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Abstract

Neural sequence-to-sequence models have
been very successful at tasks in phonology
and morphology that seemingly require a ca-
pacity for intricate linguistic generalisations.
In this paper, we perform a detailed break-
down of the power of such models to cap-
ture various phonological generalisations and
to benefit from exposure to one phonological
rule to infer the behaviour of another similar
rule. We present two types of experiments,
one of which establishes the efficacy of the
transformer model on 29 different processes.
The second experiment type follows a priming
and held-out case split where our model is ex-
posed to two (or more) phenomena; one which
is used as a primer to make the model aware
of a linguistic category (e.g. voiceless stops)
and a second one which contains a rule with
a withheld case that the model is expected to
infer (e.g. word-final devoicing with a miss-
ing training example such as b→p). Our re-
sults show that the transformer model can suc-
cessfully model all 29 phonological phenom-
ena considered, regardless of perceived pro-
cess difficulty. We also show that the model
can generalise linguistic categories and struc-
tures, such as vowels and syllables, through
priming processes.

1 Introduction

In computational linguistics, neural networks have
occupied much of recent work. One prime driver is
adaptability to multiple facets of linguistic phenom-
ena. As an example, sequence-to-sequence mod-
els have been shown to capture inflection patterns
across numerous languages (Kodner et al., 2022).
While their performance represents significant ad-
vances, the abstractions generated during the mod-
elling process warrant further investigation. We
experiment with phonological processes on a con-
structed language to compare the generalisations
learned by transformer models with widespread
linguistic phenomena.

In particular, we address the following questions:

• Learning specific phonological processes (are
some more difficult than others?)

• Categorisation (can the model generalise a cat-
egory, vowels, consonants, specific consonant
groups, e.g. plosives?)

• Is word structure (syllables) implicitly
learned?

We establish that the transformer model success-
fully models all 29 phonological phenomena we
consider, regardless of linguistic complexity. Our
results show that the model can generalise to lin-
guistic categories with some caveats. By examin-
ing the transformer model’s generalisation of hap-
lology, we show that the model appears to learn
syllables; the model can recognise the difference
between VC and CV and generate previously un-
seen CV sequences.

2 Related Work

Investigating the cognitive reality of linguistic cat-
egories defined within phonology has long been
of interest to linguistics. Does the natural class of
phonemes bear any significance to a cognitive real-
ity? For example, a series of experiments (Finley
and Badecker, 2009; Chambers et al., 2010; Sko-
ruppa and Peperkamp, 2011) examine the natural
class of vowels and whether phonological patterns
can be extended to previously unseen vowels. The
studies suggest that participants were mostly able to
generalise. In a similar vein, Finley (2011) presents
a study on consonant harmony. The results suggest
that learners (human learners) can generalise to
novel consonants when the phonological pattern is
general. However, the learners failed to generalise
when the rule triggering the consonant harmony
pattern was highly specific.

We adapt this long-standing linguistic question
to ask whether Transformer-based abstractions are
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linguistically informed. Our experiment setup
swaps the human learner with the Transformer ar-
chitecture. Previous studies investigating phonolog-
ical phenomena with Transformers include Elsner
(2021), where Transformers can handle redupli-
cation and gemination. To an extent,1 the SIG-
MORPHON shared tasks (Kodner et al., 2022) also
demonstrate the capacity of Transformers to rep-
resent phonological processes through capturing
allomorphs conditioned by phonological environ-
ments.

There have been extensive studies on various
phonological processes and RNNs. Haley and
Wilson (2021) shows that encoder-decoder net-
works (specifically LSTM and GRU architectures)
can learn infixation and reduplication. Mirea and
Bicknell (2019) explores whether phonological dis-
tinctive feature information is required for learn-
ing word-level phonotactic generalisations using
LSTMs. The authors find that information about
phonological features hinders model performance,
and phonotactic patterns are learnable from the dis-
tributional characteristics of each segment alone.
Moreover, distributional information proves to
be integral in recovering phonological categories
(Mayer, 2020).

