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Abstract

As the foundation of current natural lan-
guage processing methods, pre-trained lan-
guage model has achieved excellent perfor-
mance. However, the black-box structure of
the deep neural network in pre-trained lan-
guage models seriously limits the interpretabil-
ity of the language modeling process. Af-
ter revisiting the coupled requirement of deep
neural representation and semantics logic of
language modeling, a Word-Context-Coupled
Space (W2CSpace) is proposed by introduc-
ing the alignment processing between uninter-
pretable neural representation and interpretable
statistical logic. Moreover, a clustering pro-
cess is also designed to connect the word- and
context-level semantics. Specifically, an asso-
ciative knowledge network (AKN), considered
interpretable statistical logic, is introduced in
the alignment process for word-level seman-
tics. Furthermore, the context-relative distance
is employed as the semantic feature for the
downstream classifier, which is greatly differ-
ent from the current uninterpretable semantic
representations of pre-trained models. Our ex-
periments for performance evaluation and inter-
pretable analysis are executed on several types
of datasets, including SIGHAN, Weibo, and
ChnSenti. Wherein a novel evaluation strat-
egy for the interpretability of machine learn-
ing models is first proposed. According to the
experimental results, our language model can
achieve better performance and highly credible
interpretable ability compared to related state-
of-the-art methods.1

1 Introduction

Machine learning has recently been democratized
in various domains, such as search engines, con-
versational systems, and autonomous driving(Gao
et al., 2018; Grigorescu et al., 2020; Wang et al.,
2022). However, despite AI technologies signifi-

*Corresponding author
1https://github.com/ColeGroup/W2CSpace

cantly facilitating industrial processes and improv-
ing work experiences, the uninterpretable logic of
machines leads to distrust, which hinders further
development of AI. Explainable Artificial intelli-
gence (XAI), proposed to bridge the block between
humans and machines, has been increasingly at-
tracting attention recently, where "explanation"
is described as abductive inference and transfer-
ring knowledge (Josephson and Josephson, 1996;
Miller, 2019). Calling for explaining and under-
standing the machine learning process, researchers
aim to interpret the methods for system verifica-
tion, compliance with legislation, and technology
improvement.

Computational linguistics, which serves as the
theoretical foundation for NLP, aims to promote
communication between humans and machines
(Khan et al., 2016). However, during the recent de-
velopment, the uninterpretable NLP methods have
raised concerns. The decreased transparency and
increased parameter complexity adversely affect
the model explainability and controllability, even
if the performance of the language models has sig-
nificantly improved, such as BERTs (Devlin et al.,
2019; Liu et al., 2019a; Clark et al., 2020), GPTs
(Radford et al., 2018, 2019; Brown et al., 2020) and
so on. The performance advantage of the black-box
methods is attractive while the researchers investi-
gate interpretable algorithms. Therefore, the exist-
ing works mainly focus on (1) explaining the black-
box methods and (2) using interpretable models
(Ribeiro et al., 2016; Li et al., 2022a).

In order to explain over-parameterized language
models, the model-agnostic analysis is investigated
on recent deep neural methods. Without modi-
fying the black-box models, the researchers an-
alyze the immediate feature of the neural layers,
attention distribution, and so on (Clark et al., 2019;
Vig, 2019; Rogers et al., 2020). Quantitative ex-
periments and visual analysis is able to partially
reveal the behaviors of the key components and

8414



the overall response of the methods to certain pat-
terns (Hewitt and Manning, 2019; Kovaleva et al.,
2019). However, without any interpretable opti-
mization of the model, the analysis is unable to
provide enough detail for understanding (Rudin,
2019), which indicates a completely faithful expla-
nation from black-box components or deep neural
methods is impossible.

