representing the
feature f for i and j, and s(·) computes the min-
max normalized cosine similarity of the two vec-
tors. The detailed cosine similarities between En-
glish and 10 LRLs evaluated in our experiment are
shown in Table 9 in Appendix §B.

6.2.2 Correlation Analysis
We conduct a correlation analysis between cross-
lingual performance and the three language factors
mentioned above: language similarity between the
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Unlabeled Sim. source size target size

corr p corr p corr p
Spearman 0.28 0.05 0.20 0.16* 0.31 0.03
Pearson 0.27 0.06* 0.22 0.12* 0.38 6e-03

labeled Sim. source size target size

corr p corr p corr p
Spearman 0.42 2e-03 0.08 0.54* 0.44 1e-03
Pearson 0.41 3e-03 -3e-4 1.00* 0.46 8e-4

Table 3: Correlations between Amazon review perfor-
mance and three features. Sim.: language similarity
between an LRL and an HRL; source (target) size: the
log of the data size (MB) of source (target). *: insignifi-
cant result with a p value larger than 0.05.

Amazon AGNews XNLI Avg.

Direct 53.8 36.2 33.1 41.0

UN

mBERT+pooling 53.1 36.9 33.6 41.2
mBERT+distiluse 54.7 38.4 34.0 42.3

mBERT+paraphrase 59.6 46.7 33.7 46.7
XLM-R+paraphrase 70.1 57.4 34.7 54.1

mBERT+LaBSE 59.4 43.8 35.1 46.1

LB

mBERT+pooling 53.6 58.0 33.8 48.5
mBERT+distiluse 62.8 63.8 34.6 53.7

mBERT+paraphrase 72.9 67.6 36.8 59.1
XLM-R+paraphrase 73.0 76.0 35.7 61.6

mBERT+LaBSE 72.2 80.0 37.5 63.2

Table 4: Accuracy with different models used in our
approach. pooling: cosine similarity of the last hid-
den states from the MPLM; distiluse: distiluse-base-
multilingual-cased-v2, sentence transformer of multilin-
gual distilBERT; paraphrase: paraphrase-multilingual-
mpnet-base-v2, sentence transformer of XLM-R. UN:
unlabeled setup; LB: labeled setup.

source (retrieved) and target (input) language, pre-
training data size of the source language and of the
target language. We use the log value of Wikipedia
size to represent the size of pretraining corpus for
target and source languages and sim(i, j) com-
puted by Eq. (6) to represent the similarity between
the source and target language. Four other HRLs
– Chinese, German, Hindi, Cebuano – are selected
as source languages in addition to English. We
measure the cross-lingual performance of PARC
on the Amazon product review task in both the la-
beled and the unlabeled settings. Full results can
be found in Appendix §D.2.

Table 3 shows the outcome of the correlation
analysis. We observe a significant positive corre-
lation between cross-lingual performance and lan-
guage similarity as well as target language pretrain-
ing data size, in both the labeled and the unlabeled
setting. The correlation between performance and
source language size is not significant. Figure 3
visualizes the correlations and further clarifies the
findings by selecting 4 source languages and 4 tar-

get languages and showing the cross-lingual perfor-
mance and similarity between them.

Ig Sn Mt Co Sm
Direct 30.3 32.1 29.8 32.6 30.4

LB
k=1 56.5 59.7 63.9 75.0 52.0
k=3 58.1 61.4 65.2 78.2 54.1
k=5 58.8 61.6 65.9 79.8 55.4

UN
k=1 36.6 37.3 39.1 42.6 34.4
k=3 34.8 36.2 37.6 40.6 33.9
k=5 34.8 35.3 37.2 40.4 34.1

St Haw Zu Ny Avg.
Direct 30.4 27.1 34.4 29.8 30.8

LB
k=1 53.5 49.9 58.0 54.9 58.1
k=3 55.5 49.7 58.5 57.0 59.7
k=5 56.8 51.4 58.8 58.0 60.7

UN
k=1 36.3 31.6 35.6 35.3 36.5
k=3 33.7 31.0 34.3 32.9 35.0
k=5 34.2 30.6 34.0 32.0 34.7

Table 5: Results of several unseen languages on a topic
categorization task (AG News dataset). Ig - Igbo, Sn -
Shona, Mt - Maltese, Co - Corsican, Sm - Samoan, St -
Sesotho, Haw - Hawaiian, Zu - Zulu, Ny - Chiechewa.

6.3 Robustness
In this section, we test the robustness of the PARC
method w.r.t. other cross-lingual retrievers and
MPLMs as well as unseen languages.

6.3.1 Retriever and MPLM
Apart from the multilingual sentence transformer
based on XLM-R (“paraphrase”) used in our pre-
vious experiments, we explore several other types
of cross-lingual retrievers: a “pooling” retriever
which averages the last hidden states of the MPLM
and computes the cosine similarity between these
pooled sentence representations; “distiluse” re-
triever, a sentence transformer based on multi-
lingual distilBERT (Sanh et al., 2019); and the
“LaBSE” retriever (Feng et al., 2020), a BERT-
based model trained for sentence embedding for
109 languages. As an alternative to mBERT, we
also investigate the performance of XLM-R, which
has the same architecture as mBERT but is more
powerful. We follow the setup described in §4.

Results are shown in Table 4. We can find that
even the worst combination – mBERT+pooling –
outperforms the Direct baseline on average under
both labeled and unlabeled settings. If the retriever
is replaced by a slightly more powerful one, such
as the combination mBERT+distiluse, higher ac-
curacies in the unlabeled and labeled setting are
achieved, suggesting that our proposed method
PARC is robust w.r.t. other cross-lingual retriev-
ers. In the result of XLM-R+paraphrase, the ob-
viously better performance of XLM-R in the un-
labeled setup shows that a stronger MPLM can
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p1 p2 p3 p4 Avg
en te en te en te en te en te

Finetune
Direct 84 76 83 70 86 67 85 73 85 74
PARC-UN 84 – 65↓ 85↑ 62↓ 83↓ 60↓ 82↓ 64↓ 84↓ 67↓
PARC-LB 83↓ 64↓ 83 – 64↓ 83↓ 64↓ 82↓ 70↓ 83↓ 69↓

w/o Finetune
Direct 54 53 59 54 54 50 53 51 55 52
PARC-UN 59↑ 55↑ 55↓ 58↑ 52↓ 52↑ 53 – 52↑ 55 – 54↑
PARC-LB 90↑ 82↑ 90↑ 82↑ 90↑ 82↑ 90↑ 82↑ 90↑ 82↑

Table 6: Result of English and Telugu on Amazon review task using MPLMs with and without finetuning on English
train set. UN: Unlabeled, LB: labeled. pi represents different prompt patterns.

noticeably improve the self-prediction. We expect
that an even better performance could be obtained
by applying our proposed PARC approach to larger
and/or more powerful MPLMs such as InfoXLM
(Chi et al., 2021).