Another way to investigate neural architecture
abstractions is to probe the model internally. Sil-
fverberg et al. (2021) examines whether RNN states
encode phonological alternations through experi-
ments on Finnish consonant gradation. The authors
show that the models often encode consonant grada-
tion in a select number of dimensions. Rodd (1997)
probes the hidden states of an RNN model which
controls Turkish vowel harmony. Similarly, Silfver-
berg et al. (2018) establish a correlation between
embedding representations and distinctive phono-
logical features for Finnish, Spanish and Turkish.
This paper focuses on a model-external interroga-
tion of Transformer generalisations by studying the
predictions produced.

3 Language Design

The phonological phenomena in question are tested
on a constructed language. The primary motivation
for this is to allow for a controlled experiment and
ensure that we can generate enough samples of
the required phonological environments for rules
to be triggered and thus observed. With this in

1This largely depends on the language considered and the
phonological processes it exhibits.

Feature Inventory

Vowel {a,e,i,o,u}
Consonant {p,t,k,b,d,g,Ù,Ã,f,s,S,v,m,n,N,l,r,w,j}
Onset {C, Ø, CC}
Nucleus {V,VV}
Coda {C, Ø, CC}

Table 1: Phonological inventory and syllable structure
of our constructed language. C and V are abstract sym-
bols referring to the full inventory of consonants and
vowels, respectively. Where ’VV’ occurs in the nu-
cleus, this could be either a diphthong or a long vowel
’V:’.

mind, we require the constructed language to be
as representative as possible of natural language.
Therefore, key features were chosen based on the
condition of being the most typologically common
ones (Maddieson, 1984; Ladefoged and Maddieson,
1996; Maddieson, 2013). The main characteristics
are listed in Table. 1.

Generating a lexicon The most complex sylla-
ble structure possible in the language is CCVVCC
and the simplest one is V. Since our language
design aims to generate a synthetic lexicon, we
also control for word length distribution. Previ-
ous works have shown that word length over word
types exhibits a roughly Gaussian distribution with
a mean in the range [7, 10], depending on the lan-
guage (Smith, 2012). We have chosen a mean word
length of 8.

An additional constraint when generating
a lexicon is the sonority sequencing principle
(SSP) (Selkirk, 1984; Clements, 1990). Syllable
structures tend to be highly influenced by the
sonority scale, with the general rule that more
sonorous elements are internal (i.e., close to the
nucleus) and less sonorous elements are closer to
the syllable edge. Therefore, we use a sonority
metric to avoid generating implausible consonant
clusters, with the onset and coda requiring opposite
values on the metric, i.e. increasing sonority in the
onset and decreasing in the coda.

4 Data2

Our data preparation follows three steps: lexicon
generation, triplet (lemma, tag, surface form)
formation via the finite-state tool foma (Hulden,
2009) and, finally, sampling of these triplets ac-

2All data and code is available at https://github.com/
smuradoglu/phon-proc

8530

https://github.com/smuradoglu/phon-proc
https://github.com/smuradoglu/phon-proc


cording to the experiment at hand and formatting
for Fairseq.(Ott et al., 2019)3

We train the model as a standard ‘inflection’ task
(Kodner et al., 2022), but with tags being identifiers
of the processes that are to be triggered instead of
morphosyntactic information. For example, the in-
put sequence moupi#GEMINATION would be paired
with the output mouppi. More example triplets are
shown in Table 2.4

Input Tag Output

ateiSa #APOCOPE ateiS
enpanka #APHAERESIS npanka

a:NÃ #SHORTENING aNÃ
vepisk #LENGTHENING vepi:k
moupi #GEMINATION mouppi
aimggi #DEGEMINATION aimgi

soute #INTERVOCALIC soude
refend #DEVOICE refent
ketedu #METATHESIS kedetu

totoN #HAPLOLOGY toN
pima #COPY pima

Table 2: Sample data showing a subset of phonologi-
cal phenomena considered. The training/test input data
is formatted in triplets: lemma, tag and inflected form.
This follows a similar structure as used in the SIGMOR-
PHON shared task for morphological inflection.