Different from model-agnostic analysis, meth-
ods that integrate interpretable algorithms enable
more comprehensive interpretability. Two different
types of structures are adopted in these approaches,
including (1) a black-box backbone with an inter-
pretable bypass for implicit informing and (2) a
transparent backbone with an interpretable algo-
rithm for direct interpreting (Beckh et al., 2021).
For implicitly informed methods, the introduced
interpretable knowledge regulates the immediate
feature or embedding (Liu et al., 2019b; Rybakov
et al., 2020). Within the interpretable bypass, the
performance of the backbone is maximally pre-
served, which is the main reason these structures
are often opted for over-parameterized models
(Jang et al., 2021; Chen et al., 2020). However,
the integrated knowledge is unable to decisively
change the structure of the backbones for a trans-
parent decision process, which adversely affects
the generalization ability of the approaches and
limits the application of the methods to specific
tasks. In contrast, approaches with interpretable
backbones exhibit a more integrated relationship
between the components, enabling better explana-
tions than the above two types of approaches. The
interpretable algorithms serve as word embedding,
immediate feature, or the classifier to realize trans-
parency decision process (Onoe and Durrett, 2020;
Lee et al., 2022; Kaneko et al., 2022). But the per-
formance of existing interpretable models remains
incomparable to the most advanced language mod-
els.

In this work, we address the aforementioned
obstacles by developing a novel interpretable lan-
guage modeling method by constructing a Word-
Context-Coupled Space (W2CSpace) aligned with
statistical knowledge2, which enables (1) effec-
tive interpretation of BERT representations (De-
vlin et al., 2019) by introducing the interpretable
statistical logic, (2) reasonable context abstraction

2Chinese characters and English words are typically con-
sidered at the same processing level in pre-trained language
models, so we refer to Chinese characters as "Chinese word"
in this paper to avoid ambiguity.

with the coupled word-level semantics, and (3) in-
terpretable modeling for the given text with the
context-relative distance. W2CSpace serves as
the key component in the backbone of our lan-
guage modeling method, which realizes a decisive
transparency increasing compared with the model-
agnostic and implicitly informed methods. The
structure of our method is illustrated in Figure 1.
Specifically, our main contributions can be summa-
rized as follows:

• Word-level semantics in W2CSpace is origi-
nated from BERT immediate representation
with the help of a mapping network, preserv-
ing the language modeling ability of the deep
neural methods (Section 2.1.1).

• An associative matrix sampled from asso-
ciative knowledge network (AKN, Li et al.,
2022c) is introduced for aligning with the se-
mantic distances (Section 2.1.2 and 2.1.3).

• Based on the linguistic concept, the contexts
are abstracted using k-means clustering on
neighboring word elements. (Section 2.2.1).

• The context-relative distance, computed be-
tween the input text and the context clusters
in W2CSpace, serves as the semantic feature
to describe the text semantics (Section 2.3.1).

• The experiments on different NLP tasks
demonstrate the effectiveness of W2CSpace.
Additionally, an interpretable analysis is de-
signed to verify the interpretability of the our
method (Section 3).

2 Methodology

2.1 Initialization of W2CSpace

Since current researchers opt for high-dimensional
representations in their methods, it is widely be-
lieved that over-parameterization advances lan-
guage modeling performance. With respect to the
standard language modeling process, the words in
the given text are modeled based on their mean-
ing under different contexts. Regardless of the
attributes of the words themselves, greater repre-
sentation dimensions enable better performance
in distinguishing the words with similar seman-
tics. However, different from the deep neural meth-
ods, the linguistic attributes of the text, such as
co-occurrence rules, word shape, and so on, serve
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Figure 1: Overview of the method’s architecture. The subfigs exhibit the training process for our interpretable
language method. (1a) The BERT encoder is firstly fine-tuned under the downstream task. We map the feature
FB from fine-tuned BERT encoder to the word elements C in W2CSpace ("T" refer to "trained"); (1b) After the
training of the mapping network with a reconstruction and alignment task, the word semantics are clustered to
high-dimensional context semantics X; (1c) During interpretable language modeling process, the context semantics
in W2CSpace is gradually optimized by multiplying the merge matrix MM. We compute the context-relative
distance of the mapped feature C within the optimized context X̄ for the downstream task.

as the basis for NLP tasks, which fit the understand-
ing and deduction processes of humans.