6.3.2 Unseen Languages
Our previous experiments show that the LRLs pre-
trained by MPLMs can benefit well from PARC.
However, popular MPLMs are pretrained only on
approx. 100 languages, accounting for a tiny part
of all languages in the world (∼100/7000). We
wonder if our proposed method could potentially
benefit a wider range of LRLs, so we apply PARC
to several unseen LRLs, i.e. languages not included
in the pretrained corpora of the MPLM. We con-
duct experiments on a topic categorization task for
nine unseen languages. The results in Table 5 show
that PARC is also effective for unseen LRLs. It
can be observed from the result that PARC is also
effective for unseen LRL languages.

6.4 Zero-shot Setting

Different from the cross-lingual transfer paradigm
where a MPLM is first finetuned on annotated train-
ing data of one language, and then directly applied
to the test data of other languages for inference, our
proposed approach is employed in the zero-shot set-
ting for LRLs, i.e., the model parameters are not ad-
justed by finetuning with HRL data. Table 6 shows
results from a preliminary experiment where our
PARC method combined with a finetuned MPLM
fails to outperform the Direct baseline. When using
finetuned MPLM to evaluate with PARC, we do not
see sufficient performance improvement. However,
without finetuning, PARC performs better in both
unlabeled and labeled setup, and PARC-LB without
finetuning also outperforms it with finetuning.

6.5 Qualitative Analysis

Table 7 shows results of the PARC pipeline for an
example from the Amazon review task. The review

Amazon Review
Case #963
Input:

(Used with several loads of laundry. Gentle on the fabric
and gentle on my skin.) pos
Retrieved:
R1: Hard to wash. The fur on top gets all over the sides in
the wash. :/ pos
R2: Very nice and thick high quality towels. pos
R3: Smelled really bad mold! I had to wash them before
use. neg
Predictions: No retrieval - neg, k=1 - neg, k=3 - pos

Table 7: A PARC pipeline example for Amazon review
task in the labeled setting.

in Telugu is positive, but the class predicted without
cross-lingual context is negative. The prediction
stays the same when a single positive English sam-
ple is added as prompt context. When two more
English samples are added, the prediction becomes
correct.

This case indicates that the retrieved cross-
lingual samples help the MPLM make a correct
decision. Furthermore, more similar HRL samples
could rectify the deviation. More cases are shown
in Table 10 and Table 11 in Appendix §C.

7 Conclusion

We propose PARC, a pipeline that augments
prompts for zero-shot learning on low resource
languages by retrieving semantically similar cross-
lingual sentences from HRL corpora. We test
PARC on three classification tasks with parallel test
sets across 10 LRLs, and it performs better than the
baselines in both unlabeled and labeled settings. In-
creasing the number of retrieved prompts improves
performance at first, but deteriorates it after a cer-
tain point. A robustness study shows that PARC
also performs well with other cross-lingual retriev-
ers or MPLMs, suggesting potential applications
of PARC to a wider scope of scenarios.
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Limitations

The PARC pipeline proposed in this work is de-
signed to improve the cross-lingual transfer perfor-
mance for low-resource languages in a zero-shot
setting. We tested our method on different LRLs
contained in MPLMs and also investigate its effec-
tiveness for several unseen languages. These are
not included in pretraining corpora of the MPLM
but use a seen script and share some subwords
with the seen languages. However, our proposed
method is not applicable for unseen languages with
new scripts, which restricts its extension towards
a wider range of languages. Besides, PARC is a
retrieval-based method. More time and computa-
tional resources are required in the cross-lingual
retrieval phase. Therefore, it is computationally
less efficient to use PARC for inference.
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A Effect of Translations

In our experiment, we use multilingual parallel
test sets created by machine translation from En-
glish to target low-resource languages. To explore
the effect of machine translation-created test sets,
we compare the cross-lingual transfer performance
on translation test sets and original test sets of
XNLI. The original XNLI datasets include two low-
resource languages that we used in our experiments,
i.e., Swahili (sw) and Urdu (ur). We also measure
the translation quality by using the original sets as
gold standard. The analysis results (Table 8) sug-
gests that machine translated test sets are useful as
a proxy for evaluating cross-lingual performance
on LRLs.

Languages sw ur

Performance

MT Acc. 34.00 33.92
OV Acc. 34.07 33.87
Diff 0.07 -0.05
P-Value 0.85 0.92

Translation Quality
BLEU 56.39 64.96
chrF 49.58 59.89
Sim. 81.82 81.19

Table 8: Comparison of performance on machine
translation-created XNLI test sets (MT) and the original
version of XNLI test sets (OV) in sw and ur languages.
BLEU & chrF scores and semantic similarities (Sim.)
are computed to measure the translation quality of ma-
chine translation-created test sets.

B Language Features

Table 9 shows the language features of all 10 LRLs
evaluated in our experiments. Language similarity
refers to the similarity between each LRL and En-
glish. SIM score is computed by Eq. (6). WikiSize
is the log value of the Wikipedia size in MB.

C Case Study

Table 10 shows two examples from the Amazon
Review task. We compare the predictions for three
scenarios: no retrieval information (i.e., Direct
baseline, see §4.2), one retrieved sample, and three
retrieved samples. Similarly, Table 11 shows the
same comparison on the AG News task.

D Detailed Results

D.1 Results for each task

We show the detailed experimental results for all
tasks in Table 12 (Amazon reviews), Table 13 (AG
News) and Table 14 (XNLI), respectively.

