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Abstract

Large pre-trained language models (PLMs)
have garnered significant attention for their ver-
satility and potential for solving a wide spec-
trum of natural language processing (NLP)
tasks. However, the cost of running these
PLMs may be prohibitive. Furthermore, PLMs
may not be open-sourced due to commercial
considerations and potential risks of misuse,
such as GPT-3. The parameters and gradi-
ents of PLMs are unavailable in this scenario.
To solve the issue, black-box tuning has been
proposed, which utilizes derivative-free opti-
mization (DFO), instead of gradient descent,
for training task-specific continuous prompts.
However, these gradient-free methods still ex-
hibit a significant gap compared to gradient-
based methods. In this paper, we introduce
gradient descent into black-box tuning scenario
through knowledge distillation. Furthermore,
we propose a novel method GDFO, which inte-
grates gradient descent and derivative-free opti-
mization to optimize task-specific continuous
prompts in a harmonized manner. Experimen-
tal results show that GDFO can achieve signifi-
cant performance gains over previous state-of-
the-art methods.

1 Introduction

Large pre-trained language models (PLMs) (De-
vlin et al., 2019; Liu et al., 2019; Yang et al., 2019;
Raffel et al., 2020) have attracted considerable at-
tention for their versatility and potential for solv-
ing a wide spectrum of Natural Language Process-
ing (NLP) tasks. Especially, through prompt-based
learning (PL) (Liu et al., 2021a; Gu et al., 2022),
PLMs have consistently demonstrated impressive
performance on various downstream tasks with a
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Figure 1: Accuracy (%) on the AG’s News and DBPedia
datasets. Experimental setup is detailed in Section 4.3.
It is noted that prior gradient-based approaches, such
as Adapter (Houlsby et al., 2019) and LoRA (Hu et al.,
2021), are unable to be used in black-box scenarios.
GDFO is the first to introduce gradient descent in the
black-box tuning scenario.

few labeled samples. However, it is a challenge to
extend the benefits of these large PLMs to a broader
audience. For users, the cost of running these mod-
els may be prohibitive; for service providers, they
may not open source the model parameters due to
commercial considerations and potential risks of
misuse1. One possible solution is to deploy PLMs
as a service, enabling users to access the advanced
capabilities of PLMs through their inference APIs,
such as GPT-3 (Brown et al., 2020), ERNIE (Sun
et al., 2021) and Yuan (Wu et al., 2021b).

In this scenario, the large pre-trained language
model provided by the server is considered as a
black box. In order to perform various downstream
tasks, users are required to construct task-specific
prompts or select training samples (Brown et al.,
2020) to input into the black box. We can manu-
ally construct discrete prompts, which are simple
and effective but may not fully utilize training data,

1https://openai.com/blog/openai-api/
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potentially resulting in suboptimal performance on
some tasks. Instead of designing hand-crafted dis-
crete prompts, there have been an increasing num-
ber of studies on continuous prompt tuning (Lester
et al., 2021; Liu et al., 2021a; Ding et al., 2022),
which aim to train continuous prompts and add
them to the original samples. Trainable continuous
prompts have also shown remarkable success on
various tasks, but most existing methods optimize
the continuous prompts through back-propagation,
which is unavailable in the black-box scenario. To
solve the issue, Sun et al. (2022b) have recently
proposed Black Box Tuning (BBT), which utilizes
random projection matrices and derivative-free op-
timization (DFO) (Kolda et al., 2003; Conn et al.,
2009; Rios and Sahinidis, 2013), instead of gradi-
ent descent, for training continuous prompts in the
black-box scenario. Built upon BBT, BBTv2 (Sun
et al., 2022a) prepends continuous prompts to each
layer of the PLM and further presents a divide-and-
conquer gradient-free algorithm to alternately opti-
mize the prompts at different layers. Both BBT and
BBTv2 have shown their superiority against other
gradient-free methods. Despite the success, there
remains a significant gap compared to gradient-
based methods on certain tasks. For example,
compared against BBTv2, Adapter (Houlsby et al.,
2019), a gradient-based method, leads by 4.35% on
the DBPedia dataset (as shown in Figure 1). There-
fore, we consider that the incorporation of gradient
descent into the black-box scenario may potentially
enhance the performance of the model.