In order to unify the high-dimensional repre-
sentations and interpretable statistical knowledge,
we design a mapping network to transfer the se-
mantic representation from BERT encoder to low-
dimensional elements in W2CSpace and introduce
a statistical alignment with AKN during the train-
ing of the mapping network. Within the above
processing, the mapped elements are distributed in
W2CSpace according to their corresponding word-
level semantics.

2.1.1 Representation Mapping from BERT

The mapping network is a neural network with
a backbone of a convolution network, which en-
ables dimension reduction process. The mapped
elements in smaller dimensions are regarded as
the coordinates of the word-level semantics in
W2CSpace. Besides, the introduction of the con-
volution network is able preserve semantic in-
formation from BERT for maintain the perfor-
mance advantages of pre-trained models. For
BERT representations FB of given sentence S =
{x1, x2, . . . , xd}, the corresponding elements C =
{c1, c2, . . . , cd} in W2CSpace are obtained accord-

ing to:

C = Tanh{LN[Convs(FB) + Res(FB)]} (1)

where FB ∈ Rn×h and C ∈ Rn×k, h is the hidden
sizes of BERT encoder and k is the coordinate
size of W2CSpace. Tanh(·) and LN(·) are Tanh
and layer normalization operations. A convolution
network Convs(·) with different filter sizes added
a residual connection Res(·) is used in the mapping
network.

2.1.2 Statistical Alignment with AKN
AKN, a statistical network based on phrase co-
occurrence, is introduced to sample to an associa-
tive matrix reflected the associative relations among
the given sentence, which is also adopted in pre-
vious work (AxBERT, Wang et al., 2023). Within
the original AKN is conducted on phrase-level, we
modify AKN to word-level to fit the processing of
BERT and opt for the construction and sampling
methods of the AKN (A) and associative matrix
(MS) similar to AxBERT as:

Ai,j =
∏

sent

SR
∑

sent

1

distance⟨i,j⟩
(2)

MSi,j = σ
Ai,j

Avg(Ȧi:)
− 0.5 (3)
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where A ∈ Rv×v, MS ∈ Rd×d, v is the length of
the word list, d is the length of the given sentence,
and σ(·) and Avg(·) are functions of sigmoid and
average. For the word pair ⟨i, j⟩, distance⟨i,j⟩ =
|i− j| is the word-distance between i-th and j-th
word in sentence. Ȧi: is the association score of
i-th word under current sentence, and MSi: is the
i-th row of MS . 3

Since we compute the cosine distances matrix in
the given sentence, the associative matrix is aligned
with the word-level distance matrix to integrate the
statistical logic into W2CSpace. We introduce a
mean square indicator IMS to indicate the align-
ment result. Specifically, for the word pair ⟨i, j⟩,
the indicator IMSi,j is defined as:

IMSi,j = MnSqr[CosDis(ci, cj),MSi,j ] (4)

where IMS ∈ Rn×n and n is the length of the given
sentence. MnSqr(·) and CosDis(·, ·) are the mean
square and cosine distance functions.

2.1.3 Training of Mapping Network
The objective LM of the mapping network is com-
posed of LMS and LRec, which correspond to the
mean square error loss and the reconstruction loss.
With respect to the statistical alignment process, the
mapping network is trained under the alignment ob-
jective LM . Besides, we introduce a reconstruction
loss by reversing the structure of mapping network
to reconstruct the representation of BERT imme-
diate feature FB . The objective of the mapping
network is calculated according to:

LM = LMS + LRec (5)

LMS = Mean(IMS) (6)

LRec = MAE(C − FB) (7)

where Mean(·) is the average function, MAE(·)
is the mean absolute error operation (Choi et al.,
2018). The introduction of reconstruction loss aims
to guarantee that the mapped word elements pre-
serve the semantics of BERT representations.