Lang Language Similarity Wiki
SizeSYN PHO INV FAM GEO SIM

Af 84.9 60.3 38.4 50.4 33.1 53.4 6
Jv 48.0 39.2 52.7 0.0 0.0 28.0 5
Mn 31.0 100.0 39.4 0.0 56.8 45.4 5
My 17.4 80.3 100.0 0.0 37.6 47.1 5
Ta 28.9 60.3 51.5 0.0 72.7 42.7 7
Te 36.0 56.2 31.3 0.0 45.2 33.7 7
Tl 35.0 70.5 26.7 0.0 38.8 34.2 6
Sw 27.0 87.0 62.1 0.0 57.2 46.6 5
Ur 50.2 72.0 47.1 12.6 62.5 48.9 7
Uz 39.8 75.6 24.1 0.0 73.7 42.6 6

Table 9: List of language features of the 10 LRLs that
we evaluate.

Amazon Review
Case 1 #37
Input:

(Very dry on my hair.) neg
Retrieved:
R1: It’s a little bit too greasy in my opinion. Doesn’t really
seem to soak into the hair very well. pos
R2: The tiniest amount leaves my hair stringy and oily. neg
R3: could smell this stuff all day but I don’t feel like it
moisturizes my skin enough, and my skin isn’t overly dry
to begin with. pos
Predictions: No retrieval - pos, k=1 - neg, k=3 - neg

Case 2 #963
Input:

(Used with several loads of laundry. Gentle on the fabric
and gentle on my skin.) pos
Retrieved:
R1: Hard to wash. The fur on top gets all over the sides in
the wash. :/ pos
R2: Very nice and thick high quality towels. pos
R3: Smelled really bad mold! I had to wash them before
use. neg
Predictions: No retrieval - neg, k=1 - neg, k=3 - pos

Table 10: PARC examples for Amazon Review task.

D.2 Detailed data for Correlation Analysis
Table 16 shows the detailed data used for corre-
lation analysis of language similarity, high- and
low-resource language pretraining data size with
cross-lingual performance in the unlabeled setting
as well as labeled setting.

D.3 Complete Results for Robustness Analysis
Table 17 shows the results of each language using
different combinations of retriever and MPLM for
validating the robustness on three tasks.
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AG News
Case 1 #1939
Input:

(Flower Power A Japanese company has come up with a
way to turn flowers into amplifiers. ) Tech
Retrieved:
R1: Japanese firms step up spending Japanese firms
continue to spend on new equipment and production plants,
a survey finds, underlining a continuing recovery in the
world’s second-largest economy. Business
R2: IBM, Honda deliver in-car speech-recognition
navigation system IBM and Honda have jointly developed
a hands-free and natural sounding in-vehicle speech-
recognition system that will be offered as standard equip-
ment on the 2005 Acura RL Tech
R3: Scientists Make Phone That Turns Into a Sunflower
(Reuters) Reuters - Scientists said on Monday they have
come up with a cell phone cover that will grow into a
sunflower when thrown away. Tech
Predictions: No retrieval - World, k=1 - Tech,
k=3 - Tech

Case 2 #1302
Input:

(Movies in a Snap: Netflix and TiVo Discuss Downloads
Bee Staff Writer. The high-tech terrain is shifting under-
foot amid rumblings of a new Silicon Valley alliance
that would allow the owners of TiVo Inc. ) Business
Retrieved:
R1: NETFLIX, TIVO HOOKUP CLOSE Netflix and
TiVo are in late-stage talks on a partnership that would
let subscribers use the Internet to download Netflix
movies directly into their TiVo box, The Post has
learned. Business
R2: TiVo and NetFlix: Picture-Perfect Duo? With TiVo
(TIVO) and NetFlix (NFLX ) finally announcing a long-
rumored partnership to launch a video-on-demand service
sometime next year, investors smiled on the deal that will
keep the two popular, but under-fire, innovators ahead of
competitors. Tech
R3: New Treo and more unveiled at CTIA CTIA stands
for the Cellular Telecommunications and Internet
Association. Each year they host two shows for the
industry. This week is their fall Wireless IT and Enter-
tainment expo in San Francisco. Business
Predictions: No retrieval - World, k=1 - Tech,
k=3 - Business

Table 11: PARC examples for AG News task
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pattern 0 [X] [MASK]
pattern 1 It was [MASK]. [X]
pattern 2 [X] All in all, it was [MASK].
pattern 3 Just [MASK]! [X]
pattern 4 [X] In summary, the product is [MASK].

en af ur
p0 p1 p2 p3 p4 p0 p1 p2 p3 p4 p0 p1 p2 p3 p4

MAJ 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
Direct 50.5 54.3 58.9 53.7 52.6 53.3 50.7 50.4 49.8 51.5 49.9 51.7 54.6 49.9 50.3

Unlabeled

k=1 50.9 55.4 59.1 51.9 52.6 51.0 54.9 57.9 52.9 52.8 51.6 56.7 60.0 52.2 52.2
k=3 50.7 53.7 57.7 50.8 50.4 50.4 52.5 56.2 50.7 51.0 51.3 52.9 57.1 50.8 50.9
k=5 50.8 52.2 56.0 50.3 50.9 50.8 52.2 55.0 50.2 50.6 51.2 52.5 56.4 50.3 50.7
k=10 50.7 51.9 56.0 50.0 50.6 50.7 52.0 55.8 50.2 50.7 51.4 52.4 55.5 50.0 50.3
k=20 50.5 50.8 53.6 49.9 50.1 50.5 51.1 53.5 50.0 50.2 51.1 51.2 54.0 49.8 50.0

labeled

k=1 60.0 82.4 82.4 82.3 82.4 66.0 79.0 79.2 79.2 79.2 57.0 80.4 80.6 80.6 80.6
k=3 58.5 86.2 86.2 86.2 86.2 65.0 80.7 81.1 81.1 81.0 56.4 83.8 84.3 84.3 84.3
k=5 57.3 87.2 87.2 87.2 87.2 65.4 82.7 82.9 82.9 82.8 56.2 84.6 85.0 85.0 85.0
k=10 57.7 88.9 88.9 88.9 88.9 66.5 85.2 85.4 85.4 85.4 56.6 87.0 87.3 87.3 87.3
k=20 56.4 89.5 89.5 89.5 89.5 64.3 85.3 85.7 85.7 85.6 55.4 87.6 87.9 87.9 88.0
k=30 56.3 88.9 88.9 88.9 88.9 63.6 85.4 85.6 85.6 85.6 55.7 87.4 87.6 87.6 87.6

sw te ta
p0 p1 p2 p3 p4 p0 p1 p2 p3 p4 p0 p1 p2 p3 p4

MAJ 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
Direct 47.3 50.2 51.9 49.9 50.3 50.8 52.5 53.9 49.9 51.4 54.1 59.0 56.2 50.5 51.9

