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Abstract

Emergent language games are experimental
protocols designed to model how communi-
cation may arise among a group of agents. In
this paper, we focus on how to improve per-
formances of neural agents playing a signaling
game: a sender is exposed to an image and
generates a sequence of symbols that is trans-
mitted to a receiver, which uses it to distinguish
between two images, one that is semantically
related to the original image, and one that is not.
We consider multiple design choices, such as
pretraining the visual components of the agents,
introducing regularization terms, how to sam-
ple training items from the dataset, and we
study how these different choices impact the be-
havior and performances of the agents. To that
end, we introduce a number of automatic met-
rics to measure the properties of the emergent
languages. We find that some implementation
choices are always beneficial, and that the in-
formation that is conveyed by the agents’ mes-
sages is shaped not only by the game, but also
by the overall design of the agents as well as
seemingly unrelated implementation choices.

1 Introduction

Emergent language games are experimental proto-
cols designed to model how communication may
arise among a group of agents. For the linguist, they
can serve as models of how language might have
emerged in humans (Nowak et al., 1999; Kirby,
2002; Kirby et al., 2008); for the AI or NLP sci-
entist, they provide an interesting and challeng-
ing test-bed for cooperation and communication
across distinct neural agents using symbolic chan-
nels (Havrylov and Titov, 2017; Zhang et al., 2021).

Our focus in this paper is on signaling games
(Lewis, 1969). More precisely, we adopt a setting
in which a sender is exposed to some data and pro-
duces a message that is transmitted to a receiver.
The receiver has then to answer a question related
to the data that the sender was exposed to. Both

agents share the common goal of the receiver an-
swering correctly to the question. This common
goal encourages the sender to encode relevant in-
formation about the input data in its message and
in such a way that the receiver can decode it. In
the present paper, we show the sender an image,
the original image. The receiver is shown a pair
of images: a target image, which is semantically
related to the original image, and one unrelated
distractor. These images all depict a solid on a uni-
form background; the shape, the size, the position
and the color of this object are the same for the
original and the target image, while at least one of
these features is different for the distractor. Based
on the sender’s message, the receiver has to guess
which image of the pair is the target. We allow the
senders to compose sequences of arbitrary symbols
of variable length.

One of the long-term goals of the study of such
language games is to understand under which con-
ditions emergent communication protocols display
language-like features. In particular, composition-
ality has been a major concern ever since Hockett
(1960) and remains so in today’s NLP research
landscape (Baroni, 2019). In order to observe com-
plex, structured communication protocols, we need
to provide the agents with an environment complex
enough for such a characteristic to develop. This
adds two requirements on the agents’ stimuli: the
images we show them will need to be structured,
and ought to not be discriminated through low-level
features (Bouchacourt and Baroni, 2018).

When designing and experimenting with such a
signaling game, a number of design choices are left
open—ranging from the exact objective optimized
by the agents, to the selection of training examples
and to whether agents have prior information about
their environment. In this paper, we exhaustively
study how different choices often encountered in
the relevant literature interact, and which combina-
tions of these, if any, yield the most stable, efficient
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communication protocols. In addition, we use train-
ing data that theoretically allow the agents to ignore
one aspect of the images (e.g., the color of the ob-
ject shown, or its size), so as to test whether the
agents do ignore one feature and how implementa-
tion choices impact this behavior. To that end, we
define four automatic metrics to probe syntactic and
semantic aspects of their communication protocols;
we believe them to be useful to future emergent
communication studies, as the current agreed upon
tool set for studying artificial emergent languages
remains fairly narrow. These metrics help us as-
sess what the emergent languages have in common
and how they differ. We find that language-like
characteristics can be driven by seemingly unre-
lated factors, and that ensuring the emergence of a
reliable communication protocol that generalizes
to held-out examples requires a careful considera-
tion of how to implement the language game. The
main contributions of this work are thus twofold:
we report an exhaustive review of implementation
choices, and we provide novel automated metrics
to study the semantics of emergent communication
protocols.

We provide an overview of related works in Sec-
tion 2. Dataset and game details are presented in
Section 3. We describe our implementation variants
in Section 4 and our automatic metrics in Section 5.
We discuss our results in Section 6.

2 Related work

The signaling game we study in this paper is de-
rived of Lewis’ (1969) work; more specifically,
we build upon the neural network formulation of
Lazaridou et al. (2018) using a symbolic channel
(Sukhbaatar et al., 2016; Havrylov and Titov, 2017;
Lazaridou et al., 2017). Other formulations that we
leave for future study involve multi-turn commu-
nication (Jorge et al., 2016; Evtimova et al., 2018,
a.o.), populations and generations of agents (e.g.,
Kirby et al., 2014; Foerster et al., 2016; Ren et al.,
2020; Chaabouni et al., 2022) or non-symbolic
communication channels (e.g., Mihai and Hare,
2021).