2.2 Abstraction of Context-level semantics
Humans are able to recognize emotion from lan-
guage, action, and so on (Barrett et al., 2007).
Specifically, in linguistics, humans recognize emo-
tion with the context in the given sentences. How-
ever, humans are able to feel the emotion rather
than explicitly describe it, because that context is

3The same shrink rate SR = 0.95 as AxBERT.

an abstract concept in linguistics and is hard to
simply quantify.

While the sentence is composed of words, the
corresponding context is established from the word
semantics, which can be realized in W2CSpace.
Therefore, we employ the k-means clustering on
the word-level semantics to abstract the context
semantics. The context is able to be extracted based
on the common semantics among the words located
adjacently in W2CSpace.

2.2.1 Context Clustering Based on Word
Semantics

With the help of the mapping network and the statis-
tical alignment, the word elements are reasonably
distributed in W2CSpace according to their seman-
tics, where the neighbors in W2CSpace refer to
similar semantics. k-means clustering is an algo-
rithm based on the distances (Hartigan and Wong,
1979), which is introduced to abstract the word se-
mantics to k classes according to their semantics
(distance). The clustering process is defined as:

X{xi|Context(xi)} = KMCosDis(c1, c2, . . . , cn)
(8)

where xi is the i-th classes of context and
KMCosDis(·) is the k-means clustering algorithm
based on cosine distance. The word semantics in
W2CSpace is clustered into k classes, which repre-
sents the process of abstraction of context.

2.2.2 Reasonable Cluster Merging for Context
Clustering

When the clustering is executed, especially in k-
means algorithm, the appropriate k number is hard
to determine (Hamerly and Elkan, 2003). As for
the clustering process for context, the number k
additionally represents the types of the contexts
in W2CSpace. A small number of k possibly de-
creases the performance of language modeling with
a rough context environment, but the large num-
ber is contrary to the logic of humans as humans
cannot precisely distinguish the detailed emotion
behind the text as a machine does. Besides, the
large number of k increase the time-costing of the
language modeling process. Choosing the right
number k relate to the reasonability of the context
subspace.

Serving as the part of W2CSpace, the context
clusters are used for language modeling. There-
fore, we introduce a merge matrix to the top of
the clustering results, which is optimized under the

8417



downstream task. With the guidance of the down-
stream tasks, the merge matrix dynamically adjusts
context semantics for the inter-communication be-
tween different context clusters, which reflects a
gradual clustering process and realizes a reasonable
context clusters for the downstream tasks. The clus-
tering is able to be balanced with the computation
process of the merging is defined as:

X̄{x̄i|Context(x̄i)} = MM × [x1, x2, . . . , xk]
(9)

where x̄i indicates the context semantics after merg-
ing, MMerge is the merge matrix and MMerge ∈
Rn×k. n is the size of coordinates in W2CSpace
and k is the presetting number of the clustering. 4

2.3 Interpretable Language Modeling via
W2CSpace

As the standard methodology for language mod-
eling in deep neural methods, the semantic repre-
sentation is gradually modeled through containing
neural networks, which is a simulation of the neu-
ral processing of the brain. However, the structural
simulation is unable to realize the interpretable on
logical level. The decision process through neural
networks still remains in the black box.

From the perspective of humans, emotion recog-
nition is significant in daily (Barrett et al., 2011),
which is also an important ability for machines
to interact with humans (Kosti et al., 2017). By
simulating the recognition process of humans, we
introduce a context-relative distance computed be-
tween the given text and the contexts in W2CSpace,
which enables the interpretable language modeling
process with the cooperation of the semantics on
word- and context-level.

2.3.1 Computation of Context-Relative
Distance

The context-relative distance based on the cosine
distance is also adopted in Formula 4. Compared
with the euclidean distance, the equation of the
cosine distance is more efficient in time-costing
and storage. The context-relative distance D is
computed according to:

D = CosDis(X̄,C) (10)

where X̄ is the context clusters, C is the mapped
word elements from BERT encoder, D is the
context-relative distance and D ∈ Rd×k. n is the

4However, the number k will influence the performance of
language modeling, which is discussed in Section 3.4.

word length of the given text and k is the number
of the context clusters.