Unlabeled

k=1 51.4 50.4 50.5 50.5 50.1 51.6 54.8 57.5 52.3 52.1 57.1 55.3 57.2 52.6 51.6
k=3 50.5 50.3 50.3 50.1 50.1 51.3 52.8 55.3 50.6 51.3 55.7 52.5 55.0 50.5 50.6
k=5 50.6 50.1 50.0 50.1 50.1 51.6 51.7 54.0 50.4 50.3 56.1 51.4 54.0 50.1 50.1
k=10 50.8 50.1 50.0 50.1 50.1 51.8 52.1 53.5 50.4 50.3 57.3 51.5 53.9 50.0 50.1
k=20 50.5 50.1 50.0 50.1 50.1 51.4 50.6 52.9 50.0 50.0 56.9 50.5 52.9 50.0 50.0

labeled

k=1 50.5 50.0 49.9 49.9 49.9 58.2 75.9 75.8 75.8 75.8 68.1 75.3 75.4 75.4 75.4
k=3 51.0 54.1 54.1 54.1 54.1 58.0 78.4 78.4 78.4 78.4 70.2 79.1 79.3 79.3 79.2
k=5 50.7 54.4 54.4 54.4 54.4 56.8 79.1 79.0 79.0 79.1 70.7 80.5 80.5 80.5 80.5
k=10 51.3 55.5 55.5 55.5 55.5 57.2 81.3 81.6 81.6 81.6 70.9 83.7 83.9 83.9 83.9
k=20 50.9 54.3 54.4 54.4 54.4 56.9 82.0 82.1 82.1 82.1 70.8 82.8 83.1 83.1 83.1
k=30 50.7 54.3 54.3 54.3 54.3 56.8 82.0 82.0 82.0 82.0 70.5 83.3 83.5 83.4 83.4

mn uz my
p0 p1 p2 p3 p4 p0 p1 p2 p3 p4 p0 p1 p2 p3 p4

MAJ 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
Direct 49.1 49.7 51.4 49.7 50.0 48.5 50.2 52.4 49.7 51.2 54.4 56.1 56.1 50.5 52.6

Unlabeled

k=1 51.1 54.7 58.6 52.6 52.8 50.4 53.1 53.6 51.8 50.9 53.0 53.9 56.0 52.3 52.0
k=3 50.2 53.2 56.4 51.0 51.1 50.5 51.9 52.1 50.2 50.3 53.0 51.5 55.0 51.2 50.7
k=5 50.2 52.0 55.3 50.4 50.5 50.5 50.3 50.7 50.0 50.2 52.9 51.1 53.6 50.5 50.3
k=10 50.4 52.2 56.3 50.6 50.5 50.6 50.3 50.6 50.1 50.0 53.4 51.1 54.2 50.2 50.1
k=20 50.4 51.1 54.5 50.0 50.0 50.5 50.0 50.7 50.0 50.0 53.2 50.5 52.8 50.0 50.0

labeled

k=1 60.8 74.9 74.9 74.9 74.9 56.0 65.0 64.7 64.7 64.7 65.3 73.9 73.8 73.8 73.8
k=3 60.3 79.5 79.7 79.7 79.7 55.2 65.3 65.2 65.2 65.2 66.6 77.5 77.7 77.7 77.7
k=5 59.7 80.6 80.6 80.6 80.6 55.5 66.1 66.0 66.0 65.8 65.8 78.6 78.9 78.9 78.9
k=10 62.2 83.9 84.3 84.3 84.3 55.9 68.1 68.2 68.2 68.3 67.8 80.9 81.1 81.1 81.1
k=20 60.3 82.5 83.2 83.2 83.2 53.8 67.0 67.1 67.1 67.1 67.4 81.8 81.8 81.8 81.8
k=30 59.7 83.3 83.8 83.8 83.8 54.4 67.5 67.7 67.7 67.7 67.6 81.7 81.8 81.8 81.8

jv tl Avg.
p0 p1 p2 p3 p4 p0 p1 p2 p3 p4 p0 p1 p2 p3 p4

MAJ 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
Direct 50.9 52.3 54.1 50.1 52.3 49.6 50.4 51.9 50.0 51.2 50.8 52.5 53.8 50.3 51.4

Unlabeled

k=1 50.6 53.0 54.2 50.9 50.5 50.4 50.6 50.9 50.1 50.2 51.7 53.9 56.0 51.8 51.6
k=3 50.2 51.7 53.5 50.4 50.3 50.0 50.3 50.3 50.2 50.0 51.2 52.1 54.4 50.6 50.6
k=5 50.2 50.9 52.9 50.1 50.2 50.1 50.2 50.1 50.0 50.1 51.4 51.3 53.5 50.2 50.4
k=10 50.1 50.7 52.5 49.9 50.0 50.2 50.0 50.3 50.0 50.0 51.6 51.3 53.5 50.1 50.2
k=20 50.5 50.1 51.7 50.0 50.0 50.2 50.0 50.4 50.0 50.0 51.4 50.5 52.5 50.0 50.0

labeled

k=1 54.1 59.3 59.3 59.3 59.3 52.4 55.4 55.4 55.4 55.4 58.9 70.1 68.9 70.1 70.1
k=3 52.7 61.6 61.6 61.6 61.6 52.1 57.7 57.7 57.7 57.7 58.7 73.1 73.2 73.2 73.2
k=5 52.8 61.5 61.5 61.5 61.5 51.6 60.2 60.2 60.2 60.1 58.4 74.1 74.2 74.2 74.2
k=10 51.6 62.6 62.6 62.6 62.6 52.4 63.2 63.3 63.3 63.3 59.1 76.4 76.5 76.5 76.5
k=20 51.6 61.5 61.5 61.5 61.5 51.5 62.8 62.9 62.9 62.9 58.1 76.1 76.3 76.3 76.3
k=30 51.6 60.9 61.0 61.0 61.0 51.5 62.3 62.4 62.4 62.4 58.0 76.1 76.2 76.2 76.2

