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Abstract
We study feature interactions in the context of
feature attribution methods for post-hoc inter-
pretability. In interpretability research, getting
to grips with feature interactions is increasingly
recognised as an important challenge, because
interacting features are key to the success of
neural networks. Feature interactions allow a
model to build up hierarchical representations
for its input, and might provide an ideal starting
point for the investigation into linguistic struc-
ture in language models. However, uncovering
the exact role that these interactions play is also
difficult, and a diverse range of interaction at-
tribution methods has been proposed. In this
paper, we focus on the question which of these
methods most faithfully reflects the inner work-
ings of the target models. We work out a grey
box methodology, in which we train models to
perfection on a formal language classification
task, using PCFGs. We show that under spe-
cific configurations, some methods are indeed
able to uncover the grammatical rules acquired
by a model. Based on these findings we extend
our evaluation to a case study on language mod-
els, providing novel insights into the linguistic
structure that these models have acquired.1

1 Introduction

Feature attribution methods (FAMs) are a popu-
lar family of tools for explaining the behaviour
of deep learning models, by explaining a predic-
tion in terms of contributions of individual features
(Ribeiro et al., 2016; Lundberg and Lee, 2017).
There are many such methods proposed, and math-
ematical results (such as axiomatic approaches
based on game theory) and theoretical frameworks
(such as Covert et al. (2021)’s ‘Explaining by Re-
moving’) are starting to offer a good understanding
of how different methods relate to one another.

However, there are also some important short-
comings. Perhaps most importantly, popular FAMs

1All code and data is available here: https://github.
com/jumelet/fidam-eval

mostly ignore the existence of interactions between
the effects of features on the prediction. This is
problematic, because Feature Interactions are
widely seen as a major factor in the success of
neural networks (Goodfellow et al., 2016). This is
all the more important in domains such as language
and music processing, because feature interactions
allow neural networks to model hierarchical rep-
resentations of their input, which is considered a
key design feature of language and music. To ad-
dress these shortcomings, there is now an emerging
literature on feature interaction detection and at-
tribution methods (FIDAMs) that explain model
predictions in terms of interacting features (Tsang
et al., 2020; Janizek et al., 2021).

However, assessing the faithfulness of FIDAMs
is even more challenging than assessing the faithful-
ness of feature attribution methods more generally
(Jacovi and Goldberg, 2021). In this paper, we
present a systematic framework to characterise FI-
DAMs, and derive several new FIDAMs based on
that framework. We then proceed with creating an
evaluation pipeline that measures a FIDAM’s abil-
ity to recover the structural rules for which we have
good evidence that they play an important role in
the target model’s performance (Figure 1). We first
test this on a set of small-scale formal language
tasks, that provide stronger faithfulness guarantees.
Finally, we present a case study of a large language
model on the CoLA task for linguistic acceptability.

We find that the performance of FIDAMs is very
variable, and that the performance on the small-
scale formal language tasks may not be predictive
of the performance of methods on the large-scale
natural language task. This is an illustration of what
we call the Attribution Generalisation problem.
We argue that this problem remains a key open
problem in the study of explanation methods in
general.
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Figure 1: We generate a corpus based on a PCFG, and create negative examples by corrupting the generated
corpus. Next, we train a neural model to predict whether a string is well-formed, forcing the model to obtain a
comprehensive understanding of the rules of the language. Then, we extract the internal interactions by using
FIDAMs described in §4, allowing us to directly evaluate the grammatical knowledge of the neural model.

2 Related Work: Assessing Faithfulness

In this section we discuss related work on assess-
ing the faithfulness of feature attribution methods
(FAMs). A model explanation ideally provides bet-
ter insights into model behaviour. However, it is
important that an explanation is faithful to the rea-
soning of the model, and not merely plausible to a
researcher. Unfortunately, attribution models can
yield vastly different outcomes (Neely et al., 2022).

Defining a notion of faithfulness itself is an ongo-
ing debate, and it has been argued that we should
not be aiming for a binary notion, but a graded
one instead (Jacovi and Goldberg, 2021). To this
end, various methodologies have been proposed to
evaluate the faithfulness of explanation methods.