There is a large prior body of research that in-
vestigate how specific implementation choices can
impact the characteristics of the emergent commu-
nication protocol. For instance, Liang et al. (2020)
advocate in favor of competition as an environ-
mental pressure for learning composition by only
rewarding the fastest of two teams in a multi-turn

signaling game. Rita et al. (2022) mathematically
demonstrate that the typical losses used to imple-
ment Lewis games can be broken down in a in-
formation term and a co-adaptation term, and that
limiting overfitting on the latter term experimen-
tally leads to more compositional and generalizable
protocols. Mu and Goodman (2021) discuss gen-
eralization, and how to induce it by modifying the
signaling game to involve sets of targets, rather
than unique targets per episode. Patel et al. (2021)
study a navigation task to show how to foster inter-
pretability, i.e., communication protocols that are
grounded in agents’ perceptions of their environ-
ment. Rita et al. (2020) discuss how encouraging
“laziness” in the sender and “impatience” in the
receiver shapes the messages so as to exhibit Zip-
fian patterns. Chaabouni et al. (2019b) use hand-
crafted languages to study word-order preferences
of LSTM-based agents. Kim and Oh (2021) discuss
the importance of dataset size, game difficulty and
agent population sizes. Bouchacourt and Baroni
(2018) study how the visual components of signal-
ing game agents can undermine the naturalness of
their communication. Korbak et al. (2019) propose
a specific pretraining regimen to foster composi-
tionality.

Another relevant section of the literature dis-
cusses automatic metrics designed to capture spe-
cific language-like aspects of the emergent proto-
col. Chief of these is the meaning-form correla-
tion (a.k.a. topographic similarity) of Brighton and
Kirby (2006), which quantifies compositionality by
measuring whether changes in form are commensu-
rate with changes in meaning (though other metrics
exist, e.g., Andreas, 2019). Chaabouni et al. (2020)
argue that this metric does not correlate with gener-
alization capabilities, and that it is thus unsuitable
for studying compositionality. Mickus et al. (2020)
show how it is impacted by other language-like
features. Following these remarks, we focus on
novel metrics and defer discussions of topographic
similarity to Appendix B.1.

3 Experimental setup

Dataset. We construct a dataset of synthetic im-
ages depicting solids on gray backgrounds, using
vpython.1 They exhibit a combination of five fea-
tures, each of which have two possible values: hor-
izontal position (left, right), vertical position
(top, bottom), object type (cube, sphere), object

1https://pypi.org/project/vpython/
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color (red, blue), object size (small, large). We
generate 1000 images for each of the 25 possible
combinations of feature values (or categories).

We divide the dataset in two splits: a training
split and an evaluation split.2 This partition is per-
formed as follows. First, one category is selected as
the seed category. Then, base categories are the 16
categories that differ from the seed category on ex-
actly 0, 2 or 4 features. Generalization categories
are the 16 remaining categories, that differ from the
seed category on exactly 1, 3 or 5 features. Base
category images are then further divided 80%–20%
between training and evaluation splits. All general-
ization category images are assigned to the evalua-
tion split. The training split therefore contains only
images from base categories while the evaluation
split contains both images from base categories and
images from generalization categories.

This partition of categories entails that that
during training, all training instances involve im-
age categories that differ by at least two features.
Hence, agents may entirely disregard one feature
(e.g., color) and still manage to perfectly discrimi-
nate all training instances. Only during evaluation
are they confronted with pairs of categories that
differ by a single feature: namely, when the orig-
inal image is taken from a base category and the
distractor image from a generalization one (or vice
versa).

Game & model architecture. All of our mod-
els are comprised of two agents: a sender and a
receiver. They are trained to solve a Lewis signal-
ing game with a single communication turn. The
sender is first shown an image I and produces a
message: a sequence of up to 10 symbols from an
alphabet of size 16. The receiver is then provided
as input a target image I ′ of the same category as
I , a distractor image J of a different category, and
the message, and has to identify I ′ as the intended
target. This game is illustrated in Figure 1. The
original image I differs from the target image I ′ so
as to deter the sender from describing low-level fea-
tures of the images (e.g., specific pixel brightness,
Bouchacourt and Baroni, 2018).

Both agents contain an image encoder, imple-
mented as a convolution stack, and an LSTM to
process symbols. The sender’s LSTM is primed
with the encoded original image representation, and
then generates the message. The receiver uses its
LSTM to convert the message into a vector; it then

2We do one such split per model trained.
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Figure 1: The Lewis Signaling game considered in this
paper. The sender (left) is shown the original image
and produces a message that the receiver (right) uses to
distinguish the target image from the distractor image.
The original and target images share the same semantic
category (here: top right big red cube).

computes the dot product between the message en-
coding and each of the target and distractor images
encoding; we infer a probability distribution over
the image pair using a softmax function.

Models are trained with REINFORCE (Williams,
1992); the loss for an episode is defined as:

L = −
∑

t

rt · log p(at) (1)

where at is the tth action taken in the episode, p(at)
its probability, and rt its associated reward. Each
episode contains one generation action per symbol
in the message, and one classification action. All
actions of an episode are associated with the same
reward rt = r. By default, we set r to 1 when the
receiver successfully retrieves the target image, and
0 otherwise.