Table 12: Results on Amazon reviews dataset.
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pattern 0 [X] [MASK]
pattern 1 [MASK]: [X]
pattern 2 [MASK] News: [X]
pattern 3 [X] Category: [MASK]

en af ur
p0 p1 p2 p3 p0 p1 p2 p3 p0 p1 p2 p3

MAJ 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
Direct 52.5 47.8 47.3 53.0 41.8 41.3 40.2 57.8 27.4 32.4 33.0 53.5

Unlabeled

k=1 53.7 47.6 45.6 53.2 52.8 46.8 46.2 53.2 46.2 41.8 41.0 49.7
k=3 55.8 47.6 43.4 54.3 53.6 46.5 44.3 54.3 46.2 40.5 38.2 49.9
k=5 57.1 48.3 41.7 55.6 54.4 46.9 43.7 55.1 47.0 40.9 37.2 51.4
k=10 57.5 45.7 41.9 55.3 55.3 44.6 42.3 55.6 46.3 38.3 35.3 51.9
k=20 59.7 46.7 41.5 55.3 57.2 45.9 42.2 56.1 48.1 39.7 35.5 51.6

labeled

k=1 74.9 83.5 83.8 83.8 75.4 81.2 82.9 82.7 68.1 76.9 78.8 78.7
k=3 77.1 86.5 86.8 86.7 77.1 84.3 85.4 85.2 69.6 79.4 81.7 81.8
k=5 78.1 87.7 88.0 87.9 78.6 86.8 87.1 87.1 69.0 79.9 82.7 82.7
k=10 78.7 88.2 88.5 88.5 79.4 87.2 87.7 87.5 70.5 81.5 83.6 83.4
k=20 79.0 89.1 89.4 89.4 79.7 87.4 87.8 87.5 70.7 81.6 83.3 83.2

sw te ta
p0 p1 p2 p3 p0 p1 p2 p3 p0 p1 p2 p3

MAJ 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
Direct 42.5 37.6 33.3 56.6 32.2 37.2 32.5 55.4 31.3 37.2 28.6 55.1

Unlabeled

k=1 46.5 42.1 42.0 46.4 46.1 41.5 43.3 48.6 42.8 41.6 39.2 47.6
k=3 47.1 41.2 39.9 47.9 48.2 40.0 42.4 50.3 44.9 41.0 36.9 50.1
k=5 47.0 41.5 39.3 48.6 48.0 40.4 41.0 52.4 46.6 39.8 36.0 50.9
k=10 46.4 38.5 37.0 50.0 47.6 39.0 39.3 51.8 45.6 37.8 33.9 51.5
k=20 46.7 39.1 36.9 49.9 50.0 40.1 39.7 51.6 47.9 38.8 34.7 52.5

labeled

k=1 63.5 68.4 70.3 70.3 68.2 73.9 75.0 75.0 64.0 69.7 71.5 71.5
k=3 65.6 70.8 72.3 72.4 71.1 77.6 78.2 78.2 67.6 74.4 75.7 75.7
k=5 64.4 72.2 73.5 73.4 72.9 79.7 79.9 79.8 68.8 75.8 76.6 76.5
k=10 67.0 72.5 74.1 73.9 72.9 79.9 80.0 80.0 68.3 76.5 77.2 77.1
k=20 67.5 72.7 73.6 73.6 72.5 80.2 80.6 80.6 70.0 77.5 78.1 78.2

mn uz my
p0 p1 p2 p3 p0 p1 p2 p3 p0 p1 p2 p3

MAJ 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
Direct 31.5 30.9 32.0 47.3 33.0 37.5 33.8 50.7 31.6 37.4 33.7 51.9

Unlabeled

k=1 43.3 42.5 41.5 48.2 44.3 44.4 42.3 49.0 45.0 43.9 43.6 50.0
k=3 44.5 41.2 40.5 51.1 46.3 42.2 40.7 50.9 47.1 44.5 41.7 53.7
k=5 44.8 41.5 39.6 51.8 45.8 41.7 39.2 52.3 48.5 43.8 41.4 54.2
k=10 44.1 39.7 38.0 53.3 46.7 39.7 37.9 53.4 47.7 41.4 40.0 54.4
k=20 46.0 39.7 37.9 52.8 48.9 41.2 36.9 53.1 49.6 42.2 40.3 53.6

labeled

k=1 62.8 70.9 72.7 72.8 65.6 71.5 73.2 73.3 64.8 76.2 77.4 77.2
k=3 65.6 75.4 77.3 77.2 68.4 73.6 75.7 75.7 65.9 79.5 80.1 79.8
k=5 65.9 75.8 78.0 77.9 69.3 76.1 77.9 77.8 66.4 81.4 82.5 81.8
k=10 66.6 77.0 78.7 78.6 70.7 76.4 78.3 78.2 67.2 82.4 82.9 82.3
k=20 67.5 77.4 78.2 78.0 70.7 77.3 78.8 78.7 68.1 83.1 83.6 83.3

jv tl Avg
p0 p1 p2 p3 p0 p1 p2 p3 p0 p1 p2 p3

MAJ 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
Direct 46.9 39.3 38.0 59.3 44.8 44.4 42.6 60.4 37.8 38.4 36.2 50.9

Unlabeled

k=1 51.0 45.5 45.4 51.6 49.7 45.8 43.7 52.2 47.4 44.2 43.5 48.9
k=3 52.6 44.6 42.0 53.5 51.0 45.3 42.7 54.0 48.8 43.6 41.9 50.3
k=5 53.1 44.5 41.3 53.6 52.3 45.2 41.8 54.2 49.5 43.7 41.2 51.0
k=10 53.0 42.4 39.9 54.0 51.4 44.0 39.8 54.9 49.2 41.7 39.7 51.2
k=20 55.4 42.8 40.1 54.2 53.2 44.4 38.9 55.3 51.1 42.6 39.9 51.4

labeled

k=1 72.5 77.8 79.1 79.1 71.4 76.6 78.9 79.0 68.3 74.6 75.9 75.9
k=3 74.6 80.5 82.3 82.3 74.4 80.7 82.1 82.2 70.6 77.8 78.9 78.9
k=5 75.8 81.3 82.8 82.8 75.4 81.2 83.4 83.5 71.3 79.1 80.2 80.1
k=10 76.6 82.0 84.0 84.2 75.9 82.4 84.5 84.6 72.1 79.8 80.9 80.8
k=20 77.4 82.8 84.6 84.8 76.3 82.8 84.0 84.0 72.6 80.4 81.1 81.1

Table 13: Results on AG News dataset.