One research direction introduces metrics to eval-
uate faithfulness by quantifying the impact of fea-
tures that were deemed to contribute the most by
an attribution method. Hooker et al. (2019) does
this by retraining a model on data from which
the most contributing features have been removed.
DeYoung et al. (2020) provide a more direct mea-
sure, by quantifying changes in model predictions
when only a subset of the most contributing fea-
tures is fed to model. Atanasova et al. (2020) build
on this notion, introducing a range of diagnostic
metrics that capture various aspects of explana-
tion quality including faithfulness, human rationale
agreement, and explanation consistency. Jain et al.
(2020) ensure and evaluate faithfulness by only al-
lowing a model access to the set of features that
were deemed important by the explanation method,
which has also been shown to improve model ro-
bustness (Wiegreffe et al., 2021; Ross et al., 2022).

Another line of work modifies the training data
in such a way that we obtain guarantees of cer-

tain features the model must be paying attention
to when making a prediction: e.g. by shuffling
test data such that only part of the input resem-
bles the statistics from the train set (Pörner et al.,
2018), or by explicitly adding exploitable heuris-
tics in the train set (Bastings et al., 2022; Adebayo
et al., 2022). These two approaches could be char-
acterised as grey box models: we adapt the data
in such a way that we gain a degree of confidence
what cues the model must be relying on, without
having a full understanding of the model’s internal
reasoning. A glass box model, on the other hand,
is a model whose behaviour is fully understood:
it’s not derived by training a model on a task, but
hand-crafted. Hao (2020) utilises such models to
evaluate FAMs on formal language tasks, providing
more robust guarantees on model behaviour.

Our own approach is related to the first line of
research, making use of grey box models. Instead
of evaluating FAMS, we evaluate FIDAMs, that
provide more comprehensive insights into model
reasoning. Deployment of such methods within
NLP has been fairly limited, and as such evaluating
their faithfulness in a language context has been an
underexplored research topic.

3 A Framework for Characterising
FIDAMs

Feature attribution methods typically decompose
a model prediction into a sum of feature contribu-
tions (Sundararajan et al., 2017; Lundberg and Lee,
2017). A large contribution then indicates that this
feature played an important role in a model’s pre-
diction. Although feature attributions can provide
meaningful insights into the inner model dynamics,
they paint a fairly limited picture of the model be-
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haviour. Most importantly, interactions between
features are lumped together, making it impossi-
ble to discern whether a large contribution of a
feature stemmed from that feature alone, or from
its interaction with neighbouring features. To ad-
dress this, multiple methods have been proposed
that decompose a model prediction into a sum of
feature interactions, based on similar mathematical
formalism as those of feature attributions.

Notation A neural network is represented as a
single function f . The input to f is denoted as x,
which consists of N input features. A partial input
xS only consists of input features S ⊆ N . A value
function v(xS) quantifies the model output on the
partial input xS . Padding the missing features in
xS with replacement features x′

\S is denoted as
xS ∪ x′

\S . The attribution value of feature i is
denoted as ϕi, and the interaction effect of a set of
features I is denoted as ΓI .

Attribution Dimensions Attribution methods
can generally be characterised along two dimen-
sions (Covert et al., 2021): 1) how the method
deals with feature removal, and 2) how the impact
of removing a feature is quantified. FIDAMs are
built on the same principles as FAMs, and can be
categorised along the same two dimension. By dis-
cerning these two dimensions we can separately
evaluate their impact on the faithfulness of the at-
tribution method. Furthermore, we can combine
feature removal procedures with influence quantifi-
cation methods in order to obtain novel attribution
methods, an observation that has also been made
in the context of FIDAMs by Jiang and Steinert-
Threlkeld (2023), who, concurrent to our work,
provide a general framework for characterising FI-
DAMs.

3.1 Feature Removal
It is not straight-forward to define the absence of
a feature to a model’s input. The main goal here
is to replace the removed feature with a neutral
baseline, that adequately represents the absence of
the feature. Methods often make use of a neutral
input feature, the static baseline x′, such as a zero-
valued embedding or a pad token:

v(xS) = f(xS ∪ x′
\S) (1)

This may, however, lead to input that lies outside
of the original input distribution (Kim et al., 2020).
The reason why this is problematic is that the model

may behave erratically on such modified input, pos-
ing issues to the faithfulness of the explanation.

