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Abstract

Recent works have shown that attaching
prompts to the input is effective at condition-
ing Language Models (LM) to perform specific
tasks. However, prompts are always included
in the input text during inference, even when
they are fixed, thus incurring substantial com-
putational and memory overhead. Also, there
is currently no straightforward method of utiliz-
ing prompts that are longer than the maximum
input length of the LMs without incurring ad-
ditional costs during inference. We formally
define Fixed Input Parameterization (FIP) prob-
lem that focuses on injecting the fixed prompt
into the parameters of an LM to be an efficient
alternative to attaching fixed prompts to the
input. We show that in scenarios with long
fixed prompts, FIP can be up to 280 times more
efficient in terms of total FLOPs than previ-
ous approaches. We further explore method-
ologies for FIP and show promising results in
persona-dependent conversation, semantic pars-
ing, and zero-shot learning with task instruc-
tions. Through these explorations, we show
that FIP can be a promising direction for con-
ditioning language models, in scenarios with
long and fixed prompts1.

1 Introduction

Contemporary works on Language Models
(LMs) (Raffel et al., 2020; Brown et al., 2020; Sanh
et al., 2022; Thoppilan et al., 2022) have shown
that attaching prompts to the input is effective at
conditioning LMs to perform specific tasks. Note
that the prompt in this work refers to a broader as-
pect of prompts which includes both the prompts
used to induce specific behavior as well as prompts
used to provide some contextual knowledge such
as persona for dialogue agents. LMs are trained to
condition on the given prompts in hopes of general-
izing to unseen prompts during inference. Unseen

∗*Work done during internship at KAIST AI.
1Code used for the experiments is available at this link

prompts can be a persona for persona-dependent
conversation (Zhang et al., 2018; Xu et al., 2022),
database schema for semantic parsing (Yu et al.,
2018; Hazoom et al., 2021), and task instruction
for zero-shot learning with task instructions (Wei
et al., 2022; Sanh et al., 2022). In these tasks, a
new prompt is fixed to the input at every inference.
For instance, in persona-dependent conversation, a
persona description is appended to the dialogue his-
tory, so that the LM can always be conditioned on
the persona. For another example, in semantic pars-
ing, the LM is conditioned on the database schema
as well as natural language questions to generalize
to a new database. Lastly, zero-shot learning with
task instructions involves adding natural language
instructions to the inputs for adapting LMs to novel
tasks.

However, concatenating prompts to input se-
quences for prompt-dependent inference has two
major limitations. (1) During inference, prompts
are always included in the input text and thus
incur computational and memory overhead (Liu
et al., 2022). (2) It is challenging to fit a long text
such as the detailed description of a persona as a
prompt into Transformer-based models whose in-
put lengths are often fixed (Tay et al., 2022). For
instance, in persona-dependent conversation, the
model constantly refers to the persona description
along with the dialogue history (Wolf et al., 2019;
Roller et al., 2021), as shown in the left side of Fig-
ure 1. Moreover, in real-world scenarios, a persona
may consist of a long detailed text description of a
character or person, not just a few profile sentences.
Naively concatenating long prompts to the input
sequences is challenging due to the quadratic cost
in time and memory of Transformer-based archi-
tectures with regard to the input sequence length.
Other approaches specialized for processing long
inputs (Beltagy et al., 2020; Katharopoulos et al.,
2020; Izacard and Grave, 2021), or those that aug-
ment the LM with a retrieval mechanism (Han et al.,
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Figure 1: Fixed Input Prarameterization (FIP) example on a persona-dependent conversation. The left side presents an inference
procedure of a previous approach where the persona (prompt) is concatenated to every input. The right side describes FIP, where
the persona is injected into the model in advance, so that the model is able to generate responses without constantly referring to
the persona description. Thus, FIP approach takes less time to generate responses than the previous method.

2022) may be used but still come with increased
overall memory and computations, ultimately lead-
ing to a delay in generating responses. This prob-
lem becomes critical in situations where the LMs
are deployed, and fast inference speed is required.

