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Abstract

Evaluation of natural language generation
(NLG) is complex and multi-dimensional. Gen-
erated text can be evaluated for fluency, co-
herence, factuality, or any other dimensions of
interest. Most frameworks that perform such
multi-dimensional evaluation require training
on large manually or synthetically generated
datasets. In this paper, we study the efficacy
of large language models as multi-dimensional
evaluators using in-context learning, obviating
the need for large training datasets. Our ex-
periments show that in-context learning-based
evaluators are competitive with learned eval-
uation frameworks for the task of text sum-
marization, establishing state-of-the-art on di-
mensions such as relevance and factual con-
sistency. We then analyze the effects of fac-
tors such as the selection and number of in-
context examples on performance. Finally,
we study the efficacy of in-context learning-
based evaluators in evaluating zero-shot sum-
maries written by large language models such
as GPT-3. Our code is available at https:
//github.com/JainSameer06/ICE

1 Introduction

Developing comprehensive evaluation frame-
works (Deng et al., 2021; Yuan et al., 2021; Zhong
et al., 2022) that can evaluate multiple human-
interpretable dimensions, such as factual consis-
tency (Kryscinski et al., 2020; Wang et al., 2020)
and coherence (Dziri et al., 2019; Huang et al.,
2020), is important for the advancement of Natural
Language Generation (NLG). However, similarity-
based metrics (Papineni et al., 2002; Lin, 2004;
Sellam et al., 2020; Zhao et al., 2019; Zhang et al.,
2020) still dominate NLG evaluation in practice.
Compared to them, desired multi-dimensional eval-
uators do not require reference texts for evaluation;
and they can easily extend to new explainable eval-
uation dimensions. Recently, Zhong et al. (2022)
developed a unified evaluation framework that can

Text: Cats and dogs have the advantage... 
Summary: roland girous keeps a blood parrot... 
Consistency: 1.0 

Text: Jordan Henderson has provided Liverpool.. 
Summary: jordan henderson is set to sign a... 
Consistency: 0.67 

Text: Arsenal playmaker Mesut Ozil seemed... 
Summary: mesut ozil impressed on international... 
Consistency: ___________ 

Figure 1: Our prompt design to evaluate the consistency
of the summary in red, illustrated using two in-context
examples (in blue). To evaluate other aspects, we re-
move the source text or replace it with a reference.

generalize to multiple dimensions and text gener-
ation tasks. However, it relies on the construction
of synthetic and auxiliary data for the finetuning of
a pre-trained language model, requiring in-depth
knowledge and significant engineering effort for
each dimension. Furthermore, the inclusion of
new dimensions requires (continued) training of
the model, and might affect the performance on
other dimensions in unforeseen ways.

In this work, we propose to use in-context learn-
ing (Brown et al., 2020) with large language mod-
els (LLMs) — a commonly used method to perform
many tasks by utilizing only a few input-output ex-
amples — to perform multi-dimensional text evalu-
ation in a unified fashion. Compared to pre-trained
evaluators that need specialized supervised training
for each dimension, our In-Context learning-based
Evaluator (ICE) framework is:

• Learning-free. It does not require supervised
fine-tuning on large annotated (synthetic) train-
ing data, requiring only a handful of samples at
inference time.

• Extensible. To evaluate new dimensions, it does
not rely on large amounts of human judgments
or the construction of new synthetic data, using
only a natural language prompt consisting of a
small number of example pairs to ascertain the
properties associated with a given quality aspect.
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In this paper, using text summarization as a test
bed, we show that with a simple prompt design, ICE

is competitive with state-of-the-art trained evalu-
ators on multi-dimensional evaluation of model-
produced summaries, establishing a new state-of-
the-art on dimensions such as relevance and factual
consistency. To study the robustness of the eval-
uator to the selection of in-context examples, we
analyze the factors that affect the performance of
ICE, such as the number of in-context examples
and sampling procedures when picking in-context
examples from a set of candidates. We find ICE to
be robust to the selection of in-context examples
and observe a slight improvement in performance
as the number of examples is increased. Finally, in
light of the recent work (Goyal et al., 2022) that
points to the misalignment of existing evaluation
metrics with human preference in evaluating zero-
shot summaries generated by LLMs such as GPT-3
(Brown et al., 2020), we study the effectiveness
of ICE in evaluating zero-shot summaries gener-
ated by GPT-3. We find that ICE evaluations agree
closely with human judgments on such summaries.