Instead of using a static baseline, we can also opt
to use a baseline that is sampled from a background
distribution (Datta et al., 2016). There exist two
approaches to this procedure (Sundararajan and Na-
jmi, 2020; Chen et al., 2020b). The observational
conditional expectation samples the baseline fea-
tures from a distribution that is conditioned on the
set of features that are still present in the input
(Frye et al., 2020; Aas et al., 2021):

v(xS) = Ex′
\S

[
f(xS ∪ x′

\S) | xS

]
(2)

The interventional conditional expectation drops
the conditional, and samples the baseline features
from an independent distribution:

v(xS) = Ex′
\S

[
f(xS ∪ x′

\S)
]

(3)

There exist two motivations for the latter approach:
Lundberg and Lee (2017) drop the conditional ex-
pectation for computational reasons, allowing them
to approximate the observational conditional expec-
tation. Janzing et al. (2020) provide a perspective
derived from causality theory, stating that the in-
tervention of removing a feature should break the
dependence between the baseline and remaining
features, and hence conditioning on these features
is fundamentally wrong.

The previous two methods sample baseline val-
ues for individual missing features, but we can also
compute the expectation over the range of possible
baselines. This yields the technique of expected
explanations (Erion et al., 2021), in which attri-
butions with different static baselines are averaged
out over a background distribution D:

ϕi = Ex′∼D

[
ϕi(x;x

′)
]

(4)

3.2 Quantifying Feature Influence

The simplest method of quantifying the influence
of a feature is expressed as the output difference
after ablating the feature:

ϕi = v(x)− v(x\i) (5)

Note that this formulation can be combined with
any of the feature removal methods: e.g. Occlusion
(Zeiler and Fergus, 2014) combines this influence
method with a static baseline (Eq. 1), whereas Kim
et al. (2020) combines it with the observational
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conditional expectation (Eq. 2), employing BERT
as the conditional distribution.

A more involved method leverages a technique
from the field of game theory, called the Shap-
ley value (Shapley, 1953). Shapley values were
originally introduced in the domain of cooperative
games, in which players can form coalitions to
change the outcome of the game. This setup can be
transferred directly to machine learning models, in
which features now take up the role of the players.
A Shapley value expresses the contribution of a fea-
ture as the marginal gain of including that feature
in the input, averaged over all possible coalitions
of features.

4 FIDAMs

We now address a series of interaction methods that
we use in our own experiments.

Group Ablation The feature influence principle
of Equation 5 can straightforwardly be extended to
groups of features. In our experiments we will fo-
cus on pairwise interactions, but any kind of feature
subset can be used here.

Γi,j = v(x)− v(x\ij) (6)

Archipelago Explaining model behaviour in
terms of pairwise interactions will already yield a
better portrayal of its internal behaviour than ‘flat’
attributions, but it neglects the interactions that oc-
cur within larger groups of features. Archipelago
(Tsang et al., 2020) splits up the feature interac-
tion procedure into two phases: first an interaction
detection method is performed that clusters fea-
tures into interaction sets, and afterwards interac-
tion scores are assigned to these sets as a whole.
Interaction detection is based on measuring the non-
additive effect of pairs of features. The interaction
effect that is assigned to an interaction set I is ex-
pressed as follows, with respect to a static baseline
x′:

ΓI = f(xI ∪ x′
\I)− f(x′) (7)

Note that Archipelago expresses the interaction
effect inversely compared to the Group Ablation
procedure: instead of measuring the impact of re-
moving a group of features, we now measure the
impact of solely keeping this group in the input.

Shapley(-Taylor) Interaction Index Both the
previous methods base interaction effects on direct
output differences. We can modify the formulation

of the Shapley value to yield interaction effects.
This modification was originally introduced in the
field of game theory, called the Shapley Interaction
Index (SII, Owen, 1972; Grabisch and Roubens,
1999). Instead of computing the marginal gain that
is achieved by a single feature, we now compute the
marginal gain of groups of features. The Shapley-
Taylor Interaction Index (STII, Sundararajan et al.,
2020) is an extension of SII, satisfying additional
theoretical properties.

Hessian Analogous to utilising the gradient for
feature attributions, we can employ the second-
order derivative to quantify interactions between
features, which is captured by the Hessian matrix.
Friedman and Popescu (2008) and Sorokina et al.
(2008) consider an interaction between two vari-
ables to exist when the effect of one variable on the
response depends on values of the other variable,
which can be expressed in terms of the second-
order partial derivative:

Γi,j =

[
∂2f(x)

∂xi∂xj

]2

A common approach when using the gradient of a
model as a proxy for feature importance is to multi-
ply it with the input embeddings (Shrikumar et al.,
2017; Ancona et al., 2019): in our experiments we
consider an analogous method to the Hessian that
we call Hessian × Input.