8335



pattern 0 [X1] [MASK] [X2]
pattern 1 [X1]? [MASK], [X2] (Yes - No)
pattern 2 [X1]? [MASK], [X2] (Right - Wrong)

en af ur sw
p0 p1 p2 p0 p1 p2 p0 p1 p2 p0 p1 p2

MAJ 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3
Direct 33.3 34.2 34.3 33.2 33.0 33.4 33.6 34.0 33.2 33.2 32.2 33.1

Unlabeled

k=1 34.1 33.7 34.5 34.0 34.1 33.7 32.4 35.3 32.7 33.5 33.7 33.7
k=3 33.7 34.1 34.3 33.0 32.9 34.1 33.3 34.0 33.9 33.6 33.0 33.5
k=5 31.9 33.7 34.3 32.5 32.8 33.9 31.2 34.1 33.6 33.2 32.7 32.9
k=10 31.9 33.6 33.3 31.9 33.3 32.6 32.2 34.2 33.2 33.0 32.7 32.5
k=20 32.0 34.4 33.3 31.6 33.6 34.1 31.6 34.4 33.9 33.1 33.1 32.0

labeled

k=1 38.9 39.1 38.8 38.7 38.9 38.1 37.0 37.4 36.7 33.3 33.4 33.4
k=3 39.2 39.1 38.6 37.9 37.9 37.4 37.0 37.8 36.8 33.7 33.5 33.7
k=5 40.0 39.8 39.5 38.0 38.0 37.1 40.2 40.6 39.8 32.7 32.5 32.6
k=10 41.5 41.6 40.9 41.1 41.1 40.5 42.0 42.4 41.0 33.7 33.7 34.1
k=20 44.5 44.1 43.5 42.3 43.0 41.3 42.4 43.4 42.2 35.9 35.7 35.9

te ta mn uz
p0 p1 p2 p0 p1 p2 p0 p1 p2 p0 p1 p2

MAJ 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3
Direct 31.9 33.0 33.2 32.4 34.1 32.9 33.0 32.7 32.6 33.3 33.3 32.9

Unlabeled

k=1 34.1 34.1 34.1 34.5 34.3 33.3 32.8 33.6 34.7 33.2 33.9 32.8
k=3 32.8 34.9 33.4 33.7 34.7 34.2 32.2 34.5 33.7 32.3 34.5 33.4
k=5 32.9 35.1 33.8 32.9 34.3 33.9 31.9 33.9 34.1 33.1 34.5 33.9
k=10 32.0 34.1 32.7 32.3 34.7 32.5 30.8 34.1 32.5 32.8 33.9 32.6
k=20 31.5 34.6 32.7 32.5 34.8 32.9 32.0 34.1 33.4 32.6 33.5 32.6

labeled

k=1 37.8 38.1 37.7 37.7 38.0 37.0 36.5 36.5 36.5 35.5 34.8 35.0
k=3 38.9 39.5 38.4 38.7 39.4 37.5 39.1 39.1 38.9 35.1 34.7 34.7
k=5 37.5 37.1 35.9 38.3 38.7 36.3 37.1 36.9 36.9 36.0 35.9 35.9
k=10 39.2 39.5 37.9 41.1 40.8 38.0 39.5 39.3 39.3 38.3 37.9 37.8
k=20 41.2 41.5 39.3 42.7 43.1 39.7 40.3 40.2 40.0 40.0 39.9 39.6

my jv tl Avg
p0 p1 p2 p0 p1 p2 p0 p1 p2 p0 p1 p2

MAJ 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3
Direct 33.7 33.6 33.7 33.3 33.3 33.6 33.3 33.5 32.3 33.1 33.3 33.1

Unlabeled

k=1 33.3 33.5 33.8 32.4 32.0 33.3 33.8 32.7 32.8 33.4 33.7 33.5
k=3 32.6 33.9 33.7 32.1 31.4 34.2 33.7 33.9 33.3 32.9 33.7 33.7
k=5 32.5 34.3 33.6 32.4 31.6 34.3 34.1 33.5 32.1 32.7 33.6 33.6
k=10 30.5 33.9 33.3 32.1 32.6 33.5 33.2 33.1 32.6 32.1 33.5 32.8
k=20 30.9 33.5 32.7 30.8 33.6 34.7 32.9 32.5 33.1 32.0 33.6 33.2

labeled

k=1 36.8 36.7 36.1 34.2 33.5 33.3 34.7 34.4 34.3 36.2 36.2 35.8
k=3 36.7 36.9 36.2 34.6 33.9 33.9 35.7 35.7 35.7 36.7 36.8 36.3
k=5 37.7 37.7 37.3 35.2 34.8 34.6 35.7 35.7 35.3 36.9 36.8 36.2
k=10 39.5 39.3 38.1 34.7 34.4 33.6 37.2 36.9 36.9 38.6 38.5 37.7
k=20 41.7 41.3 39.6 32.8 32.8 32.4 37.4 37.0 37.0 39.7 39.8 38.7

Table 14: Results on XNLI dataset.