Lexicon generation entails generating viable syl-
lable structures and filling these abstract structures
using vowel and consonant inventories. The sylla-
bles are concatenated n times, where n is an integer
between 1 and 10. We sample from this uniform
distribution to produce a Gaussian distribution for
word length with a mean of 8 symbols.

We include a COPY tag, where the input is copied
to the output, to negate any performance drop by
the model when unseen lemmata are encountered
(Liu and Hulden, 2022). In other words, the model,
at test time, will never encounter a completely un-
seen lemma on which to perform a phonological
change, since it will always have witnessed at least
an input-output pair of any lemma used that is sim-
ply copied to the output.

3See B for model details.
4Our nomenclature of sound changes follows Campbell

(2013).
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Figure 1: Modelling of Phonological Phenomena.
Model accuracy across each phenomena. Labels in bar
report details in the following manner: instances of cor-
rect prediction/test size. Figures in circle correspond to
accuracy.

5 Modelling common phonological
processes with varying degrees of
complexity

In this experiment, we establish that seq2seq mod-
els can successfully capture a range of phonological
processes, including more complex rules such as
metathesis. As seen in Figure 1, the transformer
model performs reasonably well across all phono-
logical phenomena, with little distinction between
the complexity of the process considered.

6 Linguistic Category generalisation

We examine whether the transformer model can
generalise linguistic categories such as vowels or
syllables from examples of alternations. During
training, we expose the model to two phenom-
ena at once (priming/held-out cases) of processes
where the model could potentially infer relevant
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categories and extend this knowledge to withheld
cases. The first set of experiments focuses on the
generalisation of vowels, and the second centres on
categorising consonants.

6.1 Vowel Experiments

6.1.1 Apocope/Aphaeresis

In this experiment, Aphaeresis–deleting word-
initial vowels—is the priming process and
Apocope—deleting word-final vowels—is the held-
out case. The training set consists of aphaeresis
cases with all five vowels. In other words, lexicon
beginning with a,e,i,o,u are included. Apocope ex-
amples exclude cases where u occurs word-finally.
The u-final words with the Apocope tag are present
only at test time. Table. 3 summarizes the results.
From these results, it is clear that the model extends
the Apocope rule to the unseen u-vowel. There are
only 8 instances within the 10 errors where ‘u’ is
not deleted. The remaining 2 errors are other mod-
elling errors (such as repeating characters): out-
putting sou instead of the gold so with input sou.

6.1.2 Vowel shortening/lengthening

Following a similar setup to the Apoc-
ope/Aphaeresis experiment, the vowel shortening
(priming) and lengthening (withheld case u) case
involves training a model with all vowel cases for
shortening, and all vowels except u for the vowel
lengthening process. The results show a 100%
accuracy for the previously unseen u-cases for
vowel lengthening. The two errors observed are
from other categories (i.e., vowel shortening and
non-u lengthening).

6.2 Consonant Experiments

6.2.1 Gemination/Degemination

This experiment involves training a model for
Degemination (priming) and Gemination (withheld
case p) processes. The results show that the trans-
former model has successfully extended the conso-
nant category to include the unseen p. Out of the
453 test cases, only 12 were incorrect p cases, with
the remaining five non-target errors. Incorrectly
predicted instances follow the pattern of outputting
lup with input lup instead of the gold lupp.

6.2.2 Devoicing/Intervocalic voicing

This experiment involves final stop Devoicing
(priming) and Intervocalic Voicing (with-held-case

Process Test Size Accuracy

Aphaeresis 995 0.998
Apocope Overall 1465 0.992
Apocope ‘u → 0’ 587 0.983

Vowel Shortening 995 0.999
Lengthening Overall 1071 0.999
Lengthening ‘u s→ u :’ 95 1.000

Degemination 995 0.992
Gemination Overall 1357 0.987
Gemination ‘p → p p’ 453 0.974

Devoicing 995 1.000
Intervocalic Overall 1196 0.952
Intervocalic ‘p→ b’ 250 0.776

Table 3: Linguistic Categories Experiment. AA, SL,
GD and DI overviews refer to Apocope / Aphaeresis,
Shortening / Lengthening, Gemination / Degemination
and Devoicing / Intervocalic voicing. The last line
refers to the withheld case; e.g. Apocope of u.

p). The training set is comprised of all word-final
devoicing cases (b>p,d>t,g>k) and all intervocalic
cases except the p case (where p>b).