Based on the insights discussed above, in this
paper, we introduce gradient descent into the black-
box scenario through knowledge distillation tech-
niques. In particular, we propose a novel approach
named GDFO to combine Gradient descent with
Derivative-Free Optimization, allowing them to
jointly optimize task-specific continuous prompts.
First, we adopt the technique of knowledge distil-
lation, where a student model is trained to emulate
the knowledge of the black-box model, referred to
as the teacher model. Then, a prompt generator
is trained by gradient descent through the student
model, while utilizing derivative-free optimization
algorithms to optimize continuous task-specific
prompts. The continuous prompts generated by
the prompt generator and the prompts optimized by
the derivative-free algorithm are further integrated
to serve as the final prompts. Finally, we perform
extensive experiments on seven benchmark datasets

to show that GDFO can achieve significant perfor-
mance gains over other state-of-the-art methods.
The main contributions of the paper are summa-
rized as follows:

• To the best of our knowledge, we are the first
to utilize gradient descent to optimize task-
specific continuous prompts in the black-box
scenario through knowledge distillation.

• We propose a novel method GDFO, which in-
tegrates gradient descent and derivative-free
optimization to optimize task-specific contin-
uous prompts in a harmonized manner.

• We conduct comprehensive experiments on
seven benchmark datasets under the black-box
scenario. Empirical results demonstrate the
superiority of GDFO over other competitors.

2 Related Work

2.1 Prompt-based Learning

Prompt-based learning, in which the PLM is
adapted to various tasks by task-specific prompts,
has emerged as a promising framework. Brown
et al. (2020) shows that PLM can perform ex-
cellently in few-shot learning by using manual
prompts concatenated with samples. However, de-
signing prompts in a hand-crafted fashion requires
substantial time and experience and may not find
the optimal ones (Jiang et al., 2020; Shin et al.,
2021). To solve the problem, researchers attempt to
use automated prompts. LM-BFF (Gao et al., 2021)
uses prompt-based fine-tuning with automatically
searched prompts and generates task demonstra-
tions to be a part of the input context. P-tuning (Liu
et al., 2021b) optimizes the continuous prompts us-
ing gradient descent as an alternative to discrete
prompt searching. P-tuning v2 (Liu et al., 2021a)
adopts continuous prompts for each layer of the
PLMs to improve the model performance. Prefix-
tuning (Li and Liang, 2021) optimizes continuous
task-specific vectors and prepends them to the in-
put texts. Input-tuning (An et al., 2022) fine-tunes
both the continuous prompts and the input repre-
sentations, leading to a more effective way to adapt
unfamiliar inputs to frozen PLMs.

2.2 Black-box Tuning

Due to commercial considerations, large PLMs
such as GPT-3 (Brown et al., 2020) are only pro-
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Figure 2: The overall architecture of GDFO. The details of the model are described in Section 3. The training
procedure is shown in Algorithm 1.

vided as a service in the cloud, resulting inaccessi-
ble parameters and gradients of PLMs. To tackle
this issue, BBT (Sun et al., 2022b; Diao et al., 2022)
has been proposed to optimize the continuous
prompts via derivative-free optimization (DFO).
As an improved version of BBT, BBTv2 (Sun et al.,
2022a) inserts prompts to each layer of the PLMs
instead of optimizing the prompt merely in the in-
put layer. Furthermore, GrIPS (Prasad et al., 2022)
proposes a gradient-free search approach to gener-
ate discrete prompts. Besides, RLPrompt (Deng
et al., 2022) optimizes discrete prompts through
reinforcement learning and utilizes a continuous
policy network which is highly parameter-efficient
to generate prompts. PALP (Cho et al., 2022) com-
bines linear models and in-context learning (Brown
et al., 2020) to augment training samples with
the templates for better contextualization. To im-
prove the computational efficiency, PromptBoost-
ing (Hou et al., 2022) constructs a pool of prompts
via a gradient-free approach and ensembles many
weak learners using the ADABOOST algorithm
to enhance the model performance. Despite the
success of the above approaches, all of them do
not optimize continuous prompts through gradi-
ent descent (GD) in the black-box scenario, our
method introduces GD to the scenario through
knowledge distillation and combines GD and DFO
to jointly optimize continuous prompts, which pro-

vides a novel insight for future black-box tuning
approaches.