2.3.2 Training of Interpretable Language
Modeling Method

The context-relative distance is able to directly
connect with the downstream classifier, which is
similar to the traditional encoding structure. The
interpretable language modeling component is re-
garded as the standard BERT-based encoder for
downstream tasks, where the standard objectives in
transformer package5 are employed.

3 Experiments

3.1 Experimental Settings

We conduct our work on NVIDIA Tesla A100 and
AMD EPYC 7742 64-Core CPU. During the inter-
pretable language modeling process, BERT-base-
Chinese pre-trained model is used, and the original
parameters are opted 6. Additionally, we opt for the
rate of 0.3 for all the dropout layers, a learning rate
of 2e-5 for 10-epoch-training of BERT encoder in
Fig. 1a, a learning rate of 1e-5 for 3-epoch-training
of the mapping network in Fig. 1b.

3.2 Datasets

The detailed information of the datasets is exhibited
in Table 1. CLUE 7, an open-ended, community-
driven project, is the most authoritative Chinese nat-
ural language understanding benchmark (Xu et al.,
2020), where the news dataset is used to initial-
ize associative knowledge network; SIGHAN15 is
benchmark for traditional Chinese spelling check
evaluation (Tseng et al., 2015), which is widely
adopted in simplified Chinese spelling check evalu-
ation by converting to simplified Chinese (Cheng
et al., 2020; Liu et al., 2021); Hybird is a mas-
sive dataset for Chinese spelling correction (Wang
et al., 2018), which is used the training of the cor-
rection methods (Wang et al., 2019; Cheng et al.,
2020); Weibo 8 and ChnSenti 9 sentiment dataset
is constructed with the comments from the largest
Chinese social community (Sina Weibo) and Chi-
nese hotel reservation websites, which are adopted
in the previous work for sentiment classification
evaluation (Li et al., 2020, 2022b).

5https://pytorch.org/hub/huggingface_pytorch-
transformers/

6https://huggingface.co/bert-base-chinese
7https://github.com/CLUEbenchmark/CLUE
8https://github.com/pengming617/bert_classification
9https://github.com/SophonPlus/ChineseNlpCorpus/
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Table 1: Statistics information of the used datasets.

Dataset TrainSet TestSet Dataset Type Usage
CLUE 2,439 - Article Initialization of AKN

HybirdSet 274,039 3,162 Sentence Training of correction task
SIGHAN15 6,526 1,100 Sentence Evaluation of correction task

ChnSenti 9,600 1,089 Article Training and Evaluation of sentiment analysis
Weibo100k 100,000 10,000 Article Training and Evaluation of sentiment analysis

3.3 Comparison Approaches

We fine-tune our method with standard classifiers
of BERT Masked LM and sequence classification
for spelling correction and sentiment classification
with training of 10 epoch, 1e-5 learning rate and 3
epoch, 1e-5 learning rate.
SoftMask is a BERT-based spelling correction
method with a soft-mask generator, where the soft-
masked strategy is similar to the concept of error
detection (Zhang et al., 2020).
FASPell conducts the Seq2Seq prediction by incor-
porating BERT with additional visual and phonol-
ogy features (Hong et al., 2019).
SpellGCN incorporates BERT and the graph
convolutional network initialized with phonolog-
ical and visual similarity knowledge for Chinese
spelling correction (Cheng et al., 2020).
PLOME integrates the phonological and visual
similarity knowledge into a pre-trained masked lan-
guage model with a large pre-train corpus consisted
of one million Chinese Wikipedia pages. And it is
the SOTA in previous work (Liu et al., 2021).
HeadFilt is an adaptable filter for Chinese spell
check, which introduce a hierarchical embedding
according to the pronunciation similarity and mor-
phological similarity (Nguyen et al., 2021).
HLG is a Chinese pre-trained model for word rep-
resentation by aligning the word-level attention
with the word-level distribution with a devised pool-
ing mechanism (Li et al., 2020).
MWA introduces a heterogeneous linguistics graph
to pre-trained language model. The graph-based
structure integrates the linguistics knowledge in
the neural network and achieves the SOTA perfor-
mance in language modeling (Li et al., 2022b).

