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Abstract
Entity Alignment (EA) aims to find the equiv-
alent entities between two Knowledge Graphs
(KGs). Existing methods usually encode the
triples of entities as embeddings and learn to
align the embeddings, which prevents the direct
interaction between the original information
of the cross-KG entities. Moreover, they en-
code the relational triples and attribute triples of
an entity in heterogeneous embedding spaces,
which prevents them from helping each other.
In this paper, we transform both triples into
unified textual sequences, and model the EA
task as a bi-directional textual entailment task
between the sequences of cross-KG entities.
Specifically, we feed the sequences of two enti-
ties simultaneously into a pre-trained language
model (PLM) and propose two kinds of PLM-
based entity aligners that model the entailment
probability between sequences as the similarity
between entities. Our approach captures the
unified correlation pattern of two kinds of infor-
mation between entities, and explicitly models
the fine-grained interaction between original en-
tity information. The experiments on five cross-
lingual EA datasets show that our approach
outperforms the state-of-the-art EA methods
and enables the mutual enhancement of the het-
erogeneous information. Codes are available at
https://github.com/OreOZhao/TEA.

1 Introduction

Knowledge Graphs (KGs) organize and store the
facts in the real world to an effective structure,
and have been applied to many knowledge-driven
tasks, such as question answering (Lan et al., 2021),
recommender systems (Wang et al., 2022), and in-
formation extraction (Sui et al., 2022; Zhou et al.,
2021). Since the KGs are often from various do-
mains, Entity Alignment (EA) provides fundamen-
tal techniques to find the equivalent entities in two
KGs, which would complement the knowledge cov-
erage of KGs.
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(a) An example of heterogeneous relational and attribute in-
formation of entity "The Rolling Stones" in ZH-EN KGs.
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(b) Our bi-directional entailment modeling of cross-KG entity
sequences, where the sub-sequences with the same color shad-
ing share the same semantics.

Figure 1: (a) displays an example of relational and
attribute information of entities. (b) displays our bi-
directional entailment modeling for EA.

Existing EA methods usually consist of two mod-
ules: (1) embedding module encodes entity infor-
mation to entity embeddings, (2) alignment module
guides the embeddings of the aligned entities to be
similar (Sun et al., 2020). Moreover, they usually
incorporate two kinds of heterogeneous triples as
shown in Figure 1a: (1) relational triples (h, r, t),
represents the relation r between head entity h and
tail entity r, (2) attribute triples (e, a, v), represents
the attribute value v of the attribute a of entity e.

Despite the progress of existing EA methods
(Liu et al., 2020; Tang et al., 2021; Zhong et al.,
2022), they are limited by the embedding-based
architecture in two folds: (1) Lack of direct inter-
action between KGs. Existing methods usually
treat EA as a representation learning task. During
the encoding process, the origin triples of entities

8795

https://github.com/OreOZhao/TEA


are compressed to a continuous vector, which pre-
vents them from directly interacting with each other.
However, the origin information contains rich se-
mantics information. Take the entity "The Rolling
Stones" in Figure 1a as an example, the attribute
value "Rollingstones.com" and "1962" of the Chi-
nese KG are highly compatible with the value "The
Rolling Stones" and "1962" in the English KG. The
correlation between the values can directly indicate
the alignment of two entities.

(2) Heterogeneous embedding spaces. Exist-
ing methods usually encode the relational triples
and attribute triples in different embedding spaces
due to the heterogeneity of structures and literals.
This way, the alignment of relational information
and of attribute information are separated and could
not help each other. However, they may share the
same correlation pattern. For example, the entity
"The Rolling Stone" in Chinese and English KGs
in Figure 1 have common neighbors (translated)
and common attribute values, which could both
indicate the equivalence of entities. Capturing the
correlation pattern in a unified model would enable
mutual enhancement between the two information.

Inspired by recent progress of pre-trained lan-
guage models (PLMs) (Brown et al., 2020; Gao
et al., 2021; Sun et al., 2022), we transform both
two kinds of triples into textual sequences, and
propose a unified Textual Entailment framework
for entity Alignment TEA. We model the EA task
as a bi-directional textual entailment task between
the sequences of cross-KG entities as shown in
Figure 1b to explicitly capture the fine-grained in-
teraction between entity information. Specifically,
we combine two sequences of entities in one se-
quence with cloze-style templates and feed the com-
bined sequence into a PLM. We further propose
two aligners to model the entailment probability as
the pre-training tasks of PLM, i.e. Next Sentence
Prediction (NSP) and Masked Language Modeling
(MLM). The NSP-Aligner predicts the probability
of whether one entity is next sentence of the other,
while the MLM-Aligner fills in the blanks between
entity sequences with mapped label words "Yes"
or "No". The positive entailment probability is
seen as entity similarity and is used for ranking the
candidate entities. The experiments on five cross-
lingual EA datasets show that TEA outperforms
the state-of-the-art methods and enables the mutual
enhancement of heterogeneous information.