Integrated Hessians Directly using the Hessian
as explanation method is prone to the same caveats
as using the gradient: the interactions signal may
vanish due to saturation. Integrated Hessians (IH,
Janizek et al., 2021) address this issue by integrat-
ing over the Hessian manifold along a path between
the input and a baseline. This is achieved by ap-
plying the method of Integrated Gradients (Sun-
dararajan et al., 2017) to itself. An IH interaction
between features i and j can hence be interpreted
as the contribution of i to the contribution of j to
the models prediction. The path integral between
input and baseline is approximated via a Riemann
sum interpolation.

Other Methods The methods explained thus far
have all been incorporated in our experimental
pipeline. The scope of our work focuses mainly
on pairwise interactions, but methods that extract
higher-order interactions have been proposed as
well (Jin et al., 2020). Comparing such methods
to linguistic structure is an exciting avenue that we
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leave open to future work. Other interaction meth-
ods that were not considered include two methods
that preceded Archipelago: Neural Interaction De-
tection (Tsang et al., 2018a) and MAHE (Tsang
et al., 2018b). The feature attribution method Con-
textual Decomposition (Murdoch et al., 2018) has
been extended to extract interactions as well (Singh
et al., 2019; Saphra and Lopez, 2020; Chen et al.,
2020a), but these methods place the constraint that
only contiguous groups of features can interact. In-
tegrated Directional Gradients (Sikdar et al., 2021),
an extension of Integrated Gradients to capture
group attributions, could be adapted to our frame-
work, but we leave this open for future work.

5 Evaluating FIDAMs

The final component of our framework is a method-
ology for evaluating the faithfulness of FIDAMs.
To lay a robust foundation for such work, we pro-
pose to evaluate a range of interaction methods and
baselines on smaller deep learning models (using
LSTM and Transformer architectures) that have
been trained to recognise formal languages, based
on a probabilistic context-free grammar (PCFG).

Our models are trained on a binary language clas-
sification task, in which a model needs to learn to
discern between well-formed strings and minimally
corrupted counterparts. Models are trained to per-
fection (100% accuracy) on both train and test set.
To obtain perfect performance, a model must rely
solely on the grammatical rules that underlie the
language, without resorting to spurious heuristics,
because only these results allow completely solv-
ing the task. This way, due to the controlled nature
of the task, we obtain a high degree of confidence
about the model’s behaviour.

The goal of our experimental approach is to re-
cover the structure of the language based on the
trained model itself. This is achieved by the FI-
DAMs outlined in §4. We aim to uncover whether a
structural dependency between two features results
in a high interaction effect. Since our models have
been trained to perfection, this allows us to employ
our setup as a way of measuring the faithfulness of
a FIDAM. A method that assigns a high interaction
effect to features that contain a dependency in the
original grammar is able to provide a faithful re-
flection of a model’s understanding of the task. By
testing a wide range of FIDAMs and baselines we
can uncover which configuration yields the most
faithful explanations. A graphical overview of our

approach is depicted in Figure 1.

Task The binary language classification task is
set up by generating positive examples D+, based
on some PCFG, and negative examples D−, de-
rived from minimally corrupting the positive ex-
amples. We split the union of these two sets into
a random train/test split of 80/20%. We train our
models with a default cross-entropy loss, using the
AdamW optimiser (Loshchilov and Hutter, 2019),
a learning rate of 0.01, and a batch size of 48.

Models Our pipeline permits the use of any kind
of neural model architecture, in our experiments we
considered both LSTMs (Hochreiter and Schmidhu-
ber, 1997) and Transformers (Vaswani et al., 2017).
In our experiments we report the results of the
LSTM model, but we observed similar results for
Transformers: due to the black-box approach of our
explanation procedure the architecture itself is not
of great importance. The models are deliberately
small: we use an embedding size that is equal to the
number of symbols in the language it is trained on,
a hidden state size of 20, and a single layer. This
results in models that provide a compute-friendly
test bed for evaluating the FIDAMs.

Evaluation We focus on pairwise interactions:
interactions between individual pairs of features.
A FIDAM that extracts pairwise interactions for
an input sequence x ∈ RN returns a matrix of in-
teraction effects Γ ∈ RN×N . Since our goal is to
uncover whether structural dependencies result in
high interaction effects, we approach the evalua-
tion of the interaction matrix as a retrieval task. By
aggregating and normalising the rank of each inter-
action of interest we can quantify the performance
of a FIDAM. We call this metric the Average Rel-
ative Rank (ARR):

ARR(Γ, I) = 1

|I|
∑

i,j∈I

R(Γi)j
N − 1

(8)

where I denotes the set of interaction pairs of inter-
est and R(Γi) denotes the rank of each interaction
between feature i and the other features in input
x (the lowest interaction is ranked 0, and the high-
est interaction is ranked N − 1). We aggregate
these scores over an evaluation set to obtain a gen-
eral performance score of the FIDAM. A graphical
overview of this procedure is provided in Figure 2.