2.3 Knowledge Distillation

As a representative method of model compression,
knowledge distillation transfers the knowledge
from a larger deep neural network (teacher) to a
smaller network (student) (Hinton et al., 2015; Kim
and Rush, 2016). There have been different distilla-
tion algorithms being proposed to face more com-
plex settings of transferring knowledge, including
adversarial distillation (Ma et al., 2020; Wang et al.,
2022), multi-teacher distillation (Guan et al., 2020;
Yuan et al., 2021) and data-free distillation (Fang
et al., 2022; Binici et al., 2022). Furthermore,
the superior success of PLMs has also spurred re-
searchers to distill PLMs into smaller models while
retaining performance. DistilBERT (Sanh et al.,
2019) introduces a triple loss combining language
modeling and cosine-distance losses to leverage
the inductive biases learned by large models during
pre-training. TinyBERT (Jiao et al., 2020) per-
forms a Transformer distillation method at both
the pre-training and task-specific learning stages.
NewsBERT (Wu et al., 2021a) designs a collabora-
tive learning framework where the student model
can learn from the experience of the teacher model.
In this paper, we consider knowledge distillation
to transfer knowledge from a black-box teacher
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to a student, which is used for training a prompt
generator by gradient descent.

3 Method

In this section, we describe our approach GDFO.
We first give an overview of GDFO, which is il-
lustrated in Figure 2. GDFO first trains a student
model by aligning its outputs to that of the teacher
model (i.e., the black-box model). Then, GDFO
trains the prompt generator by gradient descent
while simultaneously optimizing the continuous
prompts via DFO. Finally, the final prompts are ob-
tained by integrating the prompts generated by the
prompt generator with those optimized by DFO,
which are then fed into the black-box model to-
gether with query instances to obtain predictions.
Next, we describe each component of GDFO in
detail.

3.1 Knowledge Distillation
Given a student model S and a teacher model T ,
the objective of knowledge distillation (KD) is to
enhance the performance of S by aligning its out-
puts with those of T , which is accomplished by
reducing the divergence between the probability
distributions generated by S and T . In the black-
box scenario, the black-box model is considered
as T . We utilize T ’s outputs as soft targets for S
to learn. Given a training instance, we randomly
select n tokens from the PLM vocabulary to con-
struct a random prompt pr, which is concatenated
to the beginning of the instance. Additionally, a
hand-crafted template2 is appended to the end of
the instance. We use the concatenated sentence as
the input x. We denote S(x) and T (x) as the out-
put logits of S and T for input x, respectively. The
KD can be conducted by minimizing the Kullback-
Leibler (KL) divergence distance between the stu-
dent and teacher predictions:

LKL = KL(σ(S(x)/τ)∥σ(T (x)/τ)), (1)

where σ(·) denotes the softmax function and τ is
a temperature hyper-parameter. The student pa-
rameters are updated according to LKL and the
cross-entropy loss LCE over the ground-truth y:

L = (1− λ)LCE + λLKL, (2)

where λ is a weight and LCE is defined as:

LCE = −y log σ(S(x)). (3)
2The details of templates are shown in Table 1.

Algorithm 1 Training Procedure

Input: Training data {Xtrain,Ytrain}; Black-box
model T ; Student model Sθ; Prompt genera-
tor Gµ; Epochs for knowledge distillation Ekd;
The number of API calls N ; The PLM vocabu-
lary V; Hand-crafted template t;
# Knowledge Distillation

1: for each i ∈ Ekd do
2: for each x ∈ Xtrain do
3: pr ← Random_Sample(V, n);
4: ŷT , ŷS ← T ([pr;x; t]), Sθ([pr;x; t]);
5: Calculate L by Equation 2;
6: Update θ by L;
7: end for
8: end for

# Prompt Generator
9: for each i ∈ N do

10: for each x ∈ Xtrain do
11: pGD ← Gµ(x);
12: Get z by CMA-ES;
13: Get p by Equation 4;
14: ŷT , ŷS ← T ([p;x; t]), S([p;x; t]);
15: Calculate LTCE ,LSCE by Equation 3;
16: Update µ by LSCE ;
17: Optimize CMA-ES by LTCE ;
18: end for
19: end for