Overall, the contributions of this paper can be

summarized as follows:

• We unify the modeling of the relational triples
and attribute triples in EA by transforming
both into textual sequences and capturing their
common correlation pattern.

• To the best of our knowledge, we are the first
to transform EA to a bi-directional textual
entailment task of relational and attribute in-
formation. The proposed PLM-based aligners
capture the fine-grained interaction between
cross-KG entities.

• Experiments on five cross-lingual EA datasets
demonstrate that our approach outperforms
baselines and enables the mutual enhancement
of heterogeneous information.

2 Related Work

2.1 Entity Alignment

Existing EA methods usually follow an embedding-
alignment architecture (Sun et al., 2020), where
the entity encoder learns from the relational and
attribute triples with various networks, then the
alignment module guides the embeddings of the
aligned entities to be similar.

There are two mainstreams of methods: TransE
(Bordes et al., 2013) based methods (Chen et al.,
2017; Sun et al., 2017; Zhu et al., 2017; Sun et al.,
2018; Guo et al., 2019) for KG representation with
simple implementation, and GCN (Welling and
Kipf, 2016) based methods (Chen et al., 2017; Sun
et al., 2017; Zhu et al., 2017; Sun et al., 2018; Guo
et al., 2019) for modeling graph structures. How-
ever, the rich semantics in the origin information
of cross-KG entities lack interaction through the
encoding process. Our work focuses on modeling
the interaction between the origin information of
cross-KG entities.

For methods incorporating attribute information
with relational information, they usually encode
them in heterogeneous representation spaces with
hybrid encoders. For example, GNNs (Sun et al.,
2019; Liu et al., 2020) and RNNs (Guo et al., 2019;
Zhong et al., 2022) are used for encoding relational
triples to model the structures of entities, while
Skip-gram (Sun et al., 2017), N-hot (Wang et al.,
2018; Yang et al., 2019) and BERT (Liu et al.,
2020; Zhong et al., 2022) for attribute triples for
capturing literal semantics. Some methods further
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aggregate the heterogeneous embeddings in sep-
arate sub-graphs (Wang et al., 2018; Yang et al.,
2019; Liu et al., 2020; Tang et al., 2021). However,
the heterogeneous embedding spaces hinder the EA
process. Our work focuses on the unified modeling
of relational and attribute information.

There have been other advancements in EA,
focusing on unsupervised or self-supervised EA
(Mao et al., 2021; Liu et al., 2022), incorporation
of entity images (Liu et al., 2021; Lin et al., 2022),
EA with dangling cases (Sun et al., 2021), which
motivates our future work.

2.2 PLMs in KGs

With the prosperity of PLMs like BERT (Devlin
et al., 2019), fine-tuning the PLM in downstream
tasks has shown great potential in KGs. In EA,
several methods have explored PLMs in learning
entity embeddings (Yang et al., 2019; Tang et al.,
2021; Zhong et al., 2022). However, they share the
same drawbacks with methods in Section 2.1, and
some methods (Yang et al., 2019; Tang et al., 2021)
require extra natural language sequences such as
entity descriptions which are not always available.

Recent studies (Brown et al., 2020; Gao et al.,
2021; Sun et al., 2022) show that given a natural-
language prompt, the PLM could achieve remark-
able improvements by simulating the pre-training
tasks of PLM, i.e. NSP and MLM. The prompt-
based fine-tuning paradigm has been applied in
many tasks in KGs, such as Named Entity Recog-
nition (Huang et al., 2022), Entity Linking (Sun
et al., 2022), Entity Typing (Ding et al., 2021).
However, there is no prompt-learning study for
entity-pair tasks such as EA. Our work focuses on
constructing entity-pair sequences with prompts,
and transforming the EA task to the NSP-style or
MLM-style textual entailment task. The entailment
probability is seen as entity similarity.

3 Methodology

3.1 Preliminaries

Knowledge Graph. A knowledge graph (KG)
could be defined as G = {E ,R,A,V, T r, T a},
where E ,R,A,V is the set of entities, relations,
attributes and attribute values, respectively. The
T r = {(h, r, t) | h, t ∈ E , r ∈ R} is the set of
relational triples. The T a = {(e, a, v) | e ∈ E , a ∈
A, v ∈ V} is the set of attribute triples.