2 Methodology

2.1 Problem Statement

Given a sequence x that is input to an NLG sys-
tem and a system-generated output sequence y, an
evaluation framework outputs a score s that cap-
tures the quality of y, either with or without the
help of a human-generated reference output r.1 In
case of multi-dimensional evaluation where we are
interested in assessing y over d quality metrics,
we instead get a vector S = (s1, s2, ..., sd) over
diverse dimensions (e.g., coherence, fluency). De-
pending on the dimension, there is sometimes a
need to condition an evaluation on x (such as to
evaluate consistency in summarization). We evalu-
ate our method over four dimensions:

• Consistency: The factual correctness of a sum-
mary given the source text.

• Relevance: The property of capturing salient
information from the source.

• Fluency: A measure of the quality of the individ-
ual sentences in the summary.

• Coherence: A measure of the quality, organiza-
tion, and structure of sentences in the summary.

1Specifically for summarization, most learned frameworks
evaluate relevance through reference-based evaluation.

2.2 Prompt Design & Score Extraction
ICE relies on an LLM (we use the
text-davinci-003 model of GPT-3) to make
predictions. It takes in a prompt that consists
of a small number of in-context examples, each
of which consists of generated text and its
corresponding quality score as a numeric string.
The prompt ends with a test example, for which
the model predicts a score (Figure 1).

The input contains the model-generated text
(summary), in addition to which it might con-
tain additional information such as the source
text or references, depending on the dimen-
sion. To evaluate fluency and coherence, our
prompts use in-context examples consisting of gen-
erated summaries and corresponding scores. For
consistency and relevance, we use the source
text and a reference summary respectively, in addi-
tion to the generated summary. We pass this prompt
to a GPT-3 model, with sampling temperature set
to 0 to elicit deterministic responses. We parse
the model response–decoded numeric string–as the
dimension score.

2.3 Selection of In-context Examples
By default, we use 4 in-context examples in our
prompts, as this is the largest number that fits
within the context window of GPT-3. We experi-
ment with two sampling procedures (Appendix B)
to obtain 4 examples from a pool of examples:

1. Uniform Random Sampling. We randomly
select 4 summaries from the pool of examples.
This causes the examples to follow the same
distribution as the example pool.

2. Stratified Sampling. We bucket the range of
scores, i.e. [0, 1], into 4 equal partitions and
randomly sample one summary from each one.
This causes examples to be representative of
the range of scores in the example pool.

We avoid using synthetically generated
data (Kryscinski et al., 2020; Zhong et al., 2022)
since the kind of errors made by generation
models is often different from the errors present
in the negative examples in these datasets (Goyal
and Durrett, 2021). We instead elect to use (a
few) human evaluations of model-generated text
in order to make the in-context examples as
representative of real errors as possible. We do
this by splitting the meta-evaluation dataset and
using a partition as an in-context example pool, as
described in Section 3.1.
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Metric Coherence Consistency Fluency Relevance
ρ τ ρ τ ρ τ ρ τ

CTC - - 0.425 0.340 - - 0.495 0.364
BARTScore 0.445 0.340 0.380 0.314 0.345 0.283 0.357 0.274
UniEval 0.591 0.424 0.433 0.348 0.445 0.349 0.473 0.343

ICE (Uniform Sampling) 0.476 0.388 0.486 0.466 0.366 0.328 0.467 0.384
ICE (Stratified Sampling) 0.497 0.387 0.298 0.263 0.397 0.348 0.485 0.396

Table 1: Summary-level Spearman and Kendall-Tau correlations of different metrics on the SummEval benchmark

3 Experiments

3.1 Datasets & Baselines

We use the SummEval dataset (Fabbri et al., 2020)2

to meta-evaluate our evaluation framework. Sum-
mEval collects human evaluation annotations for
16 summarization systems on 100 articles sampled
from the CNN/DailyMail corpus, for a total of 1600
summary-level annotations. Each summary is eval-
uated on four dimensions described in Section 2.2.

To get a pool of in-context examples, we keep
aside a small subset (64 examples) of the Sum-
mEval dataset to pick in-context examples from,
and use the rest (1536 examples) as the test set for
meta-evaluation (evaluating the baselines on this
same test set). Further details are in Appendix A.