3.2 Prompt Generator
Upon the completion of training S via knowledge
distillation, the student parameters are frozen and
a prompt generator is optimized by gradient de-
scent with the purpose of generating continuous
prompts pGD ∈ RD for given samples. Mean-
while, following BBT (Sun et al., 2022b), we op-
timize intermediate vector z ∈ Rd through CMA-
ES (Covariance Matrix Adaptation Evolution Strat-
egy) (Hansen and Ostermeier, 2001; Hansen et al.,
2003), which is a widely used evolutionary algo-
rithm for non-convex black-box optimization in
continuous domain. Then a random projection ma-
trix A ∈ RD×d is utilized to project z into the high-
dimensional space. Finally, we randomly sample n
tokens from the PLM vocabulary as initial prompt
p0 and get final continuous prompt p ∈ RD:

p = αpGD + (1− α)(p0 +Az), (4)

where α is a balancing weight. Further information
regarding the initialization of A and the specifics
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of the optimization procedure of CMA-ES can be
found in Sun et al. (2022b). Given a training in-
stance, p is concatenated to the beginning of it and
a hand-crafted template2 is appended to the end
of it. The concatenated sample is fed into S and
T . Then the output logits are obtained and used
to compute LCE , which is utilized to update the
parameters of the prompt generator and optimize z
through CMA-ES. The overall training procedure
of GDFO is summarized in Algorithm 1.

3.3 Inference

It 's just incredibly dull.

Prompt Generator❄

It 's just incredibly dull. It was <MASK>

Black Box🚫

bad:0.96 great:0.04

🚫 Inaccessible

Data Flow

Frozen❄

Inference

Figure 3: The inference procedure of GDFO.

During the inference stage, given a query in-
stance, we first input it into the prompt generator to
generate pGD. Subsequently, we combine pGD, p0,
and Az that have been optimized through CMA-
ES to obtain the final continuous prompt p through
the Equation 4. Next, similar to the training stage,
we concatenate p to the front of the query instance
and append the hand-crafted template2 to the end
of it. Finally, we input the concatenated sample to
the black-box model to obtain the prediction. The
overall inference procedure is shown in Figure 3.

4 Experiments

In this section, we perform comprehensive experi-
ments to compare our proposed model with twelve
competitive baselines on seven downstream tasks.

4.1 Datasets
We perform experiments on a variety of language
understanding tasks, including sentiment analy-
sis, topic classification, natural language infer-
ence (NLI), and paraphrasing. Statistics of these
datasets are given in Table 1. Specifically, we uti-
lize the following datasets:

Sentiment analysis: SST-2 (Socher et al., 2013)
and Yelp polarity (Zhang et al., 2015) consist of

text samples with assigned sentiment labels (e.g.
positive or negative).

Topic classification: AG’s News (Zhang et al.,
2015) and DBPedia (Zhang et al., 2015) contain
text samples with pre-defined topics.

NLI: SNLI (Bowman et al., 2015) and
RTE (Wang et al., 2018) are composed of sen-
tence pairs and the objective is to determine the
relationship between the two sentences, such as
entailment, contradiction and neutral.

Paraphrase: MRPC (Dolan and Brockett, 2005)
contains sentence pairs and the goal is to recognize
semantic equivalence between the two sentences.

4.2 Baselines

We compare GDFO with twelve competitive meth-
ods, which can be grouped into two categories:
gradient-based methods and gradient-free methods.

For gradient-based methods, we consider six
baselines: (1) Model Tuning fine-tunes the entire
PLM through training data. (2) Adapter (Houlsby
et al., 2019) is a new module added between layers
of a PLM. The parameters of the original network
remain fixed, yielding a high degree of parameter
sharing. (3) BitFit (Zaken et al., 2022) is a sparse-
finetuning method where most of the network pa-
rameters are frozen and only the bias-terms of the
model (or a subset of them) are being modified.
(4) LoRA (Hu et al., 2021), an efficient adaptation
strategy, allows us to train some dense layers in a
neural network indirectly by optimizing rank de-
composition matrices of the dense layers’ change,
while keeping the pre-trained weights frozen. (5)
Prompt Tuning (Lester et al., 2021) freezes the en-
tire PLM and only allows additional tunable tokens
to be prepended to the input text. (6) P-Tuning
v2 (Liu et al., 2021a) applys continuous prompts
for every layer of the PLM instead of the mere
input layer.