Process Test Size Accuracy

W-Initial voicing 995 1.000
Intervocalic Overall 1196 0.8746
Intervocalic ‘p→ b’ 250 0.4000

W-Initial devoicing 995 1.000
Intervocalic Overall 1196 0.9473
Intervocalic ‘p→ b’ 250 0.7480

Table 4: Word initial (de)voicing and intervocalic voic-
ing Experiment. The last line refers to the withheld
case; i.e. Intervocalic voicing of p.

The results show that p is transformed to a b
77.6% of the instances. Where the conversion does
not take place, errors typically follow the pattern
of, e.g. outputting epeiSe instead of ebeiSe with the
input epeiSe

To investigate the comparatively low perfor-
mance. We compare word-initial devoicing with
word-initial voicing as a priming process. The
results are summarised in Table. 4. The accu-
racy of the predictions for the unseen p was sub-
stantially lower in the case of word-initial voic-
ing (40%) compared with the word-initial devoic-
ing (74.8%). Interestingly, word-initial voicing
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involves the same process as intervocalic voicing
(p>b), with only different environments triggering
the process.

7 Word-internal representations

To test whether seq2seq models can learn a repre-
sentation of word-internal structures, such as syl-
lables, we experiment with examples of haplology.
Haplology (tatasa > tasa) is the process in which
a repeated sequence of sounds is simplified to a
single occurrence. For example, if the word hap-
lology were to undergo haplology, it would reduce
the sequence lolo to lo, haplology > haplogy.

In this experiment, we include two additional
processes so the model can witness the contrast be-
tween vowels and consonants separately: (1) word-
final vowel deletion and (2) word-final consonant
deletion.

Process Test Size Accuracy

Overview 3264 0.959
→ Consonant deletion 992 0.999
→ Vowel deletion 992 0.998
→ Haplology overview 1280 0.898

Haplology 920 0.972
Unseen CVCV 269 0.944
Double Haplology 91 0.011

VCVC test 2658 0.782

Table 5: Experiment 2: Haplology results. An
overview of the experiment is presented, alongside a
breakdown for each process. The haplology cases are
further split into cases of the unseen CVCV, double
haplology (where haplology occurs more than once in
a word) and regular haplology (which entails words
where the haplology rule is applicable and words where
it should not be triggered.

To test the generalisation capacity of the model,
at test time, we include the following withheld
cases: unseen CVCV structures—i.e. cases where
haplology should apply, but the specific CVCV-
sequence is never seen in the training data; words
where haplology occurs more than once; and
VCVC structures to see if the model (erroneously)
learns to delete any repeating sequence of symbols.
In our experiment, we withhold from the training
set the following CVCV-sequences: dede, fofo,
kuku, wowo, baba, vivi, papa, titi, soso, momo,
nene, rere, lili, SuSu, jiji, ÙuÙu, NaNa, gugu.

Note that haplology includes both cases where
haplology applies and does not since the input word

may or may not contain a CVCV-sequence where
the two CVs are identical.

Table 7 summarises the results obtained. The
model shows high accuracy for the supplementary
word-final vowel and consonant deletion processes.
We separate the haplology cases further into spe-
cific test cases. Our results from the unseen CVCV
category show strong evidence for model gener-
alisation of CV structures. We further tested the
same model on a separate test set consisting of
VCVC structures. We see that for approximately
78% of the set, it correctly recognises these cases
as incorrect conditions for haplology. In the re-
maining instances, the model does show a rare
over-generalisation to sometimes delete repeating
sequences regardless of the characteristics of the
sequence.