We compare ICE to the following state-of-the-
art multi-dimensional evaluators: (1) CTC (Deng
et al., 2021) uses information alignment between
generated outputs and references or inputs; (2)
BARTScore (Yuan et al., 2021) uses the condi-
tional probability of a sequence given inputs or
references; and (3) UniEval (Zhong et al., 2022)
uses a question-answering framework (e.g. "Is this
a coherent summary?") to calculate metrics.

Following Liu et al. (2021); Zhong et al. (2022),
we assess performance by computing summary-
level Spearman and Kendall-Tau correlations be-
tween predicted scores and human judgements.

3.2 Results

As illustrated in Table 1, ICE is competitive
with fine-tuned baselines despite not requiring
any finetuning. It achieves state-of-the-art cor-
relation with human judgments for relevance
and consistency. We perform pairwise signif-
icance tests and observe that ICE (uniform sam-
pling) does better than UniEval on consistency
and relevance on Kendall’s Tau with a signifi-
cance level of 0.05 (Appendix E). Additionally,
the uniform sampling variant of ICE outperforms

2https://github.com/Yale-LILY/SummEval

BARTScore (which also does not require fine-
tuning) across dimensions.

Between the two sampling procedures for
ICE, we observe that stratified sampling works
marginally better for all dimensions other than
consistency. Since summaries in the SummEval
dataset have perfect or near-perfect human scores
for consistency (Figure 2), uniform sampling
causes in-context examples to also have near-
perfect scores. This appears useful for the model to
calibrate its scoring when evaluating consistency,
leading to better performance. We explore this in
greater detail in §4.1. While the same reasoning
could hold for fluency, we observe both here and
in §4.3 that fluency scores are quite stable. Given
that fluency is an easier aspect to evaluate, this
stability could be a result of the model possessing
a strong notion about fluency from pre-training
time that is not modified significantly as the distri-
bution of in-context examples changes (Reynolds
and McDonell, 2021). Finally, we observe that the
performance for coherence and relevance are
similar regardless of the sampling procedure. This
is because scores for these aspects are spread out
in the dataset, which makes uniform and stratified
sampling return similar in-context examples.

4 Analysis

In this section, we analyse the effects of our prompt
engineering choices. The comparison between sam-
pling procedures in Section 4.1 is performed on the
entire test set but the experiments in Sections 4.2
and 4.3 are performed on a test set sample of size
200 to control costs. The analyses in Sections 4.1
and 4.2 use four in-context examples.

4.1 Analyzing the Sampling Procedures

Figure 2 illustrates that the prediction distributions
from uniform and stratified sampling differ the
most when the true distribution is skewed, such
as for consistency. In such a case, stratified sam-
pling selects in-context examples from the entire
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Figure 2: Distributions of human scores and predicted
scores using ICE with uniform and stratified sampling
on the SummEval benchmark

domain regardless of the true distribution. This
forces predictions towards a centered distribution,
which can cause the performance drop we observe
in Table 1 when evaluating consistency using
stratified sampling. Uniform sampling, on the other
hand, selects examples that represent the true dis-
tribution, making model predictions more closely
reflect the true distribution.

A drawback of uniform sampling is sub-optimal
calibration in low-probability regions of the true
distribution. For instance, if uniform sampling is
used to evaluate consistency, the model might
not see in-context examples with (say) scores less
than 0.3 (Figure 2). This can affect output cali-
bration in that region. Nonetheless, we suggest
using uniform sampling in general. It is more sta-
ble and its prediction distribution closely follows
the true distribution. For dimensions where it un-
derperforms stratified sampling, the margins are
less significant. Finally, even when ICE (uniform
sampling) scores are calibrated differently from
human scores, they still rank summary-quality cor-
rectly, insofar as our main results (Table 1) show
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Figure 3: Effect of sampling different in-context exam-
ples. The performance over the same test set is observed
to be robust to the choice of in-context examples.
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Figure 4: Effect of varying the number of in-context
examples.

that they compete with state-of-the-art on ranking-
based metrics like Kendall-Tau and Spearman cor-
relation. We use uniform sampling to select in-
context examples in Sections 4.2 and 4.3.

