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Abstract

Recently, Transformers have been widely used
in various fields and have achieved remarkable
results. But it is still difficult for Transformer-
based models to process longer sequences be-
cause self-attention in them scales quadrati-
cally with the sequence length. Although some
models attempt to use sparse attention to re-
duce computational complexity, hand-crafted
attention patterns are unable to select useful to-
kens adaptively according to the context. Thus,
in this paper, we propose a novel efficient
Transformer model with adaptive attention, A2-
Former, for long sequence modeling. It can
select useful tokens automatically in sparse at-
tention by learnable position vectors, which
consist of meta position and offset position vec-
tors. Because the learnable offset position is not
an integer vector, we utilize the interpolation
technique to gather corresponding vectors from
the input embedding matrix by discrete indexes.
Experiments on Long Range Arena (LRA), a
systematic and unified benchmark with differ-
ent tasks, show that our model has achieved
further improvement in performance compared
with other sparse-based Transformers.

1 Introduction

Transformer-based models (Vaswani et al., 2017)
have achieved state-of-the-art performance on a
wide variety of natural language processing tasks
(Devlin et al., 2019; Liu et al., 2019; Yang et al.,
2019). It is also gradually applied to other research
fields such as speech and computer vision (Dong
et al., 2018; Li et al., 2019; Zhang et al., 2020;
Dosovitskiy et al., 2021; Zhu et al., 2021; Tou-
vron et al., 2021). Although self-attention module,
the core component in Transformer, can capture
global contexts from the whole sequence, the time
and memory complexity are both quadratic to the
sequence length. Especially when facing longer
sequences, Transformer becomes more difficult to
process them efficiently and effectively.

Recently, a wide spectrum of efficient Trans-
formers (Child et al., 2019; Ho et al., 2019; Rae
et al., 2020; Zhao et al., 2019; Kitaev et al., 2020;
Tay et al., 2020; Beltagy et al., 2020; Choroman-
ski et al., 2020; Wang et al., 2020; Zaheer et al.,
2020; Roy et al., 2021; Xiong et al., 2021; Tay
et al., 2021a; Ma et al., 2021; Chen, 2021; Zhu
and Soricut, 2021; Liu et al., 2022) have been pro-
posed to tackle the problem of efficiency, which
can be roughly divided into the following direc-
tions: sparse attention, low-rank and kernel meth-
ods. Because sparse-based attention is intuitive
and interpretable in addition to efficiency, we fo-
cus on this method in this paper. It usually utilizes
some strategies or patterns to limit the number of to-
kens involved in the attention calculation. Different
from traditional sparse Transformer (Martins and
Astudillo, 2016; Correia et al., 2019; Peters et al.,
2019) with different softmax and pattern-related
quadratic computation, recent works mainly adopt
sliding windows to achieve linear complexity. For
example, Longformer (Beltagy et al., 2020) em-
ploys an attention pattern that combines local win-
dowed attention with task-motivated global atten-
tion while also scaling linearly with the sequence
length. BigBird (Zaheer et al., 2020) incorpo-
rates random attention (queries attend to random
keys) besides global tokens and local sliding win-
dows. However, these hand-crafted attention pat-
terns mentioned above are usually selected empir-
ically or randomly. It is not an ideal solution for
modeling long sequences. How to adaptively se-
lect useful tokens for sparse attention according
to the context is still an important problem to be
considered.

To address these issues, we propose A2-Former
with adaptive attention to model longer sequences
in this paper. It can select useful tokens automati-
cally in sparse attention by learnable position vec-
tors, which consist of meta position and offset posi-
tion vectors. Because each element in the learnable
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offset position vector is not an integer, we utilize
linear interpolation to gather discrete vectors from
original the input embedding matrix. Position visu-
alization further shows that traditional attention pat-
terns are not enough to cover the valuable positions
automatically selected by models. Experiments on
Long Range Arena, a systematic and unified bench-
mark with different tasks, show that our model has
achieved further improvement in performance com-
pared with other sparse-based Transformers.

Overall, the main contributions are as follows:

• We propose a novel efficient Transformer, A2-
Former, which replaces hand-crafted attention
patterns with learnable adaptive attention in
sparse attention. Besides, position visualiza-
tion (Figure 3) further shows that traditional
attention patterns are not enough to cover
the useful positions automatically selected by
models.

• We adopt an interpolation technique to help
the model gather discrete positions with a
continuous weight matrix. By combining the
meta position and generated offset position,
the position of tokens can be selected dynami-
cally according to the context.

• Experiments on different long sequence tasks
validate the effectiveness of our model. Espe-
cially, compared with the previous best sparse
attention model, BigBird (Zaheer et al., 2020),
our model achieves better results.