The largest source of error within the haplology
cases is the scenario in which haplology can be
applied twice within the same word. In these cases,
typically, the first case of repeating CV is deleted,
and the second instance remains untouched, as
when outputting fuejaja with input fufuejaja, in-
stead of the gold fueja.

8 Conclusion

The transformer model successfully models all
29 phonological phenomena with slight variation
across phenomenon complexity. Our results show
that the model can generalize linguistic categories
and structures. Through haplology, we show that
the model appears to learn to recognize and general-
ize syllabic structure and is capable of recognizing
the difference between VC and CV and can also
generalize the transformation triggered by haplol-
ogy to unseen CV sequences.

Limitations

One drawback of the experiments presented here
is the reliance on a constructed language. While
we have tried to design a language that is as rep-
resentative of natural language as possible, there
may be additional statistical effects that are not
taken into account. For example, it is unlikely that
one language would capture all 29 phenomena pre-
sented here and that the process would be triggered
enough times to produce a large enough corpus.
How these findings extended to existing language
corpora is an open question for future studies.
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A Summary of phonological processes

Affrication a process where either a stop, or
fricative, becomes an affricate.

Anaptyxis (VCCV > VCVCV) a kind of
epenthesis where an extra vowel is inserted be-
tween two consonants.

Aphaeresis (atata > tata) the deletion of word
initial vowels.

Apocope (tata > tat) the loss of a sound, usually
a vowel, at the end of a word.

Deaffrication an affricate becomes a fricative.

Degemination (CC > C) a sequence of two iden-
tical consonants is reduced to a single occurrence.

Devoicing the devoicing of stops word-finally.

Diphthongization an original single vowel
changes into a sequence of two vowels.

Excrescence (amra > ambra; anra > andra; ansa
> antsa) the insertion of a consonant. In our case,
the insertion of b, d, or t.

Gemination (C > CC) produces a sequence of
two identical consonants from a single consonant.

Hiatus glide (puo > pujo) a semi-vowel/glide is
inserted between falling vowel pair.

Hiatus stop (pia -> pika) the insertion of a stop
which breaks up a falling vowel pair.

Intervocalic Voicing various sounds become
voiced between vowels, in this case we focus on
stops.

Lengthening (tast > ta:t) a vowel lengthens sub-
sequent to the loss of a following consonant, also
called compensatory lengthening.

Metathesis (asta > atsa; asata > atasa) a change
in which sounds exchange positions with one an-
other within a word.

Monophthongization a diphthong changes into
a single vowel.

Nasal Assimilation (np > mp) the change of
nasal sounds to agree with the place of articula-
tion of following stops.

Nasalization (ana > ãna) vowels become nasal-
ized before nasal consonants.

Palatalization (k -> Ù, or d -> j) involves the
change of a velar/alveolar sound to palato-alveolar,
this often takes place before or after i or e.

Paragoge (tat > tata) adds a vowel to the end of
a word.

Prothesis (tata > atata) a kind of epenthesis in
which a sound is inserted at the beginning of a
word.

Rhotacism (ase > are) s becomes r; this takes
place between vowels or glides.

Shortening (ta: -> ta) vowels shorten in a variety
of contexts, e.g. word-finally.

Spirantization an affricate is weakened to a
fricative, or a stop to a fricative.

Strengthening fortition of sounds; an affricate
becomes a stop, or a fricative becomes an affricate.

Syncope (atata > atta) the loss of a vowel from
the interior of a word (not initially or finally)

Vowel lowering results in high vowels becoming
mid or low vowels, or mid vowels becoming low.

Vowel raising is where low vowels raise to mid
(or high) vowels, or mid vowels to high vowels).

B Model details

Hyperparameter Value

Encoder/Decoder layers 4
Encoder/Decoder attention heads 4

Optimization Adam
Embedding size 256

Hidden layer size 1024
Learning rate 0.001

Batch Size 400
Label Smoothing 0.1

Gradient clip threshold 1.0
Warmup updates 1000

Max updates 6000
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