4 Implementation choices

Having described our basic setup above, we now
list the different implementation variants that we
study in the present paper. We refer to these im-
plementation variants using a vector notation; for a
binary trait Φ, a model for which Φ is implemented
will be denoted as ⟨. . . ,+Φ, . . . , ⟩, conversely, its
absence would be signaled with ⟨. . . ,−Φ, . . . , ⟩.

Pretraining of the visual component. In order
to ensure that the recurrent message encoders and
decoders receive coherent, usable representations
of the images, for some variants, we pretrain the
image encoders convolutions. In the remainder of
the text, we denote as ⟨+P, . . . ⟩ models that have
undergone pretraining, and ⟨−P, . . . ⟩ models that
did not. We consider three pretraining objectives:
an auto-encoding task and two classification tasks.
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The auto-encoding pretraining consists in train-
ing the convolution stack along with an additional
deconvolution stack to reproduce images provided
as input, using a mean squared error loss:

LAE =
1

3hw

h∑

i=1

w∑

j=1

3∑

c=1

(
Yijc − Ŷijc

)2
(2)

where Ŷ is the reconstruction of the RGB image Y
of height h and width w. Models pretrained with
this objective are denoted as ⟨+PAE, . . . ⟩.

The first classification objective, which we dub
“category-wise”, corresponds to predicting which
of the 25 categories the input image corresponds
to,3 and is learned using a cross-entropy loss:

LCW = −
25∑

i=1

1{i=y} log ŷi (3)

where ŷ is the vector(
p(y = 1|I), . . . , p(y = 25|I)

)
correspond-

ing to the classifier’s probability distribution
over possible labels. Models pretrained with this
objective are denoted as ⟨+PCW, . . . ⟩.

The second classification objective, called
“feature-wise”, consists in predicting each of the 5
feature values of the input image—i.e., an agreg-
gate of five binary classification sub-tasks. The loss
function for this last objective LFW is thus:

LFW = −
5∑

f=1

2∑

i=1

1{i=yf} log Ŷfi (4)

where Ŷ is the structured prediction, such that Ŷfi

is the probability assigned for the ith possible value
of the f th feature, and y = (y1, . . . , yf ) is the
vector of target feature values for this example.
We denote models pretrained with this objective as
⟨+PFW, . . . ⟩.

We also consider whether or not to freeze the pa-
rameters of the image encoder convolution stacks.
Assuming the pretraining was successful, the result-
ing image vector representations should contain all
the information necessary for models to succeed. In
this case, freezing convolutions reduces the number
of learnable parameters, which may help the op-
timization. Pretrained models whose convolution
stacks are frozen are denoted as ⟨+P,+F, . . . ⟩,
whereas models whose convolutions (pretrained or
not) are updated are denoted as ⟨. . . ,−F, . . . ⟩.

3Because the training split is used during pretraining, only
the 24 base categories are in fact seen at this stage.

Distractor sampling. By default, during train-
ing, we first select the original/target category ct
uniformly at random, before selecting the distractor
category cd uniformly among remaining categories.
A second strategy that we envision to improve per-
formance consists in adversarially sampling cd in-
stead. More precisely, when we evaluate the agents
at the end of each training epoch, we derive count-
based estimates of the probability P (fail | (ct, cd))
of communication failure for each pairs (ct, cd).
At training time, cd is sampled with a probability
proportional to P (fail | (ct, cd)). At evaluation
time, cd is still sampled uniformly. We denote the
use of this adversarial sampling during training as
⟨. . . ,+A, . . . ⟩, and its absence as ⟨. . . ,−A, . . . ⟩.

Rewards and regularization. One drawback of
the pretraining methods and the adversarial sam-
pling alike is that most of them (i.e., all except the
auto-encoder method) require information which
might not be available in other datasets, namely
labels pertaining to the semantics of the images.

One possible technique not subject to this con-
cern consists in adding an entropy term to the REIN-
FORCE loss, as is sometimes done in emergent com-
munication (e.g., Lazaridou et al., 2018; Chaabouni
et al., 2019a). This entropy loss is defined as:

LH = −βS
∑

t

HS,t − βRHR (5)

where βS and βR are two scalar coefficients con-
trolling the strength of this regularization, HS,t

is the entropy of the probability distribution com-
puted by the sender and used to select the tth sym-
bol of the message, and HR is the entropy of the
probability distribution computed by the receiver.
The scalar coefficients are set to βS = 10−2 and
βR = 10−3.4 The use of this entropy term is de-
noted with ⟨. . . ,+H, . . . ⟩.

Another technique consists in redefining the re-
wards system. Instead of associating each action of
an episode with a binary reward r ∈ {0, 1}, the
reward is defined as the probability that the re-
ceiver assigns to the target image, i.e., how confi-
dent it is in retrieving the target. The use of this
confidence-based reward system is denoted with
⟨. . . ,+C, . . . ⟩.

The last technique that we study consists in de-
ducting the recent average rewards as a baseline

4Optimal settings in preliminary experiments.
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term b (Sutton and Barto, 2018, §13):

L = −(r − b)
∑

t

log p(at) (6)

where b is the average of r over the last 1000
batches. The use of this baseline term is denoted
with ⟨. . . ,+B⟩.