For gradient-free methods, we also consider six
baselines: (1) Manual Prompt conducts subse-
quent experiments using hand-crafted prompts fol-
lowing the pre-defined templates in Table 1. (2)
In-Context Learning (Brown et al., 2020) pro-
vides a few training examples for the model to
improve its capability of few-shot learning. (3)
Feature-MLP trains a two-layered MLP classifier
provided with embeddings encoded by the PLM.
(4) Feature-BiLSTM trains a bidirectional LSTM
on the word representations and connects it to a
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Category Datasets # Classes
# Training
samples

# Test
samples

Templates Label words

Single
sentence

SST-2 2 32 0.9k <Sentence>. It was [MASK]. great, bad
Yelp P. 2 32 38k <Sentence>. It was [MASK]. great, bad

AG’s News 4 64 7.6k [MASK] News: <Sentence> World, Sports, Business, Tech

DBPedia 14 224 70k [Category: [MASK]] <Sentence>
Company, Education, Artist, Athlete, Office,
Transportation, Building, Natural, Village,
Animal, Plant, Album, Film, Written

Sentence
pair

MRPC 2 32 0.4k <Sentence1> ? [MASK] , <Sentence2> Yes, No
RTE 2 32 0.3k <Sentence1> ? [MASK] , <Sentence2> Yes, No
SNLI 3 48 9.8k <Sentence1> ? [MASK] , <Sentence2> Yes, Maybe, No

Table 1: Statistics, hand-crafted templates and label words of datasets.

linear classifier. (5) BBT (Sun et al., 2022b) op-
timizes the continuous prompt prepended to the
input text via derivative-free optimization (DFO).
(6) BBTv2 (Sun et al., 2022a) proposes a divide-
and-conquer algorithm to alternately optimize the
prompt at each layer of the PLM. Compared with
BBT, BBTv2 inserts prompts to each layer of the
PLM instead of optimizing the prompt merely in
the input layer.

4.3 Implementation

Few-shot setting We adopt the same procedure
as described in previous studies (Zhang et al., 2020;
Sun et al., 2022a) to establish a true few-shot learn-
ing environment. Specifically, we randomly se-
lect k samples per class to create a k-shot training
set Dtrain, and form a development set Ddev by
randomly selecting another k samples from the
original training set, resulting in |Dtrain| = |Ddev|.
We use the original development sets as our test
sets Dtest. For datasets that do not have develop-
ment sets, we use the original test sets. It is noted
that |Dtest| ≫ |Dtrain| = |Ddev|.

Experimental settings To compare with
BBTv2 (Sun et al., 2022a), we mainly use
RoBERTaLARGE (Liu et al., 2019) as the black-
box model. For hyper-parameters, we use the grid
search to find the best for our model. For knowl-
edge distillation, we use BERTLARGE (Devlin
et al., 2019) as our student model. We set the
temperature τ to 1 and the balancing weight λ
to 0.5. We fine-tune the student model for 2,000
epochs with the learning rate 1e− 4. For prompt
generator, we use a fully connected layer and
set the dimensionality of the fully connected
layer to 1024. The learning rate of the prompt
generator is 1e − 5. For CMA-ES, following
Sun et al. (2022b), we set the prompt length n
to 50. The dimensionality of z is set to 500 and

the population size of CMA-ES is set to 20. The
balancing weight α is set to 0.5. We train our
prompt generator and run CMA-ES for 8,000 API
calls. All baseline results are recorded in Sun et al.
(2022a). We run all the experiments on a single
NVIDIA v100 GPU.

4.4 Main Results
The results of 16-shot setting on various down-
stream tasks are shown in Table 2. From the table,
GDFO consistently outperforms all the baselines
on the average performance. Specifically, in the
gradient-based comparison, GDFO achieves an av-
erage accuracy of 81.85%, which outperforms the
runner-up gradient-based model, LoRA, by a no-
table 3.84% improvement. When compared against
the gradient-free methods, GDFO leads BBTv2 by
5.26% and 3.89% on the SNLI and RTE datasets,
respectively. Our model generates a continuous
prompt for each sample, rather than using an op-
timized continuous prompt for all samples, such
as BBT and BBTv2. Furthermore, the incorpora-
tion of both DFO and gradient descent during the
training stage allows GDFO for more comprehen-
sive and efficient training of continuous prompts,
resulting in a notable improvement in the model
performance.