Entity Alignment. Given the two KGs G1 and
G2, the target of EA is to find a mapping between

two KGs, i.e. P = {(e, e′)|e ∈ G1, e
′ ∈ G2}. A set

of alignment seeds Ps is used as training data.

3.2 Overview
In our TEA framework, we first transform an en-
tity as textual sequences composed of its neighbors
and attribute values, and then measure the similar-
ity between a pair of cross-KG entities via a text
entailment task on their sequences. Finally, we
perform the entity alignment based on similarity.

Now we elaborate on the textual entailment task.
As shown in Figure 2, we first combine two se-
quences of cross-KG entities with a cloze-style
template, and input the combined sequence into the
PLM. Then, we tune the PLM with the entailment
objectives to enlarge the positive entailment prob-
ability of the positive entity pairs. The entailment
probability p(y|T (e, e′)) is from one of the two
proposed PLM-based entity aligners, NSP-Aligner
or MLM-Aligner.

In practice, we find that the computationally cost
is prohibitive to perform text entailment between
all the entity pairs in two KGs. Therefore, besides
the entailment objectives, we also tune the PLM si-
multaneously with the entity embedding-alignment
objective, which minimizes the distance between
the embeddings of the aligned entity pairs. For effi-
cient EA inference, we first filter out the most sim-
ilar candidates based on the embeddings learned
from the embedding-alignment objective, and then
re-rank these candidates via the entity similarity
learned from the entailment objectives.

3.3 Input construction
Sequence construction. We follow previous stud-
ies (Tang et al., 2021; Zhong et al., 2022) to con-
struct sequences with neighbors and attribute val-
ues, which contain rich semantics. For entity e, the
relational neighbors are Ne = {n|(e, r, n) ∈ T r},
and the attribute values are Ve = {v|(e, a, v) ∈
T a}. We sort the Ne and Ve in alphabetical
order by relation r and attribute a to form se-
quences respectively. The sequences are denoted as
Sr(e) = "e, n1, n2, ..., n|Ne|[SEP]", ni ∈ Ne and
Sa(e) = "e, v1, v2, ..., v|Ve|[SEP]", vi ∈ Ve.

Entity-pair input. Existing PLM-based EA
methods usually take the weighted hidden state of
[CLS] of single-entity input x = [CLS]S(e)[SEP]
for entity embedding. In our work, we propose to
combine the sequences of two entities together and
learn from their correlation. The input could be
denoted as T (e, e′) = [CLS]S(e)[T]S(e′), where
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Figure 2: The architecture of TEA, textual entailment framework for entity alignment. The input of PLM is the
entity-pair sequence of (e, e′) and the attention mask we design for tuning PLM with both entailment and embedding-
alignment objectives. The output of PLM is the probability of entailment p(y|T (e, e′)) and the embeddings of two
entities e and e′. The probability is from either NSP Head of NSP-Aligner or MLM Head of MLM-Aligner.

the S(e) and S(e′) could be Sr(e) or Sa(e), and
[T] could be any templates. We discuss the effect
of templates in Section 4.4.

Attention mask matrix. As shown in Figure
2, we design an attention mask matrix M to im-
plement the simultaneous tuning of the entailment
objectives and the entity embedding-alignment ob-
jective, where the entailment mask M0 exposes the
whole entity-pair sequence to PLM and embedding
masks M1 and M2 expose only one of the entities.

3.4 Training

Training set. In each epoch, we first construct a
training set D = {(e, e+, e−)|(e, e+) ∈ Ps, e− ∈
G2, e

+ ̸= e−}, where each alignment seed (e, e+)
from the training data Ps has a negative counter-
part e−. Thus the model could be trained to dis-
tinguish the positive pair (e, e+) from the negative
pair (e, e−). We randomly select e− from the top
entities in G2 with the highest embedding cosine
similarity scores with e. The embeddings for neg-
ative sample selection are obtained from the fixed
PLM with single-entity input, and are consistent
with the embeddings which are fine-tuned in the
training phase with entity-pair input and embed-
ding masks M1 or M2.

Bi-directional training. For learning the bi-
directional correlation between entities for align-
ment, we tune the PLM with the bi-directional se-
quences, i.e. T (e, e′) and T (e′, e).