While confidence-based rewards and baseline
can technically be applied jointly, doing so proves
to be detrimental. None of the runs for models im-
plemented as ⟨. . . ,+C,+B⟩ yielded a successful
communication protocol. We conjecture that this
is due to the probability mass assigned to the tar-
get image being very close to the average reward
(0.5) at the beginning of the training process, which
leads to losses and gradient updates close to 0. In
what follows, the use of these two techniques are
then considered mutually exclusive.

Comparison with previous work. In our ex-
periments, we exhaustively evaluate various de-
sign choices, which cover many architectures sim-
ilar to those studied in earlier works. For in-
stance, Lazaridou et al. (2018) would correspond to
a ⟨−P,−F,−A,−H,−E,−B⟩ model, Boucha-
court and Baroni (2018) adopt a model similar to a
⟨+Pcw,+F,−A,−H −E,−B⟩. In what follows,
we do not focus on how specific earlier works fare,
but instead attempt to develop a more global pic-
ture.

5 Automatic metrics

Communication efficiency. We primarily mea-
sure the performance of a model by its commu-
nication efficiency (c.e.), which we define as the
average probability assigned by the model to the
target image over a large number of evaluation in-
stances.5

Evaluation instances involve all categories seen
during training with additional categories as well
(see Section 3). To assess how the agents handle
unseen combination of features at a finer level, we

5Communication efficiency differs from accuracy, defined
as the proportion of evaluation instances for which the tar-
get image is assigned a higher probability than the distrac-
tor. Accuracy can be maximal (100%) even with a very low
communication efficiency (50 + ϵ%). Low communication
efficiency is a sign of sub-optimal performance, as an effective
communication system should describe the target category
unambiguously, i.e., the agents should solve the game with
a high degree of confidence. In practice, we find these two
values to be highly correlated in our experiments, suggesting
our models are well calibrated (Guo et al., 2017).

define base-c.e., gen.-c.e. and mixed-c.e. by re-
stricting the two selected categories to two base
categories, two generalization categories, and one
of each respectively.

All of our metrics are generalized from single
models to sets of models by computing their aver-
age across models (i) using, for each model, the
value obtained during the evaluation phase in which
it reaches its highest communication efficiency and
(ii) discarding any model which never reaches a
communication efficiency of 60% or above at any
point of the training process.6 Any model that does
reach a communication efficiency of 60% or above
is said to be “successful”. The convergence ra-
tio (cvg.) of a set of models is the proportion of
successful models in this set.

Abstractness. We task receivers with recogniz-
ing not the original image I shown to senders, but
another target I ′ of the same category. This is
meant to encourage senders to describe not so much
the input image as its category. We evaluate this
aspect using the abstractness of a model:

abstractness = 2 · pR(I ′|I, I ′,m) (7)

where pR(J) is the probability assigned by the
receiver to the image J , I and I ′ are the original
and target images, and m is the sender’s message
for the input I . Abstractness is 0 if all the mass is
on the original image, and 1 when it is distributed
evenly.7

Scrambling resistance. To measure how sensi-
tive to symbol ordering receivers are, we define
the scrambling resistance of a model by comparing
the probability assigned to the target image by the
receiver when provided with the sender’s message
m, and when provided with a randomly permuted
version m′ of it. More precisely, given a message
m, we compute:

m = (a1, . . . , an)

m′ =
(
aσ(1), . . . , aσ(n)

)

sr =
min (pR(m), pR(m

′))
pR(m)

(8)

where at is the tth symbol of the message produced
by the sender, pR(x) is the probability of the re-
ceiver selecting the target image given the message

6Such models are discarded because we are interested in
the properties of emergent languages, i.e., communication
protocols that are reliably used to convey information.

7As expected, we do not observe any value significantly
larger than 1.
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Implementation cvg. c.e.

⟨−P, . . . , −C, −B ⟩ 0.800 0.950
⟨+P, −F, . . . , −C, −B ⟩ 0.883 0.954
⟨+P, +F, . . . , −C, −B ⟩ 1.000 0.922
⟨−P, . . . , +C, −B ⟩ 0.875 0.954
⟨+P, −F, . . . , +C, −B ⟩ 0.958 0.961
⟨+P, +F, . . . , +C, −B ⟩ 1.000 0.926
⟨−P, . . . , −C, +B ⟩ 0.925 0.967
⟨+P, −F, . . . , −C, +B ⟩ 1.000 0.971
⟨+P, +F, . . . , −C, +B ⟩ 1.000 0.936

Table 1: Effects of pretraining and reward redefinition
on convergence and communication efficiency.

x, and σ is a random permutation of the interval
J1, nK. The scrambling resistance of a model is
an average of sr over a large number of evaluation
instances.