En Af Jv Mn My Sw Ta Te Tl Ur Uz Avg
MAJ 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
Direct 52.5 41.8 27.4 42.5 32.2 31.3 31.5 33.0 31.6 46.9 44.8 36.3

UN

k=1 53.7 52.8 46.2 46.5 46.1 42.8 43.3 44.3 45.0 51.0 49.7 46.7

k=3 BoR 55.8 53.6 46.2 47.1 48.2 44.9 44.5 46.3 47.1 52.6 51.0 48.1
CONC 53.5 52.4 45.9 44.9 44.8 42.9 41.7 46.6 46.0 52.0 51.6 46.9

k=5 BoR 57.1 54.4 47.0 47.0 48.0 46.6 44.8 45.8 48.5 53.1 52.3 48.7
CONC 53.5 48.0 38.2 41.3 36.3 36.9 39.5 41.4 42.9 50.5 49.6 42.4

k=10 BoR 57.5 55.3 46.3 46.4 47.6 45.6 44.1 46.7 47.7 53.0 51.4 48.4
CONC 46.4 41.1 36.2 38.3 36.6 34.9 34.6 35.8 40.7 46.3 45.0 38.9

k=20 BoR 59.7 57.2 48.1 46.7 50.0 47.9 46.0 48.9 49.6 55.4 53.2 50.3
CONC 50.0 48.4 42.3 41.4 43.3 43.1 39.3 44.3 48.1 47.9 48.4 44.6

k=30 BoR 60.1 57.4 49.0 47.4 51.1 49.2 47.1 48.7 50.1 56.5 54.4 51.1
CONC 50.7 47.6 43.9 38.2 42.9 42.5 41.8 44.5 47.7 47.1 47.3 44.3

LB

k=1 74.9 75.4 68.1 63.5 68.2 64.0 62.8 65.6 64.8 72.5 71.4 67.6

k=3 BoR 77.1 77.1 69.6 65.6 71.1 67.6 65.6 68.4 65.9 74.6 74.4 70.0
CONC 75.6 74.8 67.3 63.1 60.3 59.0 60.5 67.1 65.9 73.3 72.4 66.4

k=5 BoR 78.1 78.6 69.0 64.4 72.9 68.8 65.9 69.3 66.4 75.8 75.4 70.6
CONC 74.6 66.5 48.2 53.9 44.9 45.4 52.1 59.5 56.0 70.9 63.6 56.1

k=10 BoR 78.7 79.4 70.5 67.0 72.9 68.3 66.6 70.7 67.2 76.6 75.9 71.5
CONC 61.2 52.7 43.2 48.0 44.5 42.5 41.3 45.0 50.1 62.3 56.7 48.6

k=20 BoR 79.0 79.7 70.7 67.5 72.5 70.0 67.5 70.7 68.1 77.4 76.3 72.0
CONC 67.4 65.1 55.8 55.6 57.6 58.3 51.2 61.0 62.8 66.4 66.0 60.0

k=30 BoR 79.0 79.7 71.3 67.6 72.8 69.9 68.1 71.1 69.4 77.2 76.7 72.4
CONC 72.8 71.1 62.1 57.0 61.6 60.4 57.9 67.9 64.6 71.6 69.3 64.3

Table 15: Results of topic categorization task on AG News Dataset. k is the number of retrieved cross-lingual
sample. MAJ is the majority baseline. Avg is the average accuracy across 10 LRLs. En is the HRL for retrieval.
BoR refers to the Bag of Retrieval strategy, CONC refers to the Concatenation strategy.
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Performance Language Similarity WikiSize
Unlabeled labeled SYN PHO INV FAM GEO SIM source target

en-af 79.2 62.0 84.9 60.3 38.4 50.4 33.1 53.4 14 6
en-ur 80.6 63.4 50.2 72.0 47.1 12.6 62.5 48.9 14 7
en-sw 49.9 51.0 27.0 87.0 62.1 0.0 57.2 46.6 14 5
en-te 75.8 60.1 36.0 56.2 31.3 0.0 45.2 33.7 14 7
en-ta 75.4 60.2 28.9 60.3 51.5 0.0 72.7 42.7 14 7
en-mn 74.9 62.9 31.0 100.0 39.4 0.0 56.8 45.4 14 5
en-uz 64.7 54.9 39.8 75.6 24.1 0.0 73.7 42.6 14 6
en-my 73.8 60.3 17.4 80.3 100.0 0.0 37.6 47.1 14 5
en-jv 59.3 55.3 48.0 39.2 52.7 0.0 0.0 28.0 14 5
en-tl 55.4 53.5 35.0 70.5 26.7 0.0 38.8 34.2 14 6
de-af 71.6 56.5 87.1 33.1 90.3 77.2 43.1 66.2 12 6
de-ur 77.5 58.5 50.7 68.3 45.8 15.4 72.6 50.6 12 7
de-sw 50.6 48.9 29.5 33.1 36.2 0.0 66.7 33.1 12 5
de-te 71.2 55.7 45.6 29.4 5.2 0.0 56.5 27.3 12 7
de-ta 76.3 57.6 43.0 56.7 48.7 0.0 81.3 45.9 12 7
de-mn 74.7 59.1 44.4 68.3 42.8 0.0 61.8 43.4 12 5
de-uz 62.8 55.1 48.3 91.9 27.8 0.0 81.1 49.8 12 6
de-my 72.0 59.3 31.3 29.9 63.9 0.0 47.5 34.5 12 5
de-jv 60.0 50.9 41.5 14.4 32.5 0.0 10.3 19.8 12 5
de-tl 54.5 52.1 48.1 42.1 0.0 0.0 50.8 28.2 12 6
zh-af 70.4 58.6 53.9 9.5 25.2 0.0 12.1 20.1 11 6
zh-ur 75.1 62.8 59.0 43.5 36.3 0.0 82.6 44.3 11 7
zh-sw 53.9 51.5 5.7 33.1 27.0 0.0 27.6 18.7 11 5
zh-te 72.4 60.3 49.9 29.4 4.5 0.0 86.7 34.1 11 7
zh-ta 73.0 61.8 19.0 56.7 16.8 0.0 40.5 26.6 11 7
zh-mn 71.6 60.4 56.5 43.5 8.7 0.0 99.0 41.5 11 5
zh-uz 62.5 54.9 49.0 69.3 26.2 0.0 87.2 46.3 11 6
zh-my 69.6 59.3 42.5 71.8 32.7 37.8 95.7 56.1 11 5
zh-jv 59.8 54.3 41.1 42.1 31.4 0.0 85.1 39.9 11 5
zh-tl 54.7 52.4 44.7 14.4 6.9 0.0 83.4 29.9 11 6
hi-af 78.2 59.0 55.4 50.1 30.8 14.3 52.3 40.6 7 6
hi-ur 80.0 57.8 100.0 88.1 73.0 100.0 99.9 92.2 7 7
hi-sw 50.7 50.5 27.4 24.6 24.9 0.0 66.9 28.8 7 5
hi-te 72.7 58.4 74.7 74.4 67.2 0.0 100.0 63.3 7 7
hi-ta 74.2 57.0 48.9 50.1 36.8 0.0 75.8 42.3 7 7
hi-mn 74.6 57.7 57.9 61.3 31.2 0.0 89.4 48.0 7 5
hi-uz 64.0 50.8 57.8 64.8 45.6 0.0 97.2 53.1 7 6
hi-my 74.3 58.7 36.7 46.7 37.5 0.0 97.6 43.7 7 5
hi-jv 59.4 48.7 21.2 0.0 13.6 0.0 79.6 22.9 7 5
hi-tl 56.6 52.9 73.1 59.8 41.3 0.0 98.2 54.5 7 6
ceb-af 63.9 58.1 42.4 44.1 52.5 0.0 8.9 29.6 11 6
ceb-ur 68.7 57.1 29.3 84.3 22.5 0.0 62.9 39.8 11 7
ceb-sw 53.4 49.2 33.0 16.1 76.3 0.0 12.0 27.5 11 5
ceb-te 69.3 59.0 4.8 98.6 17.9 0.0 75.9 39.4 11 7
ceb-ta 66.3 55.8 22.4 72.1 63.0 0.0 16.6 34.8 11 7
ceb-mn 65.9 59.7 16.5 55.0 37.6 0.0 79.3 37.7 11 5
ceb-uz 56.2 52.6 26.2 61.3 17.9 0.0 60.6 33.2 11 6
ceb-my 64.8 56.3 3.0 43.5 57.7 0.0 88.1 38.4 11 5
ceb-jv 57.1 51.2 60.2 17.1 70.0 54.8 97.6 59.9 11 5
ceb-tl 53.0 56.2 0.0 82.7 50.0 0.0 76.2 41.8 11 6