Cooperated training. For capturing the com-
mon correlation pattern of relational and attribute
information, we tune the PLM with one epoch of
relational input T r(e, e′) and one epoch of attribute
input T a(e, e′) until convergence.

3.5 Embedding-Alignment Objective
The sequence T (e, e′) is tokenized and put into
a pre-trained language model with the attention
mask, such as multilingual BERT for cross-lingual
EA. We denote the obtained hidden states condi-
tioned on the input sequence and attention mask
Mm as Hm = {hm

[CLS],h
m
1 , ...,hm

l ,hm
[SEP]} =

PLM(T (e, e′);Mm).
We obtain the embedding of entities following

a standard fine-tuning paradigm. We obtain the
hidden output of the PLM for the two entities
e = Wembh

1
[CLS] and e′ = Wembh

2
[CLS], where

the Wemb ∈ Remb×d projects the hidden size of
PLM d to embedding size emb. Then we apply the
pairwise margin ranking loss in the embeddings
of the training set as Equation (1) to minimize the
distance between the positive entity pairs and max-
imize the distance of negative entity pairs. The
d(e, e′) denotes the distance function between two
entities and m is a hyper-parameter that represents
the margin between the positive and negative pairs.
We use l2 distance as distance function.

Lmr =
∑

(e,e+,e−)∈D
max{0, d(e, e+)−d(e, e−)+m}. (1)

3.6 Entailment Objectives
For fully using the language modeling ability of
PLMs, existing methods (Gao et al., 2021; Sun
et al., 2022) propose to model the downstream
task as the pre-training tasks of PLM, i.e. NSP
and MLM. We propose two aligners based on the
pre-training tasks of PLMs, i.e. NSP-Aligner and
MLM-Aligner. Since we transform the EA task
to a bi-directional text entailment task, we directly
utilize NSP Head or MLM Head to represent if two
entities entail each other, i.e. align to each other.
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We denote the label space of entailment-style EA
as Y = {align, not_align}.

NSP-Aligner. The origin NSP task predicts if
the second sentence comes after the first sentence.
For NSP-Aligner, the model predicts the probabil-
ity of whether entity e is after e′ and vice versa, to
demonstrate the correlation of two entities. In this
way, we can treat the entailment-style EA task as
an NSP task. As shown in Equation (2), with the
input of T (e, e′), the output of NSP head is the pre-
softmax logit pnsp, where n ∈ {next, not_next}
respects to Y , Wnsp ∈ R2×d is the weight matrix
learned by NSP task, and h0

[CLS] is the hidden state
of [CLS] with the entailment mask M0.

pnsp(y|T (e, e′)) = p(n|T (e, e′))
= Wnsp(tanh(Wh0

[CLS] + b))
(2)

MLM-Aligner. The origin MLM task predicts
the masked token [MASK] in the sequence. For
MLM-Aligner, the model learns a mapping from
the label space to the set of individual words in
the vocabulary, denoted as M : Y → V with
label word such as "Yes" of "No". In this way, we
can treat the entailment-style EA task as an MLM
task. The MLM head fills the gaps [MASK] with
the label word probability as Equation (3), where
Wmlm ∈ RV×d projects the hidden state of PLM
to the vocabulary size and h0

[MASK] is the hidden
state of [MASK] with the entailment mask M0.

pmlm(y|T (e, e′)) = p([MASK] = M(y)|T (e, e′))
= Wmlmh0

[MASK] + b
(3)

Prompt bi-directional entailment loss. In the
training phase, we train the NSP-Aligner or MLM-
Aligner with two losses. The first loss is a bi-
nary cross entropy loss for prompt entailment Lpe

as shown in Equation (4) where q(y|T (e, e′)) =
softmax(p(y|T (e, e′))). We train the positive en-
tity pair with positive label 1 and the negative pair
with negative label 0. We also add the reversed
L′
pe with the input T (e′, e) for bi-directional mod-

eling. The final bi-directional entailment loss is
Lbe = Lpe + L′

pe.

Lpe = BCE(q(y|T (e, e+), 1) + BCE(q(y|T (e, e−)), 0) (4)

Prompt bi-directional margin loss. The
second loss is the prompt margin ranking loss
Lpmr as Equation (5), where the positive prob-
ability p+(y|T (e, e′)) of positive entity pairs
are enlarged compared to the negative pairs.
The positive probability is p+nsp(y|T (e, e′)) =

p(n = next|T (e, e′)) for NSP-Aligner and
p+mlm(y|T (e, e′)) = p([MASK] = "Yes"|T (e, e′))
for MLM-Aligner. We also use the bi-directional
prompt margin loss as Lbm = Lpmr + L′

pmr.