In this work, we formally define Fixed Input
Prarameterization (FIP) problem, where we focus
on injecting a given fixed prompt into the parame-
ters of an LM to address the two limitations men-
tioned above. With FIP, LMs can produce prompt-
dependent outputs without the computational over-
head of appending fixed prompts at inference time
(the right side of Figure 1), and it also enables the
injection of longer prompts in a wholistic way.

More specifically, we first show that Fixed In-
put Prarameterization (FIP) is much more effi-
cient (up to 280 times) in terms of total FLOPs
compared to previous approaches that may be
used for handling long prompts such as Fusion-
in-Decoder (Izacard and Grave, 2021) or Linear
Transformer (Katharopoulos et al., 2020). Next,
we explore different methodologies as baselines
for FIP, including the continued pre-training ap-
proach on the prompt as well as a novel distil-
lation approach called Pseudo-INput Generation
(PING) for successful FIP. We apply these FIP
methods to three different tasks with fixed prompts:
persona-dependent conversation, semantic pars-
ing, and zero-shot learning with instructions. We
compare the methods against LMs with explicit
prompts as the upper bound as well as the LM with-
out both the prompt and FIP as the lower bound.
Experimental results show meaningful improve-

ments with respect to the lower bound, but also
exhibit a non-trivial gap with the upper bound. De-
spite the performance and efficiency trade-off, we
still believe that FIP is a direction worth exploring
considering its computational benefit, especially
when inference costs are critical in real-world ap-
plications.

In sum, our main contributions are three folds:

• We formally define the Fixed Input Parame-
terization (FIP) problem and demonstrate its
necessity in terms of computation and mem-
ory efficiency, in scenarios with long prompts.

• We explore baseline approaches for FIP, show-
ing that performance can approach the upper
bound (unconstrained) performance in some
cases.

• We show that the injection of long prompts
(e.g., detailed description of persona) can be
achieved through FIP and show its efficiency
in comparison with previous methods, being
up to 280 times more efficient during infer-
ence.

2 Related Work

Prompting Prompting is an emerging paradigm
for modeling LMs, especially for few-shot and
zero-shot learning (Radford et al., 2019; Brown
et al., 2020; Wei et al., 2022; Sanh et al., 2022).
With the help of appropriate prompts, one can ex-
ploit knowledge learned by a pre-trained LM and
manipulate the LM’s behavior. However, for the
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in-context learning scenario, processing prompts
that involve many training examples for each infer-
ence incurs substantial computational and memory
overhead (Liu et al., 2022). Given training data,
Liu et al. (2022) replace in-context learning with
fine-tuning a small set of parameters for tackling
the above issue. We tackle the same issue but as-
sume a stricter scenario where there is no training
data for the given prompt.

Efficient Transformers One can consider us-
ing efficient Transformer-based (Vaswani et al.,
2017) architectures for handling long input se-
quences (Tay et al., 2022). The main challenge
of using a vanilla Transformer architecture is the
quadratic cost in time and memory with regard to
the input sequence length due to the self-attention
operation. There has been a surge of recent works
addressing this problem (Dai et al., 2019; Beltagy
et al., 2020; Katharopoulos et al., 2020; Zhu et al.,
2021; Guo et al., 2021). They are primarily dedi-
cated to improving either the efficiency of the self-
attention mechanism or the general efficiency of
the Transformer architecture through sparse mod-
els. Also, there has been an attempt to distill a
unique prompt to handle long inputs (Askell et al.,
2021). Our Fixed Input Prarameterization (FIP)
approach tackles the efficiency problem of perform-
ing prompt-dependent tasks by keeping the input
sequences short (without prompts), bounding the
time and memory complexity to a constant invari-
ant of the length of the prompt. In contrast to
(Askell et al., 2021), Our work focuses on formally
framing the problem into a more general and realis-
tic setting since we aim to inject new prompts with
no corresponding training data instead of only one
prompt with corresponding training data.