4.5 Ablation Study
We conduct an ablation study to investigate the
characteristics of the main components of GDFO.
As illustrated in Figure 4, the results3 demonstrate
that GDFO outperforms GDFO-w/o-KD. For in-
stance, on the SNLI dataset, the accuracy of GDFO
is 62.53%, whereas that of GDFO-w/o-KD is only
58.51%. This indicates that the knowledge distil-
lation module, which transfers the knowledge of
the teacher model to the student model by aligning

3The evaluation metric used in the ablation study is F1
score for MRPC and accuracy for other datasets.
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Methods
SST-2 Yelp P. AG’s News DBPedia MRPC SNLI RTE

Average
acc acc acc acc F1 acc acc

Gradient-based

Model Tuning 85.39±2.84 91.82±0.79 86.36±1.85 97.98±0.14 77.35±5.70 54.64±5.29 58.60±6.21 78.88
Adapter 83.91±2.90 90.99±2.86 86.01±2.18 97.99±0.07 69.20±3.58 57.46±6.63 48.62±4.74 76.31
BitFit 81.19±6.08 88.63±6.69 86.83±0.62 94.42±0.94 66.26±6.81 53.42±10.63 52.59±5.31 74.76
LoRA 88.49±2.90 90.21±4.00 87.09±0.85 97.86±0.17 72.14±2.23 61.03±8.55 49.22±5.12 78.01

Prompt Tuning 68.23±3.78 61.02±6.65 84.81±0.66 87.75±1.48 51.61±8.67 36.13±1.51 54.69±3.79 63.46
P-Tuning v2 64.33±3.05 92.63±1.39 83.46±1.01 97.05±0.41 68.14±3.89 36.89±0.79 50.78±2.28 70.47

Gradient-free

Manual Prompt 79.82 89.65 76.96 41.33 67.40 31.11 51.62 62.56
In-Context Learning 79.79±3.06 85.38±3.92 62.21±13.46 34.83±7.59 45.81±6.67 47.11±0.63 60.36±1.56 59.36

Feature-MLP 64.80±1.78 79.20±2.26 70.77±0.67 87.78±0.61 68.40±0.86 42.01±0.33 53.43±1.57 66.63
Feature-BiLSTM 65.95±0.99 74.68±0.10 77.28±2.83 90.37±3.10 71.55±7.10 46.02±0.38 52.17±0.25 68.29

BBT 89.56±0.25 91.50±0.16 81.51±0.79 79.99±2.95 61.56±4.34 46.58±1.33 52.59±2.21 71.90
BBTv2 90.33±1.73 92.86±0.62 85.28±0.49 93.64±0.68 77.01±4.73 57.27±2.27 56.68±3.32 79.01

Hybrid GDFO (ours) 92.41±1.03 93.17±0.37 87.19±0.51 96.92±0.71 80.13±1.97 62.53±1.31 60.57±1.02 81.85

Table 2: Results (%) of 16-shot setting on various downstream tasks. Following Sun et al. (2022a), we report mean
and standard deviation of performance over 3 different splits.We highlight the best results in bold.
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Figure 4: Ablation study: Results (%) of 16-shot problems over seven datasets. w/o KD denotes removing
knowledge distillation and w/o DFO denotes removing derivative-free optimization. When removing the prompt
generator, our method degrades to BBT (Sun et al., 2022b). The comparison of GDFO and BBT is shown in Table 2.
The detailed analysis are described in Section 4.5.

the outputs of the student model with those of the
teacher model, effectively improves the model per-
formance. Additionally, when removing derivative-
free optimization, a significant decline is observed
across all datasets, with an average decrease of
6.5%. This demonstrates the effectiveness of incor-
porating derivative-free optimization in the black-
box scenario. It is worth noting that when remov-
ing the prompt generator, the student model will
not function, which means that gradient descent is
eliminated. In this case, our method degrades to a
gradient-free method BBT. The results, as shown
in Table 2, reveal that GDFO achieves significant
performance gains over BBT across all datasets,
which demonstrates the effectiveness of training
the prompt generator through gradient descent in
the black-box scenarios.

4.6 Analysis
Different Black-Box Models To evaluate the uni-
versality of GDFO across PLMs with varying ar-
chitectures, in addition to encoder-only PLMs (e.g.,

RoBERTaLARGE), we conduct experiments using
decoder-only (e.g., GPT-2LARGE) and encoder-
decoder PLMs (e.g., BARTLARGE and T5LARGE)
as black-box models. As shown in Figure 5, GDFO
achieves superior performance over other competi-
tors across all the settings. For example, When us-
ing GPT-2 as the black-box model, GDFO achieves
87.5% and 85.2% on the SST-2 and DBPedia
datasets, respectively. In particular, it outperforms
BBT by a notable 11.9% and 15.5% improvements
in both cases. When considering BART as the
black-box model, GDFO leads BBTv2 by 8.12%
on the DBPedia dataset. All the results clearly
show the generalizability of our model across vari-
ous PLMs.