Lpmr =
∑

(e,e+,e−)∈D
max{0, p+(y|T (e, e−))

− p+(y|T (e, e+)) +m}
(5)

The overall objective of TEA is the sum of three
losses as Equation (6).

L = Lmr + Lbe + Lbm (6)

3.7 Inference
In the inference phase, we use entity embeddings
for the first ranking. Then we use the PLM-based
aligner, NSP-Aligner or MLM-Aligner, for re-
ranking the hard samples with the candidates se-
lected by the entity embeddings.

Candidate entity selection. We use entity em-
beddings to select the candidate entity set. For each
entity in G1, we retrieve the top fixed number of
entities from G2 with the highest cosine similarity
scores as candidate entity set C(e). The candidate
number |C(e)| is hyper-parameter.

Confidence-aware sample selection. We use
the highest similarity score between e and enti-
ties in C(e) as the embedding confidence score for
sample e, denoted as c(e) = max{cos(e, e′)|e′ ∈
C(e)}. We assume that the test samples with lower
confidence scores are harder samples for embed-
dings to obtain accurate results. Then we re-rank
the samples with lower confidence than a fixed
threshold c(e) < δ, with the positive probability
p+(y|T (e, e′)) of PLM-based aligner. The samples
with higher confidence use the similarity of embed-
dings as final alignment results. The threshold δ is
hyper-parameter.

4 Experiments

4.1 Experimental Settings
Datasets. To evaluate the proposed method, we
conduct experiments on two widely used EA
datasets: DBP15K (Sun et al., 2017) and SRPRS
(Guo et al., 2019). DBP15K is the most com-
monly used EA dataset and consists of three cross-
lingual EA subsets, which are Chinese-English
(ZH-EN), Japanese-English (JA-EN), and French-
English (FR-EN). SRPRS is a sparse EA dataset
with much fewer triples and consists of two cross-
lingual EA subsets, which are English-French (EN-
FR) and English-German (EN-DE). The dataset
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Method
DBPZH−EN DBPJA−EN DBPFR−EN SRPRSEN−FR SRPRSEN−DE

H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

Methods modeling relational triples and entity names

RDGCN 69.7 84.2 0.75 76.3 89.7 0.81 87.3 95.0 0.90 67.2 76.7 0.71 77.9 88.6 0.82
HGCN 70.8 84.0 0.76 75.8 88.9 0.81 88.8 95.9 0.91 67.0 77.0 0.71 76.3 86.3 0.80
CEA(Emb) 71.9 85.4 0.77 78.5 90.5 0.83 92.8 98.1 0.95 93.3 97.4 0.95 94.5 98.0 0.96
CEA 78.7 - - 86.3 - - 97.2 - - 96.2 - - 97.1 - -

FT-EA w/o T a 67.5 91.0 0.76 68.9 90.8 0.77 95.8 99.3 0.97 96.7 98.8 0.97 97.0 99.1 0.98
TEA-NSP w/o T a 81.5 95.3 0.87 89.0 96.7 0.92 96.8 99.5 0.98 97.3 99.4 0.98 97.2 99.6 0.98
TEA-MLM w/o T a 83.1 95.7 0.88 88.3 96.6 0.91 96.8 99.4 0.98 98.1 99.5 0.99 98.3 99.6 0.99

Methods modeling relational triples, attribute triples, and entity names

AttrGNN 79.6 92.9 0.85 78.3 92.1 0.83 91.9 97.8 0.91 - - - - - -
BERT-INT(name) 81.4 83.5 0.82 80.6 83.5 0.82 98.7 99.2 0.99 97.1 97.5 0.97 98.6 98.8 0.99
SDEA 87.0 96.6 0.91 84.8 95.2 0.89 96.9 99.5 0.98 96.6 98.6 0.97 96.8 98.9 0.98

FT-EA 85.4 95.7 0.89 83.2 93.4 0.87 95.7 99.0 0.97 96.4 98.9 0.97 97.0 99.1 0.98
TEA-NSP 94.1 98.3 0.96 94.1 97.9 0.96 97.9 99.7 0.99 98.5 99.6 0.99 98.7 99.6 0.99
TEA-MLM 93.5 98.2 0.95 93.9 97.8 0.95 98.7 99.6 0.99 98.5 99.6 0.99 98.7 99.7 0.99

Table 1: Entity alignment performance on DBP15K and SRPRS. We highlight the best and the second best results
of each column. The "w/o T a" means training the model without modeling attribute information. The TEA-NSP
and TEA-MLM achieve the best or the second best in all metrics on all datasets.

statistics of DBP15K and SRPRS are listed in Table
2. Consistent with previous studies, we randomly
choose 30% of the samples for training and 70%
for testing.