Baselines We consider a range of baselines in our
experiments, based on the procedures explained
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Figure 2: Example for the computation of the Average
Relative Rank metric. For each row we compute the
relative rank of the interaction of interest (here the Dyck
language), and these row-wise relative ranks are aver-
aged into a single score between 0 and 1. A random
interaction matrix results in an ARR of around 0.5.

in §3.1. For the static baselines we consider a
zero-valued baseline (x′ = 0), and a baseline that
utilises a fixed mapping T based on the original
input symbols (x′ = T (x)). Expected attributions
are marginalised over samples from the distribution
of well-formed strings D+ and corrupted strings
D−. The interventional conditional expectation
(Eq. 3) is computed with a corpus-wide unigram
distribution (P (xi)), a unigram distribution that
is conditioned on the sentence position (P (xi|i)),
and as a joint distribution over the missing features
(P (x′

\S)), that we sample from the training corpus.
The observational conditional expectation (Eq. 2)
is computed based on the original corpus data.2

6 Experiments on Formal Languages

We apply the evaluation procedure of §5 to two
formal languages: the Identity Rule language and
the Dyck-2 language. In the appendix (§A) we also
present results on a palindrome language.

6.1 Identity Rule
The first language we consider is a regular language
consisting of strings in which the first two symbols
are identical, followed by a random sequence of
symbols. The language is formed by the following
grammar:

S → x x A x ∈ {a, b, c}
A → x A | ϵ x ∈ {a, b, c}

2Due to the small scale of the PCFGs considered here we
can generated the complete language up to a certain length,
and sample from strings that have feature overlap with the
features that are still present in the partial input. For more
complex tasks an auxiliary LM can be used instead.

NB 0 x′ ∼ D+ x′ ∼ D−

Group Ablation – 0.49 1.00 0.53
Archipelago – 0.30 0.24 1.00
SII – 0.70 1.00 1.00
STII – 0.83 1.00 1.00
Hessian 0.93 – – –
Hessian×Input 0.66 – – –
IH – 0.81 1.00 0.31

Table 1: Average Relative Rank for the Identity Rule lan-
guage, columns indicate different baseline procedures.
An average rank of 1 indicates that the method (cor-
rectly) assigned the interaction between the first two
tokens the highest score. NB indicates these methods
use no baseline.

The only interaction of interest here is between the
first two symbols; all subsequent symbols are irrel-
evant for the prediction. An ARR score of 1.0 then
indicates that for all corpus items the interaction
between the first two items was the strongest out of
all interactions.

We use a corpus size of 1.000, a maximum se-
quence length of 20, with 3 different input symbols.
Corrupted strings are derived by altering one of the
first two symbols (e.g. aabcb → cabcb).

Results The results for an LSTM that was trained
on the language are shown in Table 1. Due to
the simplicity of the language and for brevity we
only report results on three baselines. A static
zero-valued baseline provides imperfect interac-
tions for all methods. The Hessian, that does not
depend on any baseline, performs better than all
other methods here. When sampling the baseline,
however, multiple methods perfectly retrieve the
interaction between the first two symbols for all
corpus items. Interestingly, Group Ablation and IH
benefit from sampling from the distribution of well-
formed items, whereas Archipelago performs best
when sampling from the distribution of corrupted
items.

6.2 Dyck-2

The Dyck language is the language of well-nested
brackets, and is a popular testbed for research on
formal languages. It is a context-free language
with center embedding clauses, requiring a model
to keep track of a memory stack while process-
ing a string. Earlier work on Dyck languages has
shown that a wide range of neural model archi-
tectures can learn the grammar, including LSTMs
(Sennhauser and Berwick, 2018), memory aug-
mented RNNs (Suzgun et al., 2019), Transform-
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Static Expected Interventional Observational

No baseline 0 T (x) D+ D− P (x′
i) P (x′

i|i) P (x′
\S) P (x′

\S |xS)

Group Ablation – 0.684 1.000 0.916 0.884 0.822 0.821 0.938 0.956
Archipelago – 0.466 0.528 0.250 0.554 – – – –
SII – 0.555 1.000 0.921 0.895 0.876 0.885 0.923 0.989
STII – 0.583 0.999 0.876 0.820 0.881 0.906 0.952 0.991
Hessian 0.413 – – – – – – – –
Hessian×Input 0.542 – – – – – – – –
IH – 0.591 0.837 0.723 0.665 – – – –