Table 16: Detailed data of 50 source-target language pairs used for correlation analysis of language similarity,
source and target language pretraining data size with cross-lingual performance in unlabeled and labeled setup. Task
performance is measured on Amazon review task with k = 1.
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Amazon Review
en af ur sw te ta mn uz my jv tl Avg

UN

mBERT+pooling 57.8 54.4 54.9 52.4 53.5 54.8 51.1 49.3 52.4 56.1 52.1 53.1
mBERT+distiluse 63.1 60.1 61.0 46.1 50.1 50.0 59.9 55.2 56.7 57.2 50.1 54.7

mBERT+paraphrase 69.3 63.8 67.1 51.4 62.2 61.4 61.1 56.6 62.9 55.6 54.0 59.6
XLM-R+paraphrase 69.2 75.4 80.8 64.1 71.0 70.4 69.7 68.2 70.4 63.8 66.6 70.1

LB

mBERT+pooling 65.6 56.8 57.0 51.8 53.8 53.1 52.7 51.2 52.5 53.5 53.2 53.6
mBERT+distiluse 80.4 76.0 80.0 51.2 48.9 50.0 77.9 57.7 70.7 60.5 55.4 62.8

mBERT+paraphrase 87.2 82.9 85.0 54.4 79.0 80.5 80.6 66.0 78.9 61.5 60.2 72.9
XLM-R+paraphrase 77.6 81.7 82.2 64.0 74.2 73.9 75.1 70.6 76.4 66.3 66.1 73.0

AG News
en af ur sw te ta mn uz my jv tl Avg

UN

mBERT+pooling 37.9 37.3 34.8 37.7 32.9 38.0 36.0 33.7 37.4 42.0 38.8 36.9
mBERT+distiluse 43.3 43.5 38.8 40.6 25.4 29.1 39.7 39.6 42.7 42.0 42.9 38.4

mBERT+paraphrase 53.7 52.8 46.2 46.5 46.1 42.8 43.3 44.3 45.0 51.0 49.7 46.7
XLM-R+paraphrase 62.7 61.9 58.9 52.2 58.1 55.8 55.6 56.0 58.6 59.2 58.4 57.4

LB

mBERT+pooling 77.4 68.2 55.4 58.5 54.7 52.1 50.7 54.6 49.0 66.7 70.2 58.0
mBERT+distiluse 85.1 82.0 76.0 65.5 25.3 28.7 70.8 64.4 71.3 77.8 76.5 63.8

mBERT+paraphrase 74.9 75.4 68.1 63.5 68.2 64.0 62.8 65.6 64.8 72.5 71.4 67.6
XLM-R+paraphrase 83.8 82.9 78.8 70.4 75.1 71.7 72.7 73.2 77.4 79.2 79.0 76.0

XNLI
en af ur sw te ta mn uz my jv tl Avg

UN

mBERT+pooling 34.7 34.3 34.4 33.2 33.9 33.5 34.3 33.3 33.3 32.9 32.7 33.6
mBERT+distiluse 32.9 32.6 33.4 33.2 36.1 36.1 33.8 34.6 31.9 34.0 34.1 34.0

mBERT+paraphrase 34.1 32.9 34.0 33.0 34.9 34.7 34.5 34.5 33.9 31.4 33.9 33.7
XLM-R+paraphrase 35.5 33.7 34.0 32.3 35.0 36.5 38.1 34.7 35.1 33.5 34.1 34.7

LB

mBERT+pooling 35.5 34.1 34.0 35.3 33.3 34.1 35.7 32.8 33.1 33.5 32.3 33.8
mBERT+distiluse 34.5 35.6 33.6 35.1 31.3 31.4 38.5 35.6 34.8 35.7 34.3 34.6

mBERT+paraphrase 39.1 37.9 37.8 33.5 39.5 39.4 39.1 34.7 36.9 33.9 35.7 36.8
XLM-R+paraphrase 36.8 35.7 35.0 32.8 37.5 37.5 37.3 36.7 37.5 32.8 33.9 35.7

Table 17: Results of all languages using different combinations of retriever and MPLM for robustness analysis on
Amazon review task (k = 5), AG News tasks (k = 1), and XNLI task (k = 3), respectively.

Task Dataset Size #Label Languages
Sentiment Analysis Amazon Reviews 1000 2 af, ur, jv,
Topic Categorization AG News 2000 4 ta, mn, uz,
Sentence Pair Classification XNLI 1500 3 tl, te, mn, sw

Table 18: Overview of the test sets for the three tasks. Size refers to the number of samples for each LRL.
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