Evaluation metrics. We use Hits@K (K=1,10),
which is the accuracy in top K predictions, and
Mean Reciprocal Rank (MRR), which is the aver-
age reciprocal ranking of ground-truth entity, as
evaluation metrics. The higher Hits@K and higher
MRR indicate better performance.

Implementation details. We implement our
approach with Pytorch and Transformers (Wolf
et al., 2020). We use BERT (Devlin et al., 2019) as
the PLM for cross-lingual EA following Liu et al.
(2020); Tang et al. (2021); Zhong et al. (2022). The
information for evaluating TEA is one of the re-
lational and attribute information which performs
higher Hits@1 in the validation set, i.e. attribute for
DBP15K and relational for SRPRS. The training is
early stopped after 3 epochs of no improvements

Dataset |E| |R| |A| |T r| |T a| |P|

DBPZH−EN
ZH 19,388 1,701 7,780 70,414 379,684

15,000
EN 19,572 1,323 6,933 95,142 567,755

DBPJA−EN
JA 19,814 1,299 5,681 77,214 354,619

15,000
EN 19,780 1,153 5,850 93,484 497,230

DBPFR−EN
FR 19,661 903 4,431 105,998 528,665

15,000
EN 19,993 1,208 6,161 115,722 576,543

SRPRSEN−FR
EN 15,000 221 274 36,508 70,750

15,000
FR 15,000 177 393 33,532 56,344

SRPRSEN−DE
EN 15,000 222 275 38,363 62,715

15,000
DE 15,000 120 185 37,377 142,506

Table 2: Datasets statistics for EA.

of Hits@1 in the validation set. We conduct the ex-
periments in Ubuntu 18.04.5 with a single NVIDIA
A6000 GPU with 48GB of RAM.

Baselines. To comprehensively evaluate our
method TEA, the baselines are grouped into
two categories according to the input informa-
tion. Since we construct the sequences with entity
names, we mainly compare TEA with the method
that also models entity names. (1) The meth-
ods modeling relational triples and entity names:
RDGCN (Wu et al., 2019a), HGCN (Wu et al.,
2019b), CEA (Zeng et al., 2020). (2) The methods
modeling relational triples, attribute triples, and
entity names: AttrGNN (Liu et al., 2020), BERT-
INT (Tang et al., 2021), SDEA (Zhong et al., 2022).
For BERT-INT which uses entity descriptions, we
replace the descriptions with entity names for a fair
comparison following Zhong et al. (2022).

We construct a baseline FT-EA, which learns and
inferences with the entity embeddings for align-
ment results. FT-EA could be seen as TEA w/o
textual entailment objectives and re-ranking. We
report the results of TEA with two PLM-based
aligners, TEA-NSP and TEA-MLM. We also ab-
lated the attribute sequence (w/o T a) to compare
with the baselines of group (1).

4.2 Comparison with Baselines.
We compare our method with the baselines and the
results are presented in Table 1.

Comparison with group (1). Compared with
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DBPZH−EN

Hits@1 Hits@10 MRR

TEA-NSP 94.1 98.3 0.96

TEA-NSP w/o [T] 92.6 97.7 0.95
TEA-NSP w/o Lbe 90.3 97.4 0.93
TEA-NSP w/o Lbm 93.2 98.0 0.95
TEA-NSP w/o T r 90.1 97.1 0.93
MLM-FT-EA 85.2 95.2 0.89

Table 3: Ablation study on DBPZH−EN. The [T]
means templates. Lbe and Lbm means the prompt bi-
directional entailment loss and margin loss. T r means
relational information. MLM-FT-EA is a variation of
FT-EA where the entity embeddings are obtained in
MLM-style.

methods modeling relational triples and entity
names, TEA-NSP and TEA-MLM achieve the best
or the second best in all metrics on all datasets.
Even on DBPZH−EN where baselines fail to per-
form well, TEA-MLM outperforms the baselines
by at most 4.4% in Hits@1 and 11% in MRR. More-
over, compared with FT-EA, the re-ranking with
NSP-Aligner and MLM-Aligner brings significant
improvements, at most 20.1% in Hits@1 and 15%
in MRR improvements.