Table 2: Average Relative Ranks for the Dyck language (higher indicates stronger alignment with Dyck rules),
columns indicate different baseline procedures.

ers (Ebrahimi et al., 2020), and handcrafted RNNs
(Hewitt et al., 2020; Hao, 2020). We consider the
Dyck-2 language, consisting of two types of brack-
ets. The language is formed by the following gram-
mar:

S → [ S ] | ( S ) | S S | ϵ

We use a corpus size of 15.000, a maximum
sequence length of 20, and a maximum branching
depth of 4. We use the same branching probabilities
as Suzgun et al. (2019), which results in a uniform
probability of 0.25 for each rule. Corrupted strings
are derived by flipping a single bracket to any other
bracket. For the baseline mapping T (x), we map
a bracket to the other bracket type, i.e. ‘(’ ↔ ‘[’
and ‘)’ ↔ ‘]’. This results in a baseline that is of
the same structure as the original input, but without
feature overlap.

Results We report the results for this language
in Table 2, computed over all our baselines for an
LSTM. The zero-valued baseline again turns out
to be a mediocre baseline: for none of the meth-
ods this results in a high ARR score. The method
that performs best is the fixed mapping T (x). For
Group Ablation, SII, and STII this results in a per-
fect ARR; for IH it is the best performing baseline.

It is encouraging that a baseline exists that results
in perfect ARR scores, but this mapping depends
strongly on the nature of the Dyck task itself. It is,
for example, unclear how this static mapping would
transfer to the natural language domain. Ideally, a
more general solution makes no strong assumptions
about the baseline itself. The three other baseline
types in Table 2 may provide such a solution, as
these only depend on the access to the original
training data. Out of these, the observational base-
line performs best: for the SII and STII methods
this baseline performs nearly on par with the static
mapping. Obtaining this conditional distribution
is challenging for more complex tasks, and it can

be seen here that the interventional baseline with
a joint distribution over the missing features per-
forms well too.

7 A Natural Language Case Study: CoLA

As a case study on a larger scale natural language
task, we apply our methodology to language mod-
els fine-tuned on the CoLA task (Warstadt et al.,
2019). CoLA is part of the GLUE Benchmark
(Wang et al., 2019), and is defined as a binary clas-
sification task of determining the linguistic accept-
ability of a single input sentence. The task consists
of linguistically valid sentences, and sentences that
contain either a syntactic, semantic, or morphologi-
cal violation. A model that performs well on this
task must have a thorough grasp of grammatical
structure, and as such it provides a useful test bed
for our FIDAM evaluation procedure.

In the previous experiments there was a degree
of certainty about the structure that must be en-
coded by the model. In the natural language do-
main, however, we do not have such certainty, and
should therefore be careful of making strong claims
about faithfulness. Furthermore, natural language
is highly multi-faceted and can not be captured
by a single hierarchical structure that covers all
these facets. Nonetheless, we consider it valuable
to test our setup on a natural domain in order to see
if interesting differences between FIDAMs arise,
and whether particular facets of language such as
syntactic dependency structure can be extracted.

7.1 Experimental Setup
For our experiment we consider the RoBERTa-base
model (Liu et al., 2019) which obtains a Matthew’s
Correlation Coefficient score of 69.70 on the in-
domain validation split. We filter out sentences that
contain words that are split into multiple subwords
by the tokenizer, since this leads to issues with
aligning the interactions of multiple subwords to
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the dependency graph that is used for evaluation.
Furthermore, we limit sentences to a max length
of 14 in order to allow the STII and SII methods to
be computed exactly without approximations. This
resulted in a subset of around 60% of the original
in-domain validation split that we will use in our
experiment.

We evaluate the FIDAM scores on the depen-
dency parse tree of the sentence, that we obtain
with the parser of spaCy (Honnibal et al., 2020).
The ARR score is computed based on the interac-
tion of each token with its parent token. We omit
the interaction of the token that has the ROOT node
as its parent. An example of this procedure can be
found in Appendix B. Do note that our evaluation
procedure is one of many possibilities: we make
the assumption that a token should interact strongly
with its parent, but other interactions are likely to
play a role within the model as well. We leave
a more detailed investigation into using different
types of linguistic structure open for future work.