2 Related Work

Recently, Transformer (Vaswani et al., 2017) and
its variants (Devlin et al., 2019; Radford et al.,
2018; Liu et al., 2019; Yang et al., 2019) have
been widely used in natural language processing
(OpenAI, 2023; Zhang et al., 2023; OpenAI, 2022;
Zhang and Yang, 2021a; Zhang, 2020; Zhang and
Wang, 2020; Zhang, 2019), computer vision (Doso-
vitskiy et al., 2021; Zhu et al., 2021; Touvron et al.,
2021; Zhang and Yang, 2021b), speech (Dong et al.,
2018; Li et al., 2019; Zhang et al., 2020) and other
domains. To improve computational and memory
efficiency, a dizzying number of efficient Trans-
formers (Child et al., 2019; Ho et al., 2019; Rae
et al., 2020; Zhao et al., 2019; Kitaev et al., 2020;
Tay et al., 2020; Beltagy et al., 2020; Choroman-
ski et al., 2020; Wang et al., 2020; Zaheer et al.,
2020; Roy et al., 2021; Xiong et al., 2021; Tay

et al., 2021a; Ma et al., 2021; Chen, 2021; Zhu and
Soricut, 2021; Liu et al., 2022) have been proposed
recently, which can be roughly divided into two
directions: sparse attention, low-rank and kernel
methods.

Sparse attention methods usually limit the field
of view to fixed or random patterns. These patterns
can also be used in combination. For example,
Sparse Transformer (Child et al., 2019) combines
stride and fixed factorized attention by assigning
half of its heads to the pattern for reducing the com-
plexity of a traditional Transformer. Longformer
(Beltagy et al., 2020) integrates a windowed local-
context self-attention and task-oriented global at-
tention that encodes inductive bias about the cor-
responding task. BigBird (Zaheer et al., 2020) in-
corporates random attention besides global atten-
tion and local window attention. Random attention
means that each query attends to a small number
of random keys. However, it is still difficult for
these hand-crafted, random or combined attention
patterns to select valuable pairs in the sparse atten-
tion calculation. Different from them, our proposed
sparse attention mechanism can automatically and
efficiently learn the position that should be selected
and calculated. Especially, our model is also differ-
ent from traditional sparse Transformer (Martins
and Astudillo, 2016; Correia et al., 2019; Peters
et al., 2019). They only focus on sparse softmax
and its threshold and still require quadratic compu-
tation to determine the sparsity pattern.

Low-rank and kernel methods are the other so-
lutions to improve the efficiency of Transformer.
Low-rank methods usually assume a low-rank
structure in the self-attention matrix. For exam-
ple, Linformer (Wang et al., 2020) decomposes
the original scaled dot-product attention into mul-
tiple smaller attentions through linear projections,
such that the combination of these operations forms
a low-rank factorization of the original attention.
And kernel methods rewrite the self-attention mech-
anism through kernelization. For example, Per-
former (Choromanski et al., 2020) scales linearly
rather than quadratically in the number of tokens
in the sequence, which is characterized by sub-
quadratic space complexity and does not incorpo-
rate any sparsity pattern priors. Different from
these mathematical and theoretical methods, our
proposed method is still based on sparse attention
but focuses more on how to find and learn attention
patterns effectively and efficiently.
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Figure 1: The structure of adaptive attention.

3 Methodology

3.1 Preliminary

Suppose the input is x ∈ RL×H . q ∈ Ψq, k ∈
Ψk, v ∈ Ψv index query, key and value element in
Transformer, respectively. L is the sequence length
and H is the dimension of hidden states. Thus self-
attention in vanilla Transformer can be calculated
by

Attn(xq,x) =
∑

k∈Ψk
v∈Ψv

αqk ·Wxv, (1)

where W is the learnable weight for xv. The at-

tention weights αqk ∝ exp{xT
q W ′T W ′′xk√

H
}, where

W′ and W′′ are learnable weight matrices for xq

and xk. The attention weights are normalized as∑
k∈Ψk

αqk = 1, ensuring that they represent the
relative importance of each key vector in the set
Ψk for the query vector xq.

For sparse attention, we can also express previ-
ous models in a unified form. We will only consider
the query and key in Transformer in the following
discussion. Thus sparse attention can be repre-
sented as

SparseAttn(xq,x,pq) =
K∑

k=1

αqk ·Wxp
qk
, (2)

where k indexes the sampled keys, and K is the
total sampled key number. Because only a small
set of keys are utilized in sparse attention, K ≪ L.
pq represents the position of K sampled keys for
the query xq. Different models utilize different
patterns to select each sampling position p

qk
∈ pq,

such as sliding window or random generation.