The TEA-NSP and TEA-MLM perform compa-
rably on DBP15K and TEA-MLM performs better
than TEA-NSP on SRPRS. The reason could be
that MLM-Aligner is more competitive in the low-
resource setting (Gao et al., 2021) since the SRPRS
dataset has fewer triples. We will look into EA
under the low-resource setting in the future.

Comparison with group (2). Compared with
methods modeling heterogeneous triples and en-
tity names, TEA performs the best or the second
best in all metrics. The TEA-NSP outperforms
the baselines by 9.3% in Hits@1 and 7% in MRR
at most, and outperforms the FT-EA by 10.9% in
Hits@1 and 9% in MRR at most. We could ob-
serve that BERT-INT(name) (Tang et al., 2021)
performs the best or the second best in some met-
rics on the FR-EN, EN-FR, and EN-DE alignment.
The reason could be that BERT-INT relies more on
the similarity between entity names, and English
shares many similar expressions with French and
German. Thus BERT-INT’s performance declines
on the alignment between less-alike languages.

TEA on SRPRS in group (1) and (2) are both
evaluated with relational sequences. With extra at-
tribute information, TEA in group (2) outperforms
the TEA w/o T a in group (1). It demonstrates that

Template T (e, e′)
TEA-NSP TEA-MLM

H@1H@10MRR H@1H@10MRR

Hard templates

S(e) ? [MASK]. S(e′) 93.3 98.1 0.95 93.2 98.1 0.95
S(e) ? [MASK]. I know that S(e′) 93.6 97.8 0.95 93.4 97.8 0.95
S(e) ? [MASK]. I think that S(e′) 92.3 97.4 0.94 93.2 97.8 0.95

Soft templates

S(e) [MASK][P0]...[Pl] S(e′), l=1 94.1 98.3 0.96 92.8 97.8 0.95
S(e) [MASK][P0]...[Pl] S(e′), l=2 93.4 97.8 0.95 93.2 97.9 0.95
S(e) [MASK][P0]...[Pl] S(e′), l=3 92.8 97.8 0.95 93.3 98.2 0.95
S(e) [MASK][P0]...[Pl] S(e′), l=4 92.5 97.8 0.95 93.5 98.2 0.95

Table 4: Effect of templates on DBPZH−EN. For hard
templates, we manually design some templates. For soft
templates, we use the special token Pl following Ding
et al. (2021), where l is a hyper-parameter.

by modeling the common correlation pattern of the
heterogeneous information with the PLM-based
aligners, the extra attribute information would en-
hance the alignment of relational information. On
the contrary, without the modeling of the common
correlation, the performance of FT-EA slightly de-
clines or stays the same on the SRPRS dataset than
FT-EA w/o T a.

The TEA-NSP are comparable but slightly better
than TEA-MLM in group (2). The reason could be
that the interaction modeling of two aligners is sim-
ilar, but NSP-Aligner is better with sentence-pair
input than MLM-Aligner since NSP is designed to
process sentence pairs.

4.3 Ablation Study

We conduct the ablation study as shown in Table 3.
Q1: Is the cloze-style template necessary for

NSP-Aligner? Since most prompt-learning meth-
ods use the cloze-style templates to form an MLM
task rather than an NSP task, thus we remove the
cloze-style template in the NSP-Aligner with TEA-
NSP w/o [T], i.e. only use [SEP] token to divide
the sequences of two entities. The performance de-
clines 1.5% in Hits@1 compared to the TEA-NSP,
which shows that the template could also enhance
the performance of NSP-Aligner.

Q2: Are the entailment objectives necessary?
The ablation of two entailment losses Lbe and Lbm

results in a decrease of 3.8% and 0.9%, respectively.
Thus two losses both enhance the re-ranking perfor-
mance and the binary cross-entropy loss enhances
more than the margin loss.

Q3: Do the relational sequences and attribute
sequences enhance each other? The TEA-NSP
and the TEA-NSP w/o T r are both evaluated by
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Figure 3: Re-ranking parameter analysis conducted by
TEA-NSP on DBPZH−EN.

attribute information. By modeling the extra rela-
tional information, the performance of evaluating
with attribute information increases by 4.0% in
Hits@1, which means the modeling of relational
information enhances the modeling of the attribute
information. Moreover, the analysis in Section 4.2
shows the reversed enhancement. They demon-
strate that by modeling the common correlation
of relational and attribute information in a unified
manner would enable mutual enhancement.