HLG and MWA is employed on various pre-
trained language model, such as vanilla BERT (De-
vlin et al., 2019), BERT-wwm (Cui et al., 2021),
and ERNIE (Sun et al., 2019). We use the evalua-
tion results on different pre-trained language mod-
els in their original paper.

3.4 Main Experiments

The efficacy of our interpretable language model-
ing method is evaluated on different tasks, includ-
ing Chinese spelling correction and sentiment clas-
sification. Chinese spelling correction requires the
advanced language model for token classification,
where every word in the given text is classified into
a single class. And the sequence classification is
needed in Chinese sentiment classification, where
the given text is classified into positive and negative
sentiment. The token and sequence classification
tasks are able to cover most of the current classifi-
cation scenario, which enable the efficient demon-
stration of the language modeling performance of
our method.

3.4.1 Results of Chinese Spelling Correction

Similar with the past works (Cheng et al., 2020;
Liu et al., 2021), the correction experiment is em-
ployed on word- and sentence-level. Within a more
comprehensive perspective, the sentence-level eval-
uation is wider adopted and more convincing, so
we use the same evaluation matrix with the past
works (Liu et al., 2021; Nguyen et al., 2021).

As shown in Table 2, the evaluation on word-
and sentence-level composed of different indexes,
including detection precision (DP), correction pre-
cision (CP), detection recall (DR), correction recall
(CR), detection F1 score (DF1) and correction F1
score (CF1). Besides, we assess the influence of
the number choosing of n (the size of the coordi-
nates in W2CSpace) and k (the context number in
k-means clustering algorithm).

From the correction results in Table 2, our
method outperforms the baselines on both word-
and sentence-level. Specifically, at sentence-level,
our method respectively advances 0.2 and 0.7
points in DF1 and CF1; at word-level, our method
is not able to achieve comparable performance than
PLOME (Liu et al., 2021), but advances than the
SpellGCN (Cheng et al., 2020) with a 0.5 and 0.4
point improvement, and we think the massive train-
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Table 2: Results of Chinese spelling correction.

Method k
Word Level Sentence Level

DP DR DF1 CP CR CF1 DP DR DF1 CP CR CF1

FASPell - - - - - - - 67.6 60.0 63.5 66.6 59.1 62.6
SoftMask - - - - - - - 73.7 73.2 73.5 66.7 66.2 66.4

BERT - 92.7 85.0 88.7 96.2 81.8 88.4 76.5 78.6 77.5 76.0 76.5 76.3
PLOME† - 94.5 87.4 90.8 97.2 84.3 90.3 77.4 81.5 79.4 75.3 79.3 77.2
SpellGCN - 88.9 87.7 88.3 95.7 83.9 89.4 74.8 80.7 77.7 72.1 77.7 75.9
HeadFilt - - - - - - - 84.5 71.8 77.6 84.2 70.2 76.5

W2CSpace
n = 50

500 90.5 86.2 88.3 96.2 82.9 89.0 76.4 77.6 77.0 75.8 75.1 75.5
1000 90.9 85.8 88.2 96.3 82.6 88.9 78.7 79.6 79.2 78.1 76.3 77.4
1500 91.1 87.1 89.0 96.4 83.9 89.7 78.0 79.8 78.9 77.4 77.0 77.2
2000 91.7 86.2 88.9 96.3 83.0 89.2 79.2 79.8 79.5 78.5 76.6 77.5
3000 91.9 86.5 89.1 96.7 83.6 89.6 78.5 80.1 79.3 78.0 77.7 77.9