Semantic probes. In order to determine which
features of the original/target category are de-
scribed in a sender’s message, we implement a
probing method based on decision trees. We con-
vert any message m into a bag-of-symbols vector
u ∈ N16, such that ui is the number of occurrences
of symbol i in m. Given a set of messages each
associated with its corresponding original/target
category, for each of the five features, we can train
a decision tree to predict the values of the feature
based on the bag-of-symbols representation of the
messages. While the messages may very well en-
code information under a form that cannot be de-
coded by such a simple system, high accuracy from
a decision tree is proof that the corresponding fea-
ture is consistently described in the messages.8

6 Results

6.1 Global performance

Table 1 shows the performance of all of the runs
we have performed, aggregated based on the re-
ward system they use (binary rewards, confidence-
based reward, or binary rewards with a baseline
term), on whether the visual convolution stacks
are pretrained (without differentiating between
the various pretraining objectives) and, if so, on
whether these convolution stacks are frozen during
training. We observe that the most impactful imple-
mentation choice is whether or not to use a baseline

8In this text we focus on the accuracy of the decision trees
and leave the analysis of the trees themselves to future work.

Implementation cvg. c.e.

⟨ . . . , −H, . . . , ⟩ 0.929 0.941
⟨ . . . , +H, . . . , ⟩ 0.988 0.952

⟨. . . , −F , . . . , −H, −C, +B ⟩ 1.000 0.970
⟨. . . , −F , . . . , +H, −C, +B ⟩ 0.963 0.970

Table 2: Effects of the entropy loss term on convergence
and communication efficiency.

term (⟨. . . ,−C,+B⟩). Improvements with +B are
much more consistent and pronounced than models
using confidence-based rewards (⟨. . . ,+C,−B⟩)
or pretraining (⟨+P, . . . ⟩).

On its own, pretraining brings some degree
of improvement comparable to what we see in
models implemented as ⟨. . . ,+C,−B⟩. Setups
involving freezing pretrained convolution stacks
(⟨+P,+F, . . . ⟩) reach a convergence ratio of 1 at
the expense of a downgrade in communication ef-
ficiency. Moreover, pretraining without freezing
weights (⟨+P,−F, . . . ⟩), while not detrimental,
does not improve performances unless used jointly
with either +C or +B. Optimal performances are
attested when using pretraining with a baseline
term (⟨+P,−F, . . . ,−C,+B⟩).

Table 2 shows the performance (top) of all of the
runs that we have performed and (bottom) of all
runs with the baseline term and without frozen con-
volution stacks, aggregated based on whether they
are trained with the entropy penalty. We observe
that, while in general using this regularization term
is an efficient way to boost both the convergence
ratio and the communication efficiency of converg-
ing runs, this positive effect does not persist with
⟨. . . ,−F, . . . ,−C,+B⟩ runs (see below for more
information about the drop in cvg. in this case).

Because of their high performance, we focus on
models implemented as ⟨. . . ,−F, . . . ,−C,+B⟩
in the remainder of this discussion. A communica-
tion efficiency around 97% might intuitively seem
an indicator of excellent performance, but remark
that, should the sender completely ignore one se-
mantic feature of the images, then the communica-
tion efficiency could still rise up to 30.5

31 (≈ 98.4%):
this value is obtained when, among the 31 possi-
ble categories for the distractor, 30 lead to perfect
retrieval of the target image and 1 leads to chance
retrieval. As such, none of the performances seen
so far guarantees that all features are encoded in
the messages.
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Implementation cvg. c.e.

⟨−P, −F , −A, . . . , −C, +B ⟩ 1.000 0.958
⟨−P, −F , +A, . . . , −C, +B ⟩ 0.850 0.978
⟨+P, −F , −A, . . . , −C, +B ⟩ 1.000 0.959
⟨+P, −F , +A, . . . , −C, +B ⟩ 1.000 0.983

⟨ −P , −F , +A, −H, −C, +B ⟩ 1.000 0.981
⟨ −P , −F , +A, +H, −C, +B ⟩ 0.700 0.974

Table 3: Effects of adversarial sampling. The two last
lines are a decomposition of the second one.

Implementation cvg. c.e.

⟨ −P, −F , +A, . . . , −C, +B ⟩ 0.859 0.978
⟨+PAE, −F , +A, . . . , −C, +B ⟩ 1.000 0.981
⟨+PCW, −F , +A, . . . , −C, +B ⟩ 1.000 0.985
⟨+PFW, −F , +A, . . . , −C, +B ⟩ 1.000 0.983

Table 4: Effects of pretraining objectives

Table 3 shows the performance of the runs ag-
gregated based on the sampling strategy for dis-
tractors and the use of pretraining for the visual
convolution stacks (still without differentiating be-
tween the various pretraining objectives). We see
that, compared to uniform sampling, the adver-
sarial sampling strategy systematically and sub-
stantially increases the communication efficiency.
Nonetheless, the adversarial strategy can induce
a lower convergence ratio when the convolution
stacks are not pretrained and an entropy penalty
is added, suggesting that this sampling strategy
and the entropy penalty used jointly make train-
ing too challenging for agents with randomly ini-
tialized convolution stacks. In all, the higher per-
formances observed with the adversarial sampling
strategy lead us to narrow down our discussion
once more, this time focusing on models imple-
mented as ⟨. . . ,−F,+A, . . . ,−C,+B⟩.