Different Student Models We next conduct an
in-depth experiment for student models on three
datasets. The results are shown in Table 3. From
the results, different student models have a impact
on the performance of GDFO (approximately 2%
on average). Furthermore, we observe that student
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Figure 5: Accuracy (%) on different black-box models.
We report mean and standard deviation of performance
over 3 different splits. The results of BBT and BBTv2
are reported in (Sun et al., 2022a).

Stu. Models SST-2 AG’s News DBPedia
Encoder-only PLMs

BERTLARGE 92.41±1.03 87.19±0.51 96.92±0.71

RoBERTaLARGE 93.17±0.39 88.91±0.47 97.56±0.53

Decoder-only PLMs
GPT-2LARGE 91.12±1.72 85.98±1.28 95.91±2.01

Encoder-Decoder PLMs
BARTLARGE 91.19±0.93 87.07±0.57 96.13±0.82

T5LARGE 93.03±0.31 88.87±0.47 97.73±0.98

Table 3: Accuracy (%) of GDFO based on dif-
ferent student models. The black-box model is
RoBERTaLARGE (Liu et al., 2019). We report mean and
standard deviation of performance over 3 different splits.
We highlight the best results in bold.

models whose architectures are similar to the black-
box model tend to exhibit superior performance.
For instance, when both the black-box model
and the student model are RoBERTaLARGE (Liu
et al., 2019), GDFO achieves the best performance.
When comparing models with identical architec-
tures, such as BARTLARGE (Lewis et al., 2020)
and T5LARGE (Raffel et al., 2020), T5 exhibits su-
perior performance, which may be due to the fact
that the T5 model has twice the number of param-
eters as the BART model. The increased capacity
allows the T5 model to better capture and represent
the relationships within the input data, resulting in
improved performance.
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Figure 6: Effect of the balancing weight α on three
datasets. We report mean and standard deviation of
performance over 3 different splits.

Effect of Balancing Weight The balancing
weight α plays a crucial role in determining the per-
formance of the model by controlling the influence
of pGD and Az. As the value of α increases, the
influence of pGD becomes more prominent, while
conversely, as the value of α decreases, the influ-
ence of Az becomes more pronounced4. As illus-
trated in the Figure 6, when α is set to an extreme
value, either too large or too small, it tends to have
a negative impact on the model performance. We
observe that the average performance of the model
across three datasets is optimal when α is set to 0.5,
further emphasizing the importance of the combi-
nation of derivative-free optimization and gradient
descent in improving the performance of the model.

5 Conclusion

In this paper, we introduced gradient descent
into the black-box tuning scenario through knowl-
edge distillation for the first time, which pro-
vided a novel insight for future black-box tuning
approaches. Furthermore, we proposed a novel
method, GDFO, which integrates gradient descent
and derivative-free optimization for jointly train-
ing continuous prompts. GDFO first trains a stu-
dent model to enhance the performance by aligning
its outputs with those of the teacher model (i.e.,
the black-box model). After that, GDFO trains
a prompt generator using gradient descent while

4p0 is fixed, thus its effect on the model performance is
disregarded in the analysis.
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simultaneously optimizing a continuous prompt
using DFO algorithm. Experimental results on
various datasets show that GDFO can achieve sig-
nificant performance gains over other gradient-free
and gradient-based methods.

Limitations

We summarize the limitations of this work as fol-
lows: (1) We conduct experiments on 7 language
understanding tasks across 4 types (i.e., sentiment
analysis, topic classification, natural language infer-
ence and paraphrasing). However, the effectiveness
of GDFO on tasks such as sequence labeling and
generation tasks has yet to be fully examined. (2)
Our proposed method uses a student model and
a prompt generator, thereby resulting in a higher
computational resource requirement in comparison
to gradient-free methods. Therefore, it may not
be suitable for implementation on certain edge de-
vices, but it is more appropriate for personal or
enterprise users who have access to a certain de-
gree of computational resources and have stringent
requirements for the model performance. (3) We
only focus on the few-shot setting in this paper. It is
possible to extend our work to other scenarios such
as semi-supervised learning and we will further
explore it in the future research.

Ethics Statement

The proposed method has no obvious potential
risks. All the scientific artifacts used/created are
properly cited/licensed, and the usage is consistent
with their intended use.
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