W2CSpace
n = 100

500 90.7 86.0 88.3 96.3 82.8 89.1 76.6 80.5 78.5 75.9 77.3 76.6
1000 90.6 86.3 88.4 96.2 83.2 89.1 77.2 79.8 78.5 76.4 76.6 76.5
1500 91.2 86.3 88.7 95.8 82.7 88.8 79.4 79.4 79.4 78.8 76.6 77.7
2000 91.4 87.3 89.3 95.7 83.6 89.2 78.3 80.9 79.6 77.6 77.9 77.8
3000 90.9 86.4 88.6 96.8 83.7 89.8 76.9 79.7 78.1 76.3 76.7 76.5

Table 3: Results of sentiment classification.

Method k ChnSenti Weibo100K

BERT - 94.72 97.31
+MWA - 95.34 98.14
+HLG - 95.83 98.17

BERTwwm - 94.38 97.36
+MWA - 95.01 98.13
+HLG - 95.25 98.11

ERNIE - 95.17 97.30
+MWA - 95.52 98.18
+HLG - 95.83 98.22

W2CSpace
n = 50

50 95.70 98.22
100 95.70 98.24
200 95.20 98.27
500 95.45 98.30
800 95.45 98.31
1000 95.03 98.23

W2CSpace
n = 100

50 95.53 98.29
100 94.94 98.25
200 95.62 98.27
500 95.11 98.31
800 95.87 98.31
1000 95.37 98.28

ing dataset of PLOME significantly enhance the
correction performance, where the size of dataset
composed of per-train and fine-tune dataset is 600
times larger than ours.

With respect to the changes of the parameters of
W2CSpace, the correction performance are various.
W2CSpace cannot achieves best performance on
a specific parameter combination, but the overall
performance is comparable attractive. Besides, we
notice that the W2CSpace with a larger size of
the coordinates performs better than the smaller
one, where the larger W2CSpace is advanced in 8
indexes. The advantages of enlarging the number
k are not obvious, where W2CSpace with n = 100
and k = 2000 is the most advanced combination
for the correction task. However, W2CSpace with
k = 1500 and k = 3000 is also a good choice for
correction. Generally, we think the introduction of
the merge matrix balances the difference of k.

3.4.2 Results of Chinese Sentiment
Classification

We evaluate the sentiment classification perfor-
mance with the classification accuracy. In Table
3, the results of the sentiment classification are il-
lustrated. Specifically, even the other pre-training
models partly perform better than BERT, our
method achieves improvements on both ChnSenti
and Weibo100K datasets as 0.04 and 0.09 points.

For the choice of n and k numbers, our method
achieves advanced performance with the combi-

†While the other comparison methods are trained on Hy-
birdSet, PLOME additionally pre-trained on a 600 times larger
dataset compared with HybirdSet. We uniquely highlight the
advanced index of PLOME with bold italic font.
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Figure 2: Interpretable Analysis Procedure. First, we calculate the context-relative distance for both ’Positive’ and
’Negative’ sentiments. Then we use the average distance between each context and the ’Positive/Negative’ sentences
to rank the contexts from negative to positive sentiment. By exchanging the positions of the context clusters in the
W2CSpace, the contexts are reversed to opposite sentiment based on their average distances. Finally, we apply the
reversed context to the sentiment classification task and analyze the changes in the sentiment classification results.

nation of n = 100 and k = 800 for sentiment
classification, which is different from the correc-
tion experiment. Besides, similar to the tendency
in the correction experiment, a larger n number
enables a small improvement in performance.

3.5 Interpretable Analysis

The interpretable machine learning methods are
considered with a transparent decision process
(Molnar et al., 2020; Verhagen et al., 2021). How-
ever, the method interpretability is hard to define.
The rule-based approaches, widely regarded as the
interpretable methods, are especially advanced in
the controllability that is one of the most significant
characteristics of interpretability (Lee et al., 2017;
Tian et al., 2019; Tripathy et al., 2020).