Finally, we focus on the effect of the differ-
ent pretraining objectives in Table 4. Though
all three pretraining objectives are helpful, we ob-
serve the highest improvement in communication
efficiency with the two classification objectives.
Among them, the category-wise objective outper-
forms the feature-wise objective. While the feature-
wise objective provides feature-level guidance, the
category-wise pretraining regimen directly trains
the convolution stacks to tease apart images of dif-
ferent categories, which is what the signaling game
requires of them. We hypothesize that the feature-

wise objective might be superior when the category
space is sufficiently larger and more complex.

6.2 Generalization and language analysis
Having looked at how to foster reliability and high
performance, we now turn to how to a study of
how well the models generalize to unseen items
and whether their messages display language-like
characteristics—as the literature often remarks that
such characteristics should not be taken for granted
(Mu and Goodman, 2021; Patel et al., 2021).

Abstractness. Abstractness is systematically
close to 1. Over all 805 successful runs, it av-
erages to 0.992 (σ = ±0.015). On the 77 success-
ful ⟨. . . ,−F,+A, . . . ,−C,−B⟩ runs, it reaches
0.996 (σ = ±0.008), with no statistically signif-
icant difference between the four pretraining op-
tions. In all, using distinct images as original and
target inputs does induce the senders to describe
categories rather than specific images.

However, when grouping runs implemented as
⟨. . . ,+A, . . . ,−C,−B⟩ depending on their pretraining
and convolution freezing, we find one group of
outliers: ⟨PAE,+F,+A,. . . ,−C,−B⟩ runs have an ab-
stractness of 0.958. This value is statistically lower
than for each of the six other groups (as shown by
a Pitman test; p < 10−6 in all cases). Convolution
stacks pretrained as auto-encoders learn to capture
the specificity of each image, which apparently
permeates the emergent languages if subsequently
frozen.

We also observe an opposite—albeit weaker—
effect with the category-wise pretraining objec-
tive. ⟨PCW,+F,+A,. . . ,−C,−B⟩ runs have an ab-
stractness of 0.998, higher than the 0.994 of
⟨PCW,−F,+A,. . . ,−C,−B⟩ runs. The difference (p <
0.04, Pitman test) indicates that in such cases, fine-
tuning the convolution stacks leads the agents to
include image-specific information in their mes-
sages.

Scrambling resistance. Scrambling resistance
yields high values, ranging from 0.892 when us-
ing auto-encoder pretraining to 0.915 when using
feature-wise pretraining.9 In other words, the re-
ceiver is able to recognize a category based on a
randomly permuted message with a high degree of
accuracy. This property, however, does not entail
that the sender produces symbols in a (near) ran-
dom order. Indeed, even English, which requires a

9The difference between these two pretraining regimens is
statistically significant: p < 10−3 (Pitman permutation test).
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rather strict word-order, arguably has a high scram-
bling resistance: it is natural to associate the scram-
bled sentence “cube a there blue is” with a picture
of a blue cube rather than that of a blue sphere
(or a red cube, etc.). High scrambling resistance
points towards the possibility that each symbol is
loaded with an intrinsic meaning, the interpretation
of which is fairly independent of its position—in
contrast with, e.g., the digits in positional numeral
systems (which are compositional systems with
low scrambling resistance).

Generalization. As we saw in Section 6.1,
the highest communication efficiency we
observe, of 0.985, is obtained with the
⟨PCW,−F,+A, . . . ,−C,−B⟩ implementa-
tion. Let us recall that this means that when the
source/target category and the distractor category
are selected from the whole set of categories, the
receiver puts on average 0.985 of the probability
mass of its choice distribution on the target image.
As for the base-c.e. (when both categories are
base categories, i.e., not seen during training)
of this implementation, its value is near perfect,
above 0.999. Its gen-c.e. (when both categories
are generalization categories), is also very high,
at 0.997. These different values indicate that the
models are able to generalize very well not only
to unseen images but also to new categories (i.e.,
unseen combinations of features).

For this same implementation, the mixed-c.e.
(when only one of the categories is a base category)
drops to 0.971.10 Recall that this is the only case
where target and distractor may differ by a single
feature. Even if agents disregard one feature, their
mixed-c.e. can still theoretically reach up to 14.5

15
(≈ 96.7%). Hence, ⟨PFW,−F,+A, . . . ,−C,−B⟩
runs communicate about all features, despite it not
being required by the training objective. Simi-
larly, ⟨PCW,−F,+A, . . . ,−C,−B⟩ runs obtain a
mixed-c.e. of 0.967 (almost equal to the thresh-
old) and ⟨−P,−F,+A, . . . ,−C,−B⟩ runs reach
a mixed-c.e. of 0.964 (slightly below).

Semantic content Scrambling resistance scores
highlight that the semantic contents of symbols
are mostly position-insensitive. This entails that
our decision-tree based probes, which rely on bag-
of-symbols representations of the messages, are
relevant. Table 5 shows how shape is much less

10In this case, receivers marginally favor the image from a
base category.