We again consider the FIDAMs of Group Abla-
tion, STII/SII, and Integrated Hessians. We leave
out Archipelago, since its procedure of assigning
features to a single interaction set is not feasible
with our setup in which multiple child tokens might
be interacting with the same parent token. Due to
computational constraints we were unable to com-
pute the full Hessian matrix of the language model,
whose computation scales quadratically in the num-
ber of input neurons (Bishop, 2007, §5.4). For the
static baselines we again consider the zero-valued
baseline, as well as the <pad> token. The interven-
tional baselines are obtained by computing simple
count-based distributions over a sample of 100.000
sentences from the Google Books corpus. The
distributions are based on the tokenization of the
model’s tokenizer, and allow for computationally
efficient sampling. We leave the incorporation of
an observational baseline for future work, where
an auxiliary masked LM might provide a useful
conditional probability distribution.

7.2 Results

The results for the experiment are shown in Table
3. As expected, due to reasons outlined at the
start of this section, none of the methods reaches
ARR scores that are close to 1. Nonetheless, it is
encouraging to see that various method/baseline
combinations attain ARR scores that are far above
chance level, indicating that there exists a strong

Static Interventional

0 <pad> P (x′
i) P (x′

\S)

Group Ablation 0.702 0.757 0.518 0.491
SII 0.746 0.668 0.714 0.696
STII 0.741 0.708 0.704 0.658
IH 0.577 0.516 – –

Table 3: Average Relative Ranks for the dependency
tree recovery of RoBERTa fine-tuned on CoLA.

degree of alignment between feature interactions
and dependency structure. Contrary to the Dyck
results, using a zero-valued baseline yields some
of the highest ARR scores, which indicates that
within RoBERTa’s embedding space this baseline
represents a better neutral value.

A closer inspection of these results shows that
the ARR scores are strongly negatively correlated
to sentence length: for Group Ablation with a
<pad> baseline, for example, we obtain a Spear-
man correlation of -0.38 (p << 0.001, regression
plot in Appendix C). This is not surprising: as
the sentence length increases, the chance of a to-
ken’s largest interaction being with its parent de-
creases. Another correlation of interest is between
the ARR score and the model’s prediction of a
sentence’s acceptability. A high correlation would
indicate that the FIDAM’s alignment with depen-
dency structure are indicative of a model’s perfor-
mance. For this we obtain a Spearman correlation
of 0.14 (p = 0.036): a relatively weak result that
indicates that the structure our FIDAM extracted is
only partly driving the model’s comprehension of
the sentence structure.

8 Discussion & Conclusions

In this paper, we have presented a framework for
characterising FIDAMs and evaluating their faith-
fulness. For the characterisation we set out two
dimensions, feature removal and feature influence,
along which existing FIDAMs can be characterised,
by extending the ‘Explaining by Removing’ frame-
work of Covert et al. to also apply to FIDAMs. This
allows us to place each of the known FIDAMs in a
two-dimensional grid, and to define novel variants
of these models. As such, many of the methods
that we incorporated in our experiments are novel
FIDAMs, such as combining Archipelago with ex-
pected explanations and STII with an observational
baseline.

To assess the faithfulness of FIDAMs, we made
use of formal language theory and ‘grey box mod-
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els’. We use formal grammars to generate multi-
ple datasets, each with known feature interactions,
and train deep learning models to perfection on
those datasets. Using FIDAMs, we can then ex-
tract the learned feature interactions based on the
model itself, and compare these interactions to the
dependencies in the original grammar. We demon-
strate that only specific combinations of FIDAMs
and baselines are able to retrieve the correct inter-
actions, while methods such as Archipelago and
Integrated Hessians consistently fail to do so.

Finally, we tested our methodology on a natural
language case study using a model fine-tuned on
the CoLA task for linguistic acceptability. Our re-
sults on the formal language tasks either did not
turn out to be predictive of this experiment or, al-
ternatively, the results were predictive but the LMs
made less use of dependency graph information
than we might have expected. This illustrates the
challenge of the Attribution Generalisation prob-
lem, and the open question remains how we can
transfer faithfulness guarantees from a synthetic,
controlled context to the domain of natural lan-
guage and LLMs.