Persona-dependent Conversation Endowing a
chabot with a persona (Zhang et al., 2018; Xu et al.,
2022) is challenging, but it enables the chatbot to
deliver more personal, specific, consistent, and en-
gaging conversations (Zhang et al., 2018) and gain
user trust (Liu et al., 2020; Song et al., 2019; Qian
et al., 2018). To achieve this, previous works have
attached a persona to the dialog history at every
inference time, so that the model can always be
conditioned on the persona. However, when given
a long persona description or long conversation his-
tory as a persona, this approach brings the critical
problem of increased overall memory and compu-
tations, resulting in delayed response generation.

FIP allows a dialogue agent to generate responses
without a persona description as the explicit input
once the persona is injected.

Semantic Parsing Semantic parsing is the task
of mapping a natural language query into a SQL
query executable on a database. Specifically, cross-
domain (cross-database) semantic parsing, where
models are trained and tested on different domains
(databases) (Yu et al., 2018) introduces many gen-
eralization challenges (Hazoom et al., 2021). Previ-
ous works concatenate the natural language query
with the serialized database schema as the input
to address the problem (Suhr et al., 2020; Deng
et al., 2021; Xie et al., 2022). With FIP, the model
is adapted to a new database schema in advance,
so that it can map natural language queries to SQL
queries on the new database without explicitly re-
ferring to the schema during inference.

Zero-shot Learning with Task Instructions Re-
cent works (Sanh et al., 2022; Wei et al., 2022)
have addressed zero-shot generalization to new
tasks (Brown et al., 2020; Kim et al., 2021) by
multi-task prompted training. With multi-task
prompted training, the models learn to use task in-
structions as prompts to generalize to unseen tasks.
It is demonstrated that this approach improves gen-
eralization ability to novel tasks and offers an ef-
fective substitute for unsupervised language model
pre-training. Through FIP, the LM can be aware of
a novel task instruction before performing the task
and thus does not require the instruction, which can
be lengthy, to make predictions.

3 Fixed Input Prarameterization

In this section, we formally define Fixed Input Pra-
rameterization (FIP) as a task and describe the ben-
efits of the formulation. Prompt-dependent gener-
ation is a task of generating an output sequence
y that is a proper response to the input sequence
x and coherent to the prompt z. Utilizing the
prompt during inference, the generated sentence
is obtained by y = f(z,x) where f denotes an
LM such as T5 and GPT-2. Fixed Input Prarame-
terization (FIP), i.e., parameterization of prompts,
allows LMs to perform prompt-dependent gener-
ation without using prompts during inference. To
achieve this, we need to design a FIP method H
to inject a prompt z into an LM f . The process of
FIP can be represented as

fz = H(z, f) (1)
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where fz denotes an LM injected with the prompt.
Then the prompt-dependent output sequence can
be obtained by y = fz(x).

FIP can also be applied for long prompts whose
length exceeds the LM’s input sequence length.
Given a long prompt z, we decompose it into mul-
tiple sub-prompts {zi} each of which fits the LM’s
input length, i.e., z = z1:n = [z1; z2; ...; zn]. Then
the FIP process can be executed iteratively, inject-
ing each sub-prompt sequentially while the LM is
aware of the previous sub-prompts:

fz1 = H(z1, f) (2)

fz1:2 = H(z2, fz1) (3)

. . .

fz1:n = H(zn, fz1:n−1) (4)

The above formulation can be seen as a high-level
abstraction of iterative FIP that we aim to approxi-
mate. In practice, in order to fully inject z1:n, we
repeat (2)-(4) multiple times (i.e., multiple epochs).

Why is Fixed Input Prarameterization neces-
sary? FIP brings advantages in terms of effi-
ciency when applied to prompt-dependent tasks.
The previous approach of appending prompts to
the input sequences has the drawback of the model
repeatedly referring to the prompt at each inference
time. This becomes critical in scenarios requir-
ing long prompts, as Transformer architecture has
quadratic computational and memory costs due to
the limitation of the self-attention operation. We
propose FIP as a solution to this computation bot-
tleneck. Once a prompt is injected into the LM in
advance, the LM no longer needs to refer to the
prompt during inference. As a result, the model’s
input length remains independent of the length of
prompts and is able to utilize prompts of any length
efficiently. We discuss the efficiency gain of FIP in
Section 6.1.