4.2 Effect of Selection of In-context Examples

In order to determine whether performance is ro-
bust to the choice of in-context examples, we eval-
uate our test set using three different random sets
of in-context examples. We observe in Figure 3
that for a given dimension, the maximum variation
across three seeds is about 7 points, suggesting rea-
sonably stable performance across the choice of
in-context examples.

4.3 Effect of Number of In-context Examples

We evaluate our test set using different numbers of
in-context examples (Figure 4). We observe that
only for relevance and coherence does perfor-
mance show improvement as we increase the num-
ber of examples. One reason for this could be the
distribution of scores for a given dimension in the
test set (Figure 2). Concretely, consistency and
fluency mostly have near-perfect scores and there-
fore do not benefit from more samples while the
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Metric Model Coh. Con. Flu. Rel. Overall

Human
GPT-3 4.85 4.73 4.97 4.65 4.80
BRIO 4.57 4.65 4.88 4.48 4.65
T0 4.15 4.47 4.78 3.68 4.27

ROUGE-L
GPT-3

-
22.09

BRIO 28.20
T0 26.63

BARTSc.
GPT-3 -1.25 -1.25 -1.25 -1.25 -1.25
BRIO -0.71 -0.71 -0.71 -0.71 -0.71
T0 -0.96 -0.96 -0.96 -0.96 -0.96

ICE
GPT-3 0.908 0.996 0.994 0.849 0.937
BRIO 0.896 0.993 0.993 0.834 0.929
T0 0.890 0.981 0.985 0.761 0.904

Table 2: System-level scores from human annotations
and automatic metrics. For each aspect, we color a given
metric’s highest/lowest rated system with orange/purple.

scores for coherence and relevance are spread
out and therefore more samples allow representa-
tion over the whole range of scores.

Another observation is that even for coherence
and relevance, performance with a single in-
context example reaches near that achieved by
some of the weaker fine-tuned baselines in Table
1. This suggests that the model possesses the no-
tion of the evaluation task from pre-training itself,
which is in line with recent work (Reynolds and
McDonell, 2021; Min et al., 2022) that suggests
that demonstrations help extract this knowledge.

Finally, we note that calibration can potentially
be improved by increasing the number of exam-
ples. For instance, we observed that the four in-
context examples that the uniform sampling pro-
cedure chose for coherence in Figure 2 had scores
that fall between 0.7 and 1.0. This concentrates the
prediction distribution in that range. The probabil-
ity of such an event will reduce as the number of
examples is increased further.

5 Using ICE to Evaluate Zero-Shot
Prompting Models

Recent work by Goyal et al. (2022) showed that
standard reference-based and reference-free met-
rics are not reliable in evaluating zero-shot sum-
maries written by models such as GPT-3. Through
a human study comparing summaries from three
systems–GPT-3, BRIO, and T0–they observed that
while humans prefer GPT-3 summaries, automatic
evaluators consistently score GPT-3 summaries
lower than summaries from other models.

We study the efficacy of ICE in evaluating zero-
shot summaries written by GPT-3 at a dimension
level. We use the set of 500 CNN articles from

Goyal et al. (2022), with summaries from GPT-3,
BRIO, and T0 for each article. We sample 100
of these articles and have three annotators rate
summaries for each of the dimensions defined in
Section 2.2 on a scale of {1, 2, 3, 4, 5}. We use
ICE, ROUGE, and BARTScore (all of which do not
require training data) to evaluate the summaries
and present system-level results in Table 2.

We observe that ICE agrees with human judg-
ments for each dimension and overall preferences
while existing reference-based and reference-free
metrics such as ROUGE and BARTScore3 con-
sistently rate GPT-3 summaries low. Goyal
et al. (2022) suggest that most existing evalua-
tion metrics reward summaries that imitate refer-
ences, while GPT-3 summaries are zero-shot and
not trained to imitate human-written references,
which is likely why they are penalized by most ex-
isting evaluators. However, since ICE is not based
on reference similarity (except when evaluating
relevance) and is also not trained with reference
summaries, it is able to better evaluate GPT-3 sum-
maries and agrees with human preferences.

6 Conclusion

We show that in-context learning can be used for
NLG evaluation as an alternative to fine-tuned eval-
uation metrics. Using a small number of examples,
in-context learning evaluators can reach or exceed
the state-of-the-art on multi-dimensional evaluation
and that this is robust to the choice of in-context
examples. Finally, we show that in-context learn-
ing evaluators align well with human judgements
when evaluating summaries written by GPT-3.