We do show, however, that under certain config-
urations feature interactions align to some degree
with the (syntactic) dependency structure of a sen-
tence. This paves the way for revealing linguistic
structure in a more direct way than, for instance,
can be achieved with Structural Probes (Hewitt and
Manning, 2019). Investigating whether different
methods and baseline configurations are able to
retrieve different aspects of structure is an excit-
ing next step that we look forward to exploring in
more detail. This could be examined, for instance,
through the lens of contrastive explanations Yin
and Neubig (2022), a procedure that demonstrates
that different baselines can reveal different aspects
of linguistic structure. Furthermore, investigating
the role that attention plays in modelling interac-
tions could be a fruitful line of work, for instance
by incorporating context mixing methods to our
pipeline, such as Value Zeroing (Mohebbi et al.,
2023) and ALTI (Ferrando et al., 2022).

9 Limitations

Our work has only considered pairwise interac-
tions, but linguistic structure can also manifest
through higher-order interactions. We show that
our results on small-scale, formal languages, are
different from our results on a natural language task.

It would be premature to conclude that small-scale,
synthetic tasks can not be predictive of behaviour
on more complex tasks, and a more detailed investi-
gation into the properties of the task that play a role
is a viable next step. Some of the FIDAMs we con-
sidered, most notably SII and STII, are intractable
for larger inputs (scaling O(2n)), and a necessary
step in employing these methods to larger mod-
els is to construct better approximation procedures,
e.g. by adapting SHAP to SII as has been done
before for tabular data by Lundberg et al. (2018).
More generally, although we believe our proba-
bilistic formal language setup provides a important
step forward, solving the Attribution Generaliza-
tion problem – i.e., showing that results for small
setups generalize to very large model – remains a
key open problem.
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A Palindromes

One additional language we investigated is the
context-free language of palindromes. In order to
process a palindrome, a model needs to keep track
of the dependency between each token in the first
half of the string with its counterpart in the second
half. Palindromes can contain a special symbol in
the middle of a string to demarcate the two string
halves, making it less ambiguous for the model at
which point it should track whether the palindrome
is well-formed. In our experiments, however, we
found our models to perform well on both forms of
palindromes. Furthermore, following Suzgun et al.
(2019), we use a homomorphic mapping h for the
second half of the string, allowing the model to use
separate embeddings for symbols occurring in the
first and second half of a string:

S → x S h(x) | ϵ x ∈ {a, b, c, · · · }

We use a corpus size of 5.000, 10 different in-
put symbols, and a maximum sequence length
of 18. For the fixed baseline mapping T (x) we
map a symbol onto another random symbol, pre-
serving the grammaticality of the palindrome (e.g.
abBA → cdDC).

Results The results for this language, trained
with an LSTM, are shown in Figure 4. Again, the
zero-valued baseline performs poorly, with most
methods scoring ARRs even below chance level.
The fixed baseline mapping again performs well
for Group Ablation, SII, and STII, although it is
not the best performing baseline this time. These
three FIDAMs obtain perfect performance when
using the expected baselines over a distribution of
well-formed palindromes, which also holds for the
interventional baseline with a joint distribution over
the missing features. This is in contrast to the Dyck
results, where the observational baseline resulted
in better ARR scores for all three of these methods.

B ARR Example

An example of a sentence with a high ARR (0.93),
for the Group Ablation method with a <pad> base-
line:

I mixed the sugar into the butter .

I

mixed

the

sugar

into

the

butter

.

0 7 4 2 6 5 3 1

3 0 5 7 6 2 4 1

3 7 0 6 1 4 5 2

3 7 5 1 0 4 6 2

5 7 2 3 0 4 6 1

5 7 2 4 3 1 6 0

2 7 3 4 6 5 1 0

1 7 5 6 0 3 4 2

C Correlation CoLA ARR and sentence
length

Correlation between sentence length and ARR,
shown here for Group Ablation with a <pad> base-
line. Spearman’s ρ = −0.38 (p << 0.001):

6 8 10 12 14
Sentence Length

0.4

0.6

0.8

1.0

AR
R

8709



Static Expected Interventional Observational

0 T (x) D+ D− P (x′
i) P (x′

i|i) P (x′
\S) P (x′

\S |xS)

Group Ablation 0.450 0.980 1.000 0.943 0.777 0.836 1.000 0.939
Archipelago 0.356 0.452 0.439 0.717 – – – –
SII 0.472 0.933 1.000 0.892 0.804 0.817 1.000 1.000
STII 0.472 0.921 0.999 0.917 0.760 0.792 1.000 0.999
Hessian 0.523 – – – – – – –
Hessian×Input 0.523 – – – – – – –
IH 0.505 0.637 0.693 0.535 – – – –

Table 4: Average Relative Ranks for the palindrome language (higher is better).
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