Evaluation Metric for FIP FIP can be evalu-
ated by the evaluation metric of the fixed prompt-
dependent task at hand. We also introduce a met-
ric called the FIP score (FIP score) to measure
the degree of injection. The metric is agnostic
of the target task by comparing the results with
that of an LM given actual prompts during in-
ference. Let Xw/ prompt denote the LM’s task
score with the prompt as an additional input (up-
per bound) and Xw/o prompt denote the LM’s task
score without the prompt (lower bound). We de-
fine FIP score as the min-max scaling score of

XFIP , where XFIP represents the score of the
LM on the target task after FIP, i.e.,FIP score =
max(0, XFIP − Xw/o prompt) / (Xw/ prompt −
Xw/o prompt). We limit using FIP only in situa-
tions where Xw/ prompt > Xw/o prompt because
there is no reason to inject a prompt if task perfor-
mance degrades when using the prompt. Even if
the range of individual task scores may vary from
task to task, FIP score represents the overall injec-
tion effectiveness of the FIP methods, agnostic of
the individual task score range.

4 Methods for Fixed Input
Prarameterization

In this section, we explore methods of Fixed Input
Prarameterization (FIP) that can address prompt-
dependent tasks without accessing the prompt dur-
ing inference. To achieve this, the model should
be trained to store the prompt in its parameters.
This can be seen as parameterizing the prompt
into the model instead of feeding the prompt ex-
plicitly to the model. This is challenging as the
prompt is unseen to the model and has no corre-
sponding training data. In Section 4.1, a baseline
method by continued pre-training is introduced,
followed by a method for improving the baseline
with curriculum learning. Section 4.2 presents
a novel distillation-based method called Pseudo-
INput Generation (PING) that learns to generate
pseudo-inputs to inject novel prompts.

4.1 Continued Pre-training
We establish the Continued Pre-training method as
a straightforward baseline for FIP. This method in-
jects prompts into the parameters of an LM by con-
tinuing with the pre-training objective of the LM
on the target prompt. The pre-training objective is
a straightforward option as it works in an unsuper-
vised manner. In our experiments, we leverage the
pre-trained T5 model (Raffel et al., 2020) and thus
use the masked language modeling objective which
is the pre-training objective of T5. Following Raf-
fel et al. (2020), we randomly replace 15% of a
given prompt with special mask tokens; then, the
model is trained to predict the sequence of masked
tokens. In this process, the model learns about the
prompt the same way the model learns knowledge
during the pre-training stage.

Curriculum learning We further investigate the
baseline method by leveraging curriculum learn-
ing (Bengio et al., 2009; Campos, 2021) during
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Figure 2: Illustration of the Pseudo-INput Generation (PING). During Phase 1, an input generator is trained with the task-specific
training data. The inputs are prompts of a task, and the outputs are task inputs corresponding to the prompt. Input and output
examples applied to semantic parsing are shown. During Phase 2, the input generator generates pseudo-inputs from the given
target prompt, which are used to distill knowledge from the teacher to the student. Blue square boxes indicate frozen parameters;
yellow rounded boxes indicate unfrozen parameters.

continued pre-training. We set the mask ratio as
the difficulty criteria (Wettig et al., 2022) and grad-
ually increase the ratio throughout the Continued
Pre-training. As the mask ratio increases, the model
should predict more masked tokens given less con-
text. With curriculum learning, we expect the LM
to gradually better adapt to the prompt, improving
its prompt-dependent task performance. Through-
out the experiments, we increase the mask ratio
linearly from 15% to 30%, 50%, and 70% and re-
port the best score.