Implementation color shape

⟨ −P, −F , +A, −H, −C, −B ⟩ 0.992 0.534
⟨+PAE, −F , +A, −H, −C, −B ⟩ 0.962 0.558
⟨+PCW, −F , +A, −H, −C, −B ⟩ 0.999 0.532
⟨+PFW, −F , +A, −H, −C, −B ⟩ 0.993 0.537

⟨ −P, −F , +A, +H, −C, −B ⟩ 0.972 0.595
⟨+PAE, −F , +A, +H, −C, −B ⟩ 0.988 0.656
⟨+PCW, −F , +A, +H, −C, −B ⟩ 1.000 0.617
⟨+PFW, −F , +A, +H, −C, −B ⟩ 0.999 0.598

Table 5: Decision tree classifiers: feature prediction
accuracy (color and shape).

accurately conveyed than other image features.11

This indicates that shape is harder to identify than
color, size or position and that since the training
process does not incentivize the agents to describe
all features, they systematically focus on the four
easiest.12

Interestingly, applying an entropy penalty during
training strongly drives the agents to communicate
about the shape. Moreover, models pretrained with
the auto-encoder objective lead to higher values
than any others.13 The difference in shape recog-
nition between this group and the others is always
significant (p < 10−2).

7 Conclusions

Two broad conclusions emerge from our experi-
ments. Firstly, we saw that not all implementa-
tions perform equally well. We demonstrated how
the use of a baseline term or an adversarial input
sampling mechanism were necessary to reach high
performance. While pretraining convolution stacks
can prove beneficial in limited circumstances, not
fine-tuning them afterwards may prove to be highly
detrimental. In all, a well designed implementation
can learn reliably and generalize to new images
and combinations of features.

Secondly, we have made a case for the need of
fine-grained methods when analyzing the emergent
communication protocol. We have introduced an

11The three remaining features being very much in line with
color, we omit them in this table for brevity and clarity. See
the full results in Table 7 in Appendix B.2.

12An unlikely alternative is that they communicate the shape
of the object in a complex way that is mostly inaccessible to
our decision trees.

13The values are not shown here, but freezing pretrained
convolution stacks does not improve (and in fact deteriorates)
the accuracy of the shape-probing decision trees, except for
the auto-encoder objective.
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array of tools. Among them, scrambling resistance
were used to demonstrate that each symbol in our
languages has semantic contribution independent
from its position. Decision trees based probes in-
formed us that these symbols were put to use to
systematically describe all but one of the input im-
age’s features, shape being constitently neglected
though not entirely ignored despite the possibility
we left open through the design of the training in-
stances. These results also connect with design
choices: for instance, we saw how entropy regular-
ization and auto-encoder pretraining strengthened
the prominence of shape in the messages.

We next plan to experiment with a partition of
categories between base and generalization that
forces all features to be encoded in the messages,
and then use decision trees and other methods to
automatically describe the syntax and the seman-
tics of the emergent communication protocols in
simple terms, so as to better characterize how these
protocols relate to natural language. We also plan
to study the impacts of the semantic complexity
of the input images on these emergent protocol,
using a richer set of features and values, and using
unlabeled real-world scenes. Lastly, our findings
will have to be confirmed in setups involving other
games such as navigation tasks.

Limitations

There are two main limitations to the present work.
First and foremost is the computational cost asso-
ciated with the present experiments. We present
here results and analyzed gleaned over 10 runs, 7
pretraining regimens, 8 RL gradient propagation
variants and 2 data sampling approaches, for a to-
tal of 1120 models. While training any one of our
models is cheap (less than 3 hours on a single A100
NVIDIA GPU), the total number of models may
pose a challenge for future replication studies and
comes at an environmental cost. This also pre-
vented us from selecting optimal batch size, learn-
ing rate, and so on for specific setups—as described
in Appendix A, we set these values globally prior
to running experiments. This may affect results
and impact conclusions.

Second is the theoretical scope of the current
paper. We have focused solely on single-turn, 2
agents signaling game setups. The recommenda-
tions and conclusions drawn in the present paper
may or may not translate to other language games.
Likewise, while this study aims at exhaustiveness,

material limitations have bounded the scope of
implementation choices we studied. Some ap-
proaches, such as KL regularization (Geist et al.,
2019), have thus been left out of the present study.
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A Hyperparameters selection and
training details

Throughout our experiments, we allow agents to
generate messages of up to 10 symbols long, using
a vocabulary of 16 symbols. We train all models for
up to 100 epochs of 1000 batches each, using 128
training instance per batch. We repeat each training
procedure across 10 random seeds. Parameters are
optimized with RMSProp (Hinton et al., 2012).