Algorithm 1: Adaptive Attention
input :an input matrix x ∈ RL×H ;
output :AAttn(xq,x) after adaptive attention;

1 begin
2 Generate the meta position p̂q;
3 for each q ∈ [1, L) do
4 Calculate the offset position βqk via Eq. 4;
5 Calculate the final position pqk via Eq. 5;
6 Rescale each element pqk to [0, L];
7 Round pqk down and up to

i = ⌊pqk⌋, j = ⌈pqk⌉, respectively;
8 Gather xi,xj according to the integer vector

i, j from the input x;
9 Calculate the representation xp̂q+βqk

according to xi,xj via Eq. 6;
10 Calculate the attention weights αqk of

different sampling keys;
11 Calculate the final result AAttn(xq,x) via

Eq. 3;
12 end
13 end

Because our proposed adaptive attention is also
based on sparse attention, which can be further
refined into the following forms:

AAttn(xq,x) =
K∑

k=1

αqk ·Wxp̂q+βqk
, (3)

where βqk represents the offset position of the se-
lected key k for the query xq, p̂q represents the
meta position predefined for each query xq accord-
ing to their absolute index. That is to say, the
final position of keys p

qk
is obtained from the meta

position p̂q and the offset position βqk. Because
p̂q + βqk is a float , we adopt linear interpolation to
compute xp̂q+βqk

. The detailed calculation process
will be described in the next subsection.
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3.2 Adaptive Attention
As shown in Figure 1, we propose the adaptive at-
tention to learn sampling position dynamically in
sparse attention. The pipeline of our proposed adap-
tive attention is illustrated in Algorithm 1. For con-
venience, we describe them in the form of iteration
rather than batch. We take L = 6, H = 3,K = 3
as an example to illustrate the whole process from
input to output.

First, we will assign the meta position p̂q =
{p̂q}K in Eq. 3 according to the absolute index of
the query token. As shown in Figure 1, the meta po-
sition is from 0 to 5 for the sentence with 6 tokens.
The position of sampling keys will be generated ac-
cording to the meta position of the query. We will
take the orange token (in Figure 1) as a query to ob-
tain the corresponding representation after adaptive
attention.

Then, we use a learnable weights Ŵ ∈ RK×H to
obtain the offset position βq ∈ RK for K sampling
keys in Eq. 4. As shown in Eq. 5, we can obtain
the final position pq ∈ RK from original position
p̂q ∈ RK by combining the meta position and the
offset position.

βq = Ŵxq, (4)

pq = p̂q + βq, (5)

Because the final position pq is not an integer
vector, it can not be used directly to select sampling
keys. Inspired by previous works (Dai et al., 2017;
Zhu et al., 2021) in computer vision, we transform
bilinear interpolation of two-dimensional images
into linear interpolation of one-dimensional text.
That is to say, we utilize linear interpolation to
gather vectors of corresponding positions. After
we rescale each element p

qk
∈ pq in p

qk
= p̂q +

βqk to [0, L], we round it down and up to i =
⌊p

qk
⌋, j = ⌈p

qk
⌉ respectively (j − i = 1). Then

we can gather xi,xj according to the integer i, j
from the input x. According to the variation of
linear interpolation formula, the final position of
sampling keys xp̂q+βqk

can be calculated by

xp̂q+βqk
=

p
qk

− j

i− j
xi +

p
qk

− i

j − i
xj

= (j − p
qk
)xi + (p

qk
− i)xj

(6)

Next, we use the learnable matrix αqk to obtain
the weights of different sampling keys for the query
xq. Then we can obtain the final weighted repre-
sentation AAttn(xq,x) in Eq. 3.

Model ListOps Text Retrieval Image Pathfinder Avg

Chance 10.00 50.00 50.00 10.00 50.00 44.00
Transformer 36.37 64.27 57.46 42.44 71.40 54.39

Local Attn. 15.82 52.98 53.39 41.46 66.63 46.06
Linformer 35.70 53.94 52.27 38.56 76.34 51.36
Reformer 37.27 56.10 53.40 38.07 68.50 50.67
Sinkhorn 33.67 61.20 53.83 41.23 67.45 51.39
Synthesizer 36.99 61.68 54.67 41.61 69.45 52.88
Linear Tran. 16.13 65.90 53.09 42.34 75.30 50.55
Performer 18.01 65.40 53.82 42.77 77.05 51.41
H-Tran. 49.53 78.69 63.99 46.05 68.78 61.41

Sparse Tran. 17.07 63.58 59.59 44.24 71.71 51.24
Longformer 35.63 62.85 56.89 42.22 69.71 53.46
BigBird 36.05 64.02 59.29 40.83 74.87 55.01
Our Model 39.70 86.14 65.94 47.57 71.71 62.21

Table 1: Experimental results on five different tasks,
i.e., ListOps, Text, Retrieval, Image and Pathfinder. The
last four lines are the main sparse attention methods
for comparison. (The best model is in boldface and the
second best is underlined.)