4.2 Pseudo-INput Generation (PING)

The purpose of FIP is to inject a prompt into the
parameters of an LM which can also be done indi-
rectly through distillation. In this subsection, we
propose a novel distillation-based method called
Pseudo-INput Generation (PING) that distills a
novel prompt into a student LM that does not have
access to the prompt through a teacher LM that
does have access to the prompt. In order for distil-
lation, pseudo-inputs are needed since we assume
a scenario where the prompt to be injected has
never been seen during training and does not have
separate training data. An overview of PING is
illustrated in Figure 2. As shown in the figure, dur-
ing Phase 1, an input generator is trained with the
task-specific training data. When given a prompt
of the task as the input, the generator is expected
to generate the task inputs that correspond to the
prompt. During Phase 2, the input generator is
frozen and is used to generate pseudo-inputs from
the unseen prompt, which are then given to the
teacher together with the prompt, while only the
pseudo-inputs are given to the student. This way,

the student learns to follow the teacher and is able
to learn about the prompt indirectly.

5 Experimental Setup

In this section, we explain the experimental setups
in detail. Experiments are performed with the T5-
base (Raffel et al., 2020) (220M parameters) model
unless noted otherwise.

5.1 Prompt-dependent tasks

In order to evaluate the effectiveness of Fixed Input
Prarameterization (FIP) methods, we select three
prompt-dependent tasks—persona-dependent con-
versation, semantic parsing, and zero-shot learning
with task instructions; all these tasks require fixed
prompts during inference. Fixed prompts come in
the form of a persona in persona-dependent con-
versation, database schema in semantic parsing,
and task instruction in zero-shot learning with task
instructions. As described in the introduction and
Section 3, when FIP is applied for these tasks, there
would be apparent benefits in real-world scenarios.
With these tasks, not only the performance of the
baseline FIP methods is evaluated, but also the
significance of FIP is emphasized by comparison
with the (unconstrained) previous approaches that
concatenate prompts to the input.

5.2 Datasets

Following datasets of prompt-dependent tasks men-
tioned in Section 5.1 are utilized to evaluate Fixed
Input Prarameterization (FIP).

PERSONA-CHAT / MSC PERSONA-CHAT
(Zhang et al., 2018) is a crowd-sourced dataset
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intended for training agents to perform engaging
and personal chit-chat by comprising the dialogues
to be grounded on specific personas. For each
dialogue, two speakers have a 6-8 turn conversa-
tion conditioned on a given persona. Based on
PERSONA-CHAT, Multi Session Chat (MSC) (Xu
et al., 2022) is a dialogue dataset collected to be
comprised of long-term conversations each consist-
ing of 5 continuing, but distinct chat sessions. In
this work, we consider both the persona and dia-
logue history of the first two sessions as a prompt
in MSC to incorporate long-term conversational
context. Performance on both tasks are measured
via perplexity (PPL). We randomly select 100 di-
alogues from the validation sets respectively as
the persona-dependent conversation benchmark for
testing our method. The persona descriptions are
60 tokens long on average in PERSONA-CHAT
and the combined prompts average 811 tokens in
MSC.

Spider Spider (Yu et al., 2018) is a large cross-
domain semantic parsing and text-to-SQL dataset
for developing natural language interfaces to cross-
domain databases. Models must generalize to new
database schemas as well as new queries to per-
form well on it. Evaluation metrics include Exact
Matching (EM) and Execution Accuracy (EA). We
utilize the development set containing 20 databases
with about 50 questions per database as a semantic
parsing benchmark for FIP. The database schemas
range in length from 55 to 430 token lengths.

WSC / RTE / COPA For the task of zero-shot
task generalization, Sanh et al. (2022) have trained
the LM on a diverse set of tasks and evaluated on a
held-out group of tasks to evaluate generalization
performance. We choose coreference resolution,
natural language inference, and sentence comple-
tion tasks, three out of their four held-out tasks, and
test FIP on WSC, RTE, and COPA datasets (Wang
et al., 2019). We utilize task instructions (prompts)
provided from Sanh et al. (2022) and report average
task scores of using them. The task instructions are
comprised of about 20-30 tokens.

5.3 Implementation Details

For the Continued Pre-training method (Sec-
tion 4.1), we use the Adam optimizer (Kingma
and Ba, 2015) with a constant learning rate 1e-4
and batch size 8. We perform 5-20 steps of injec-
tion. For PING (Section 4.2), input generators are

trained on each tasks for 1-2 epochs. We use KL-
divergence for distilling the last layer’s output of
the decoder and perform 10-100 steps of injection.
For T5-base, we use a single 16GB T4 GPU and
for the larger models we use 4 32GB V100 GPUs.