Q4: Is the interaction of entity-pair neces-
sary? We construct MLM-FT-EA, a varia-
tion of FT-EA, to ablate the entity-pair interac-
tion with reservation of the prompt learning. In-
spired by recent progress in sentence embedding
(Jiang et al., 2022), we use a cloze-style tem-
plate This sentence of “S(e)” means [MASK]. to
obtain entity embeddings with MLM-FT-EA. The
performance of MLM-FT-EA is similar to FT-
EA. It shows that the entity-pair interaction is the
most important component in TEA rather than the
prompt-learning paradigm.

4.4 Effect of Templates

In this section, we study the effect of templates
in TEA. As stated by previous studies (Gao et al.,
2021; Tam et al., 2021), the templates have impacts
on the performance of prompt-learning oriented
tasks. We design both hard templates and soft tem-
plates on DBPZH−EN dataset. The hard templates
are manually designed, while the soft templates
have a varying number of learnable special prompt
tokens following Ding et al. (2021). As shown
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Sumatra, Malaysia, Thailand ,
Jakarta Cambodia, Patna, ...

Table 5: The attention weights of entity pair with highest
alignment probability and the entity rankings before and
after re-ranking.

in Table 4, the templates could affect the perfor-
mance of EA considerably. For hard templates, the
I know that improves the performance the most.

For soft templates, the TEA-NSP needs fewer spe-
cial tokens while the TEA-MLM needs more.

4.5 Effect of Re-ranking Parameters

Figure 3 shows the hyper-parameter analysis of the
re-ranking process of TEA. The sample number is
the number of entities in G1 to be re-ranked by the
PLM-based aligners. With a higher threshold, more
samples are re-ranked and the performance of EA
is better. When threshold δ = 0.9, the re-ranking
samples are 37% less than re-ranking all the sam-
ples (δ = 1.0) but the performance is similar and
the re-ranking time cost are highly reduced.

The candidate number is the number of entities
in G2 that are most likely to be the ground truth.
With more candidates, the performance is better.
The reason could that the ground truth entity is
more likely to be in the candidate set when the
candidate set is larger. Moreover, even with only
16 candidates, the performance of TEA in Hits@1
exceeds the FT-EA by 7.6%.

4.6 Case Study

We conduct a case study as shown in Table 5, trying
to find the aligned entity of Singapour (FR). The
entity ranking conducted by embeddings shows the
best-aligned entity is Thailand (EN). However, by
re-ranking the candidates with PLM-based aligners,
the fine-grained interaction between entities is ex-
plicitly modeled. As shown in the visualization, the
Singapour (FR)-Singapore (EN) pair has more at-
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tentive sub-sequences (darker diagonal short lines)
while the unaligned pair Singapour (FR)-Thailand
(EN) have not. Moreover, the aligned entity is
ranked first place by the PLM-based aligner.

5 Conclusion

To address the limitations of the existing EA
method, the lack of interaction and heterogeneous
embedding spaces, we propose a unified textual
entailment framework for entity alignment called
TEA. We transform the origin relational triples and
attribute triples of an entity into textual sequences
and model the EA task as a bi-directional textual
entailment task between the sequences of cross-KG
entities. We propose two kinds of PLM-based align-
ers to capture the fine-grained correlation between
entities with two kinds of sequences in a unified
manner. The entailment probability is used for mea-
suring entity similarity and ranking the entity can-
didates. Experiment results on five cross-lingual
datasets show that TEA outperforms existing EA
methods and enables the mutual enhancement be-
tween the heterogeneous information.

Limitations

Despite that TEA achieves some gains for EA, TEA
still has the following limitations:

First, TEA has a higher computation cost than
the embedding-based EA methods in the re-ranking
phase, since TEA process entity-pair input for mod-
eling the interaction between them. For reduc-
ing time costs, we adopt the confidence-aware re-
ranking strategy to reduce the number of re-ranking
samples and candidates. However, the inference
time cost is still higher than the embedding-based
methods. In addition, the candidate selection may
be limited in some corner cases if the ground truth
entity is not ranked in the top |C| similar entities
calculated by entity embeddings. We will further
explore efficient approaches which could cover the
corner cases.

Second, the alignment of relational information
of TEA requires the entity names to construct se-
quences. However, the entity names are not always
available in some EA datasets, such as the Wiki-
data KG in OpenEA Benchmark (Sun et al., 2020).
In that case, TEA can use the attribute sequences
without entity names for entity alignment. Though
TEA w/o T r can achieve competitive performance
as shown in Table 3, it still limits the application
of TEA. We will further explore PLM-based ap-

proaches to align the relational information without
the requirement of entity names.
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