We can further optimize the complexity for some
classification tasks based on sequence level without
pre-training. Since sequence level representation
is more useful than token level in these tasks, we
can convert x ∈ RL×H to x′ ∈ RL′×H by linear
projection, where L′ can be set to half of L or even
smaller. The detailed performance will be further
analyzed in the next section.

4 Experiments

4.1 Datasets
Long-Range Arena (LRA) (Tay et al., 2021b) is
a systematic and unified benchmark for the pur-
pose of evaluating sequence models under the long-
context scenario, which includes six tasks to as-
sess different capabilities of efficient Transform-
ers like their ability to model relations and hierar-
chical/spatial structures, generalization capability,
etc. These tasks include different domains, such as
math, language, image, spatial and so on. Follow-
ing the original datasets, we use accuracy as the
metric for these tasks.

4.2 Implementation Details
Because different tasks have different lengths and
characteristics, we use the same hyper-parameters
as those described in (Tay et al., 2021b) for a fair
comparison. Specifically, the max length is set to
2,000, 4,000, 4,000 for ListOps, Text and Matching
task, respectively. The hidden states in attention is
set to 512, 256, 128 for ListOps, Text and Match-
ing task, respectively. In our experiments, Adamax
(Kingma and Ba, 2014) is used as our optimizer
with 0.05 learning rate. The sampling size K for
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Figure 2: Performance analysis.

Figure 3: Position visualization.

each token is ten in all the tasks. To prevent overfit-
ting, we use dropout and set it to 0.1. We integrate
our attention into the igloo framework (Sourkov,
2018) and run them in Keras with Tensorflow back-
end on NVIDIA V100 GPU.

4.3 Results

We compare our model with the following state-of-
the-art methods as baselines, including sparse at-
tention methods and low-rank and kernel methods.
Sparse attention methods include Sparse Trans-
former (Child et al., 2019), Longformer (Beltagy
et al., 2020), Big Bird (Zaheer et al., 2020) and so
on. The results on five tasks are summarized in
Table 1. It shows that our proposed A2-Former
achieves 62.21 average accuracy, which outper-
forms the best sparse model based on sliding win-
dow, Big Bird (Zaheer et al., 2020), by 7.2%. Thus,
the adaptive attention approach proposed in this
paper is shown to be superior to traditional hand-
crafted, random, or combined patterns in sparse-
based Transformer.

4.4 Analysis

As shown in Figure 2, we further analyze the im-
pact of different configurations and parameters on
five different tasks. As mentioned above, our pro-
posed A2-Former has achieved a huge improve-

ment compared to the previous best sparse attention
model, BigBird (Zaheer et al., 2020), which proves
that even models that combine multiple manual at-
tention patterns is still inferior to the models that
learn attention patterns automatically.

We attempt to adjust the maximum input length
L to half, change hidden states H to small, and
reduce the sampling number K. We can observe
that the performance of A2-Former decreased com-
pared with the original model. specifically, shorter
length means less time and content. It is important
to find a balance between efficiency and effective-
ness according to different tasks. Although the
impact of length on some classification tasks based
on sequence level is not significant. For adaptive
sparse attention, K limits the number of tokens
involved in the calculation in each row of the atten-
tion matrix, which is also a factor that needs to be
balanced.

4.5 Visualization

As shown in Figure 3, we randomly selected two
examples for visualization. To study the distribu-
tion of positions, we only show the position of
the selected tokens in sparse attention matrix. The
max length of long sequences is 2000. It is obvi-
ous that previous hand-crafted attention patterns,
such as sliding window attention, are not enough to
cover the positions automatically selected by mod-
els. From a general trend, these selected positions
are indeed distributed on the diagonal, but to cover
these positions, a window size of about half the
maximum length is required, which is unaccept-
able in terms of efficiency.

5 Conclusion

In this paper, we propose a novel sparse-based
Transformer, A2-Former, which replaces hand-
crafted attention patterns with learnable adaptive
attention in sparse attention. We creatively adopt
an interpolation technique to help the model gather
discrete positions with continuous position vectors.
By combining the meta position and generated off-
set position, the position of tokens can be selected
dynamically according to the context. And posi-
tion visualization further shows that traditional at-
tention patterns are not enough to cover the useful
positions automatically selected by models. Ex-
periments on LRA show that our model has been
significantly improved compared with the previous
sparse Transformers based on sliding windows.
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