In order for injection and comparison with
upper-bound (W/ PROMPT) and lower-bound (W/O

PROMPT) performance, we first need two different
versions of the LM adapted to the given task. For
the task of persona-dependent conversation and se-
mantic parsing, W/ PROMPT model is fine-tuned
together with prompts since prompts are explic-
itly used during inference, while W/O PROMPT

model is fine-tuned on the task without being
given the prompt. We perform FIP on the W/O

PROMPT model since we assume having no access
to prompts during inference.

For the zero-shot learning, we modify the
prompts developed by Sanh et al. (2022) in the
form of a fixed prompt. We replace the place-
holders on their prompts with fixed words, then
append the actual content to the prompt in a key-
value format. For example, if the original is
If {Premise} is true, is it also true
that {Hypothesis}?, then the converted prompt
is If "Premise" is true, is it also
true that "Hypothesis"? Premise:{Premise}
Hypothesis:{Hypothesis}. This ensures that the
prefix is fixed, which can be injected with FIP. We
use the T0-3B LM checkpoint for the zero-shot
generalization.

6 Experimental Results

In this section, we first explore the inference ef-
ficiency of models performing prompt-dependent
tasks and show that Fixed Input Prarameterization
(FIP) leads to a meaningful gain in computational
efficiency. Then the baseline and proposed meth-
ods are tested and compared on datasets discussed
in Section 5.2. The results indicate that the Pseudo-
INput Generation (PING) method achieves the best
performance among FIP methods, sometimes even
outperforming the upper bound, which uses explicit
prompts during inference. In Section 6.3, we pro-
vide a concrete instance of injecting a real persona
description into a conversational model, demon-
strating the feasibility of long prompt injection.

6.1 Inference Efficiency

The comparison of inference efficiency of a model
with FIP, a baseline model that naively concate-
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Model Prompt
Length FLOPs (T) Latency (s)

T5 W/ FIP * 0.7 0.58

T5 512 7.2 (×10.3) 1.09 (×1.9)
512 × 2 14.6 (×21.0) 2.38 (×4.1)
512 × 4 OOM -

T5 + FID 512 7.2 (×10.3) 1.09 (×1.9)
512 × 2 14.0 (×20.2) 1.54 (×2.6)
512 × 4 27.6 (×39.8) 2.87 (×4.9)
512 × 8 54.9 (×79.2) 5.87 (×10.0)
512 × 28 OOM (×280) -

LINEAR- 512 9.5 (×13.8) 1.58 (×2.7)
TRANSFORMER 512 × 2 16.1 (×23.2) 2.62 (×4.5)

512 × 4 29.2 (×42.2) 4.74 (×8.1)
512 × 8 55.6 (×80.1) 9.11 (×15.6)
512 × 28 OOM (×280) -

Table 1: Inference efficiency of different models that can
be used for performing prompt-dependent inference. We de-
pict how many times FIP is efficient in comparison with the
other approaches inside the parenthesis. When there is out-
of-memory (OOM) using the 16GB T4 GPU, we estimate the
FLOPs in italics assuming a linear correlation between prompt
length and FLOPs.

nates the prompt to the input, Fusion-in-Decoder
(FiD) (Izacard and Grave, 2021), and Linear Trans-
former (Katharopoulos et al., 2020) are shown in
Table 1. We consider FiD as one of the options for
processing long inputs because it processes long
input sequences by encoding chunks of input se-
quences separately, reducing the quadratic com-
plexity to linear. Linear Transformer also reduces
the complexity to linear by linearizing the atten-
tion mechanism. We measure FLOPs and forward
propagation latency via DeepSpeed Flops profiler 2

using a single 16GB T4 GPU.
As shown in Table 1, T5 W/ FIP is much more

efficient than other models, especially as we as-
sume a longer prompt length. This is because the
efficiency of FIP remains the same independent of
the prompt length while the costs of others increase
linearly. Specifically, when the prompt length is 8
times the model’s max input sequence length, one
can achieve 80× computational efficiency in terms
of FLOPs by applying FIP. Furthermore, in a sce-
nario where the prompt length is 28× the model’s
max input sequence length (shown in Section 6.3
when trying to utilize a long persona that is over
13,000 token length long), previous approaches
show an out-of-memory (OOM) issue using the
16GB T4 GPU, which means it is impossible to
utilize such long prompts. FIP is estimated to be
280× more efficient in terms of total FLOPs if the