Prior to any experiment reported here, we ran
a small-scale grid-search to select a learning rate
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Figure 2: Convergence ratio as a function of learning
rate.

most likely to reliably induce a successful emer-
gent communication protocol. We exhaustively
test learning rates in {10−x/2 | 4 ≤ x ≤ 12}and
measure the convergence ratio for groups of 10
runs trained for 50 epochs. Results, displayed in
Figure 2, suggest an optimal learning rate of 10−4

which we adopt in all subsequent experiments.14

In Section 4, hyperparameter values for the pre-
training procedures were selected based on the
models’ lack of further improvement on a held-
out subset of the training data. Using 1000 steps
per epoch and batches of 128 images, we found
that 5 epochs and a learning rate of 3 · 10−4 was
sufficient to guarantee an accuracy close to 100%
for the classification pretraining tasks, whereas the
auto-encoding task required 40 epochs with the
same learning rate.

B Supplementary results

B.1 Meaning–Form Correlation

In compositional languages, the meaning and the
form of messages tend to be correlated: Minute
changes in form (e.g., substitutions of a single to-
ken) are expected to correspond to minute changes
in meaning. To study the compositionality of the
communication protocols set up by the agents, one
can also measure their meaning-form correlation
(MFC).

Meaning-form correlation, or topological simi-
larity, consists in comparing how the distance be-
tween two messages relates to the distance be-
tween their semantic contents. More formally,
it is computed as a Spearman correlation be-
tween two paired samples of distance measure-
ments DF = (dF (oi, oj))1≤i<j≤n and DM =
(dM (oi, oj))1≤i<j≤n over the same set of obser-
vations, with the assumption that one distance func-
tion (dF ) captures variation in form and the other
(dM ) capture variation in meaning. For clarity, we

14Learning rates greater than 0.0003 yield to unstable per-
formances, with some runs reverting back to chance-level
communication efficiency.
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denote an MFC correlation score using the symbol
τ . In our case, we have compared the Jaccard in-
dex of the two messages as bags-of-symbols to the
Hamming distance between the two corresponding
image categories. 15

MFC scores are not easy to interpret by them-
selves, but it can be illuminating to see how they
vary and correlate with properties. While the distri-
bution of MFC and its relation with communication
efficiency is quite complex, we have observed that
difficult setups (e.g., where a globally useful design
choice is not implemented, or where an adversarial
sampling strategy factors in) display two trends: on
the one hand, they exhibit lower MFC scores, on
the other hand, for such a setup, the MFC scores
of individual runs are more in line with with per-
formance (i.e., they display a stronger Spearman
correlation or a weaker anti-correlation with com-
munication efficiency).

Implementation MFC corr. with c.e.
τ ρ p

⟨. . . , −F , . . . , −B ⟩ 0.348 -0.157 < 0.008
⟨. . . , −F , . . . , +B ⟩ 0.388 -0.237 < 0.003

⟨ . . . , +A, . . . ⟩ 0.328 0.396 < 3 · 10−16

⟨ . . . , −A, . . . ⟩ 0.351 0.262 < 9 · 10−8

⟨. . . , −F , +A, . . . , +B ⟩ 0.375 0.168 0.143
⟨. . . , −F , −A, . . . , +B ⟩ 0.400 -0.385 < 0.0005

Table 6: Some MFC scores and correlations with com-
munication efficiency.

For example, the two top rows of Table 6 show a
case in which the absence of a baseline term entails
a lower MFC and a weaker anti-correlation with
c.e. The middle two rows show a case in which
the use of the adversarial distractor sampling strat-
egy during training also entails a lower MFC and a
stronger correlation with c.e. The two bottom rows
show another case in which the adversarial training
strategy has a similar effect. In addition, the last
row shows that when the training is made particu-
larly easy, the models produce on average messages
that are very compositional (in the sense reflected
by the MFC), but that the best models diverge from
this: the best models are the ones in which the two
agents develop some form of co-adaptation at odds
with compositionality. This echoes the findings of
Chaabouni et al. (2020), who highlight that MFC is
not necessarily tied to generalization capabilities.

15Using the Levenshtein distance instead of the Jaccard
index yields the same conclusions, as MFC scores derived
from either distance are extremely significantly correlated.

B.2 Decision Trees
Full results for the decision-tree semantic content
probes are displayed in Table 7. As noted in the
main text, the behavior for size and position fea-
tures is very similar to that for color, and very dis-
tinct from that for shape.
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Implementation color size h-pos v-pos shape

⟨ −P, −F , +A, −H, −C, −B ⟩ 0.992 0.964 0.992 0.998 0.534
⟨+PAE, −F , +A, −H, −C, −B ⟩ 0.962 0.974 0.979 0.986 0.558
⟨+PCW, −F , +A, −H, −C, −B ⟩ 0.999 0.998 0.987 0.987 0.532
⟨+PFW, −F , +A, −H, −C, −B ⟩ 0.993 0.968 0.993 0.993 0.537

⟨ −P, −F , +A, +H, −C, −B ⟩ 0.972 0.958 0.968 0.968 0.595
⟨+PAE, −F , +A, +H, −C, −B ⟩ 0.988 0.992 0.991 0.984 0.656
⟨+PCW, −F , +A, +H, −C, −B ⟩ 1.000 0.999 1.000 1.000 0.617
⟨+PFW, −F , +A, +H, −C, −B ⟩ 0.999 0.998 0.999 1.000 0.598

Table 7: Decision tree classifiers: feature prediction accuracy (all features).
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