Limitations

While ICE does not require fine-tuning on large
amounts of data, it requires querying a powerful
LLM at inference time (we use GPT-3 for our exper-
iments which has 175 billion parameters). This can
be a pay-per-use model or an open-source model
such as BLOOM. This makes a downstream sys-
tem that uses ICE reliant on an external dependency,
which carries the risk of the external dependency
failing.

3SummEval annotations are all based on the source, and
the src-to-hyp version of BARTScore performs best across
dimensions for this benchmark. We use this version for all di-
mensions, leading to identical scores. We format BARTScore
results unlike ROUGE-L because in theory BARTScores can
differ across dimensions for an arbitrary benchmark.
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Relatedly, in this paper, we are limited due to
monetary constraints in a variety of experiments
we perform. For instance, we restrict ourselves to
text summarization and use samples of benchmark
meta-evaluation suites during some of our experi-
ments. We leave the investigation of using ICE for
other dimensions and downstream tasks for future
work.
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A Splitting SummEval and the Selection
of In-context Examples

We randomly select 4 articles from the SummEval
dataset and pick one system-generated summary
from each article as an in-context example using the
procedures outlined in Section 2.3. In other words,
we pick n = 4 in Figure 1. For a given value
of n, prompts for evaluating consistency are the
longest since they contain entire source articles. We
pick n such that consistency prompts fit within
the context window of the model. We study the
effect of the choice of n in Section 4.3.

To ensure that there is no overlap in the source
article of any in-context example with the source ar-
ticle of any test example, we remove all summaries
corresponding to the 4 selected source texts and
use the remaining 1536 examples from SummEval
as our test set. We ensure the absence of overlap
throughout all experiments in Sections 3, 4, and 5.

B Sampling Procedures

B.0.1 Uniform Random Sampling
One summary is picked uniformly at random from
the set of 16 summaries for a given source text.
We do this for each of the 4 source texts selected
to pick in-context examples from. Each of the 4
sampled in-context examples then consists of the
selected summary, its human evaluation score on
the current aspect of interest, and (optionally) the
source text or the reference text.

B.0.2 Stratified Sampling
Let A denote the score of a summary on the aspect
we are evaluating for; then A ∈ [0, 1]. In strati-
fied sampling, we define 4 buckets by the ranges
{[0, 0.25], (0.25, 0.5], (0.5, 0.75], (0.75, 1.0]}. We
assign summary s to one of the buckets depend-
ing on the value of As. We do this for each of the

64 in-context example candidate summaries. Fi-
nally, we pick 4 summaries from the 64 candidates
such that each summary falls into a different bucket
and also comes from a different source text. We
perform an exhaustive search for such an assign-
ment, and in case no such assignment is possible
(this can happen if none of the 64 summaries fall
in a given bucket), we pick an arbitrary summary
from a randomly selected bucket, ensuring that all
4 summaries come from different source articles.

For both uniform and random sampling, we en-
sure that each summary corresponds to a different
source article.

C Annotation Procedure for Rating
GPT-3, BRIO, and T0 Summaries

Summaries are annotated on a scale of
{1, 2, 3, 4, 5} for coherence, consistency,
fluency, and relevance using the annotation
instructions from Fabbri et al. (2020).

D Use of Existing Evaluation Packages

We use existing packages for all our baselines–
ROUGE, BARTScore, CTC, and UniEval. For
ROUGE, we use the native python implementation
and report ROUGE-L scores for our experiment in
Section 5. For BARTScore, we use the implemen-
tation accompanying the paper with the source to
hypothesis setting across all dimensions, as that
gives the best correlations with human judgments
across dimensions. For UniEval, we use pre-trained
model released by the authors to obtain results in
Table 1 on the test set of size 1536.

E Significance Tests

Since ICE scores for some dimensions are close
to UniEval scores, we perform pairwise tests to
determine when one method is better than the other.
Concretely, we compare performance on 1000 boot-
strap samples by randomly selecting 80% of the test
set for each sample. We observe that when using
Kendall’s Tau, ICE with uniform sampling outper-
forms UniEval with a significance level of 0.05 on
both consistency and relevance. When using
Spearman’s rank correlation, Ice again outperforms
UniEval on consistency, but the test is inconclu-
sive at that significance level for relevance.
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