2https://www.deepspeed.ai/tutorials/flops-profiler/
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Figure 3: FIP scores in PERSONA-CHAT as we scale the
sizes of the LM. There is a consistent trend of improved injec-
tion performance across FIP methods as the LM scales.

GPU RAM were hypothetically big enough.

6.2 Task Performance

We report the task performance obtained by ap-
plying different FIP methods on three prompt-
dependent tasks in Table 2. FIP scores are also
obtained as introduced in Section 3. For all of
W/ FIP methods that applied Fixed Input Praram-
eterization, we observe an overall increase in per-
formance compared to W/O PROMPT, indicating
successful injection of prompts into the parameters
of the model through FIP methods. The standard
deviations of perplexity with 5 random seeds are
lower than 0.01 and 0.1 for PERSONA-CHAT and
MSC, respectively, which demonstrates the statis-
tical significance of the results. Furthermore, we
find that FIP performance improves steadily with
model size in PERSONA-CHAT, demonstrating
that larger models benefit more from FIP as shown
in Figure 3 in terms of FIP score. The task scores
are reported in Appendix A.

As shown in Table 2, while CP (Continued Pre-
training in Section 4.1) gives modest performance
improvement over W/O PROMPT, the results of CP
W/ CURR show that leveraging curriculum learning
during continued pre-training is effective in some
cases. CP W/ CURR performs better compared to
CP in PERSONA-CHAT, MSC, Spider, and RTE; it
even outperforms W/ PROMPT in RTE. On the other
hand, PING significantly improves performance
from CP in PERSONA-CHAT, MSC, Spider, and
WSC, performing almost on par with W/ PROMPT

in WSC. This sheds light on the possibility that FIP
may be able to reach the upper bound performance.
However, the results show at the same time that
there is still a gap between the performance of FIP
methods and the upper bound W/ PROMPT that
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Dialogue Semantic Parsing Task Generalization

PERSONA-CHAT MSC Spider WSC RTE COPA

PPL (↓) FIP Score PPL (↓) FIP Score EM EA FIP Score ACC FIP Score ACC FIP Score ACC FIP Score

W/ PROMPT 8.40 - 16.42 - 57.9 61.3 - 63.6 - 67.9 - 67.3 -

W/O PROMPT
W/O FIP 10.72 - 23.96 - 14.5 15.1 - 44.0 - 64.2 - 60.0 -

W/ FIP
CP 10.53 0.081 18.95 0.664 16.9 17.5 0.054 54.5 0.536 67.7 0.946 64.8 0.658
CP W/ CURR 10.28 0.191 18.82 0.681 17.7 18.4 0.072 50.8 0.347 68.2 1.08 64.1 0.562
PING 9.45 0.549 18.44 0.731 36.6 41.7 0.507 63.3 0.985 64.5 0.081 62.0 0.274

Table 2: Fixed Input Prarameterization performance on three prompt-dependent tasks. W/ PROMPT stands for the upper bound
(unconstrained) method, which uses the prompt during inference by appending it to the input. W/O PROMPT depicts the lower
bound method of not utilizing the prompts at all. Lastly, we show three W/ FIP methods: CP and CP W/ CURR stand for
the Continued Pre-training (baseline) and the Continued Pre-training with curriculum learning, respectively, as explained in
Section 4.1; PING depicts our novel proposed method utilizing distillation.

needs to be bridged in future work.