The context-relative distance, the key in our in-
terpretable language modeling process, originated
from the relativity between the input sentences
and the context in W2CSpace. Therefore, we de-
sign an analysis focused on the interpretability of
context-relative distance by means of Chinese sen-
timent classification task. The procedure of inter-
pretable analysis is exhibited in Figure 2. Ideally,
the context-relative distance correlates with senti-
ment, e.g., the shorter distance indicates stronger
relativity between the context and the labeled sen-
timent. If sentiment prediction results change cor-
respondingly after reversing the context space, it
convincingly shows that (1) the interpretable knowl-
edge from AKN is integrated into W2CSpace, (2)
the feature mapping and context abstraction pro-

cesses are conducted reasonably, and (3) the dis-
tance within W2CSpace is interpretable and associ-
ated with the emotion conveyed by the input text.

The interpretable analysis result on Weibo100K
is exhibited in Table 4. OA is the original accu-
racy, CA is the sentiment classification accuracy
after modification, and RA is the reversing accu-
racy for the sentences that successfully reverse the
sentiment labels after modification. Because lan-
guage modeling mainly relies on context semantics,
the predicted sentiments after modification should
be reversed compared with the original prediction.
From the interpretable results, the values of RA
approximate to 100%, which indicates that the pre-
dicted sentiments are mostly reversed and matches
our expectation. The predictable changes of the
accuracy reflects the controllability of our method
and the interpretability of W2CSpace. Besides,
from the perspective of model structure, the ideal
transparent method enables a completely control-
lable decision process from input to output. And
in our method, even though some parts are still in
black-box, but RA reflects the interpretability be-
tween the decision processes from W2CSpace to
the output and from input to the output. The inter-
pretable contexts are consistent with the linguistics
logic in input articles and serves as the agent to
cooperate with the articles to realize the control-
lable process. The value of RA does not directly
indicate the interpretability of our method, but but
the more approximate to 1, the more semantically
explainable of W2CSpace and its context.
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Table 4: Interpretable results.

n k OA CA RA

50
100 98.24 3.69 96.62
500 98.30 2.96 98.12
1000 98.23 1.75 99.90

100
100 98.25 1.88 99.81
500 98.31 3.79 96.78
1000 98.28 2.76 98.48

4 Conclusion

An interpretable language model is proposed by
constructing a word-context-coupled space in this
study. Within W2CSpace, (1) the uninterpretable
neural representation in BERT is regulated by in-
terpretable associative knowledge relations, (2) an
intermediate representation space with reasonable
interpretable semantics is designed, (3) an inter-
pretable semantic feature is introduced based on
intermediate representation space for downstream
classifiers. Obviously, the above strategies bring a
strong generalization ability for the interpretable
pre-trained language modeling process. Besides,
for the potential risk preventing, the interpretable
machine learning method is introduced for migrat-
ing the adverse affects from the black-box struc-
ture. Moreover, in our method, the controllable
decision process realize the regulation for the ille-
gal language inputting by controlling the related
context, and the strong cooperation between pre-
trained models and W2CSpace can protect the pa-
rameter privacy from the data stealing.

Nevertheless, W2CSpace is unable to directly
handle high-level semantics, including sentences,
paragraphs, and so on. Even the word-level lan-
guage models act as the mainstream methods in
NLP, the above limitation should be further consid-
ered in the future. Besides, restricted by our knowl-
edge and efforts, the main experiments cannot
cover all common tasks and all pre-trained models
in NLP. Relatively, the token- and sequence-level
classifications have demonstrated attractive experi-
mental performance on most NLP tasks. Next, we
also plan to extend W2CSpace to more NLP tasks
and find its more specific value.
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to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Table 1.

C �3 Did you run computational experiments?
Section 3.4.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 3.1; Section 3.2.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.
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�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 3.4.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 3.4.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 3.1.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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