We find that the performance of different meth-
ods depends on the complexity of the input se-
quence structure. We believe that PING achieves
a good performance in PERSONA-CHAT, MSC,
Spider, and WSC because those datasets have rela-
tively simple input sequences, such as a short utter-
ance and simple query. In datasets with many com-
ponents or multiple complex sentences (e.g., COPA
and RTE), the low quality of generated pseudo-
inputs degrades the performance of PING. On the
other hand, CP and CP W/ CURR perform better in
datasets with complex structure. These findings en-
courage the community to explore a more integral
FIP method that can cover different datasets.

6.3 Long Prompts Injection

To demonstrate the effectiveness of FIP on injec-
tion of long prompts into LMs, we show how the
method works with a real-world example. We pick
a Wikipedia page (Elon Musk), considering it as
a long persona description, and inject the entire
article (over 13,000 tokens) into an LM trained
with PERSONA-CHAT. Here, we use T5-large as
a base model and apply PING. Figure 4 shows an
actual instance of interactions with the LM that
underwent FIP through PING. The responses show
the LM successfully reflecting the description of
the person on the Wikipedia page without having
the description appended to the input. Moreover,
the inference of FIP is 280× more computationally
efficient in terms of FLOPs than the baseline, as
shown in Section 6.1.

Actual Utterances 

🧑 : what do you do? 
🤖 : i work for Tesla, my main concern is the battery pack.
🧑 : are you a ceo?
🤖 : i am a founder of Tesla and the Chief Tech Officer.
🧑 : what's on your mind?
🤖 : the people at Mars. it is one of the world's best places for man
🧑 : what's your plan?
🤖 : to go to Mars. it sounds beautiful. what is your plan for Mars?
🧑 : I'd also like to go to Mars!
🤖 : Mars would be absolutely wonderful! Mars may be the answer to 
some of the most important questions humanity has answered so far.

💉

Elon Musk Q317521 

Figure 4: A real-world example of Fixed Input Prarameter-
ization with a long prompt. (Top) The process of injecting
a Wikipedia article describing a person (Elon Musk) into a
model with FIP. The article is more than 13,000 tokens long.
Actual conversation between the persona injected model and
a human (cherry-picked).

7 Conclusion

In this paper, we formally define Fixed Input Pra-
rameterization (FIP) problem that focuses on in-
jecting the prompt into the parameters of an LM, as
an efficient alternative to attaching fixed prompts
to the inputs for prompt-dependent tasks. Through
experiments, we show that FIP is much more com-
putationally efficient (up to 280 times) in terms of
total FLOPs for handling long prompts compared to
the previous alternatives. We further explore base-
line methodologies for FIP and find that Pseudo-
INput Generation (PING), a distillation-based
approach, shows promising results in persona-
dependent conversation, semantic parsing, and
zero-shot learning with task instructions. Through
the explorations, we show that FIP can be a promis-
ing direction for conditioning language models ef-
ficiently, in scenarios with long and fixed prompts.
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Limitations While Fixed Input Prarameteriza-
tion (FIP) enables performing prompt-dependent
tasks efficiently, there are limitations that need to be
addressed in future work. In particular, the current
FIP methods cause task performance degradation.
Moreover, the computational cost needed for the in-
jection of prompts and the storage required to store
the parameters of every injected model have not
been extensively considered. For example, when
considering previous conversation history as the
prompt to be injected in a long-term conversation
setting, fast injection may also be a requirement
for real-world application. Updating or adding a
relatively small number of parameters (Hu et al.,
2021; Wang et al., 2021) may be a potential avenue
for addressing the problems.
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A Appendix

Table A1: Prompt Injection performance in PERSONA-
CHAT as model size increases. There is a consistent trend
of improved injection performance across PI methods as the
model scales, and CP tends to increase more rapidly.

PERSONA-CHAT

220M 770M 3B

PPL (↓) PI Score PPL (↓) PI Score PPL (↓) PI Score

W/ PROMPT 8.40 - 7.42 - 6.66 -

W/O PROMPT

W/O PI 10.72 - 9.54 - 8.82 -

W/ PI
CP 10.53 0.081 9.3 0.113 7.75 0.495
PING 9.45 0.549 8.37 0.552 7.56 0.583
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