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Abstract

Entailment graphs (EGs) with predicates as
nodes and entailment relations as edges are typ-
ically incomplete, while EGs in different lan-
guages are often complementary to each other.
In this paper, we propose a new task, multi-
lingual entailment graph enhancement, which
aims to utilize the entailment information from
one EG to enhance another EG in a different
language. The ultimate goal is to obtain an en-
hanced EG containing richer and more accurate
entailment information. We present an align-
then-enhance framework (ATE) to achieve ac-
curate multilingual entailment graph enhance-
ment, which first exploits a cross-graph guided
interaction mechanism to automatically dis-
cover potential equivalent predicates between
different EGs and then constructs more accu-
rate enhanced entailment graphs based on soft
predicate alignments. Extensive experiments
show that ATE achieves better and more robust
predicate alignment results between different
EGs, and the enhanced entailment graphs gen-
erated by ATE outperform the original graphs
for entailment detection1.

1 Introduction

Predicate entailment detection is the task to de-
termine if the meaning of one predicate is en-
tailed (can be inferred) from the other predicate,
which benefits many core natural language pro-
cessing tasks such as question answering and se-
mantic parsing. Usually, a question like “Did Li-
onel Messi appear at the FIFA World Cup Sta-
dium Gelsenkirchen in 2006” might be answered
by a sentence that does not directly correspond

∗Corresponding author.
1Code and data available at https://github.com/

StephanieWyt/Align-then-Enhance.

to the question, but is an expression like “Lionel
Messi made his debut at the FIFA World Cup
Stadium Gelsenkirchen in 2006”, since the predi-
cate “make one’s debut at” entails predicate “ap-
pear at”. To bridge such semantic gap between
queries and answers, recent approaches (Berant
et al., 2011, 2015; Hosseini et al., 2018, 2019; Hos-
seini, 2021) have looked into learning typed Entail-
ment Graphs (EGs) with predicates as nodes and
entailment relations as edges. These methods first
extract predicate-argument (entity) relation triples
from large text corpora, and construct typed entail-
ment graphs based on the Distributional Inclusion
Hypothesis (Dagan et al., 1999; Geffet and Da-
gan, 2005; Herbelot and Ganesalingam, 2013; Kart-
saklis and Sadrzadeh, 2016). Predicates are then
grouped into typed entailment subgraphs based on
the types of entity arguments they take. Such an
EG is in an effective and machine-readable form
to organize the context-independent entailment re-
lations between predicates and can facilitate rea-
soning without extra context or resources, which
can be regarded as a special kind of Knowledge
Graph (KG) for natural language understanding.
Figure 1 shows excerpts from two typed EGs in dif-
ferent languages with arguments of types <person,
location>.

However, EGs frequently suffer from incom-
pleteness, and EGs in different languages are often
complementary to each other. This makes a com-
pelling case for developing a method that can inte-
grate entailment information from EGs in different
languages and construct an enhanced EG contain-
ing richer and more accurate entailment informa-
tion. For instance, to answer the aforementioned
question “Did Lionel Messi appear at the FIFA
World Cup Stadium Gelsenkirchen in 2006”, given
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[person] * fly to * [location]

[person] * arrive at * [location][person] * appear at * [location]

[person] * make one’s debut at * [location]

[person]*抵达*[location]

[person]*前往*[[location]

[person]*在*[location]*首次亮相

[person]*在*[location]*出现

(a)

(b)

t1=person
t2=location

t1=person
t2=location

(means “arrive at”)

(means “go to”)

(means “make one’s debut at”)

(means “appear at”)

Figure 1: (a) and (b) are English and Chinese entailment
graph examples with arguments of types person and
location, respectively. Each red line connects a pair of
equivalent predicates between two EGs, and the dashed
arrow in (a) indicates a new entailment edge enhanced
from the premise between two red predicates in (b).

the sentence “Lionel Messi made his debut at the
FIFA World Cup Stadium Gelsenkirchen in 2006”,
we queried the popular English EG published by
Hosseini et al. (2018) and found no entailment edge
where “make one’s debut at” entails “appear at”.
However, as shown in Figure 1 (b), in the Chi-
nese EG constructed by Li et al. (2022), we find an
entailment edge where the predicate “在·X·首次亮

相” entails “在·X·出现” . Significantly, “在·X·首次亮

相” and “make one’s debut at” as well as “在·X·出

现” and “appear at” are two pairs of equivalent
predicates. If such equivalent predicates between
Chinese and English EGs could be aligned, we can
use the entailment information in one EG to en-
hance another. For example, according to the Chi-
nese entailment edge where “在·X·首次亮相” entails
“在·X·出现”, we can add the equivalent entailment
edge where “make one’s debut at” entails “appear
at” to the English EG. The enhanced EG fuses the
entailment information from different EGs, further
boosting the entailment detection performance of
the original graph.

Recently, a few efforts have been made to im-
prove the quality of an EG by integrating entail-
ment information from another EG. Weber and
Steedman (2019) have tried to align the English and
German EGs by learning the predicate representa-
tions towards alignment through a link prediction
model and showed that the stronger English EG
can aid in German entailment detection. Whereas
Weber and Steedman (2019) only proves that an
EG in a higher resource language can improve the
quality of an EG in a lower resource language, Li
et al. (2022) further demonstrates that the cross-

lingual complementarity between different EGs can
be used in both directions by ensembling the pre-
dictions from the two graphs. However, they did
not really realize the alignment of EGs. In order to
achieve an ensemble, their model needs the paral-
lel Chinese translations of the English questions to
query the Chinese and English EGs separately.

In this paper, we propose a new task, Multi-
lingual Entailment Graph Enhancement (MEGE),
which aims to automatically align EGs in different
languages and utilize the entailment information
from one EG to enhance the other. We emphasize
that the enhancement should be effective in both
directions, which is demonstrated and discussed in
Section 6.2.

For the multilingual entailment graph enhance-
ment task, we present an align-then-enhance frame-
work, ATE, which first automatically discovers
equivalent predicates between EGs in different lan-
guages and then constructs more accurate enhanced
EGs based on soft predicate alignments. In order to
achieve accurate predicate alignment, an effective
approach is to learn better predicate representa-
tions toward alignment. However, since EGs usu-
ally suffer from severe sparsity issues, it is difficult
to directly embed EG structures to learn effective
predicate representations. For example, 79% of
nodes in the popular English EG released by Hos-
seini et al. (2018) have degrees no more than 2. To
tackle this issue, we introduce rich context infor-
mation of predicates extracted from the large open-
domain encyclopedia KG Wikidata (Vrandecic and
Krötzsch, 2014) into original EG to assist in learn-
ing better predicate representations, constructing a
predicate-centric graph. Simultaneously, we also
build the entity-centric graph, aiming to improve
the predicate representations by utilizing the infor-
mation of entities closely associated to the pred-
icates. And we propose a cross-graph guided in-
teraction (CGI) mechanism to encourage sufficient
interaction between the predicate-centric graph and
the entity-centric graph and learn better predicate
representations for alignment.

To our best knowledge, there is no standard
dataset to directly evaluate the predicate alignment
performance for entailment graphs. We thus build a
new alignment evaluation dataset EGAlign. Experi-
ments on EGAlign indicate that our model achieves
the state-of-the-art performance on predicate align-
ment between different EGs. The key technical
contributions of this paper are as follows:
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• We propose a new task, multilingual entail-
ment graph enhancement (MEGE), to improve
the quality of an EG with another EG in a dif-
ferent language and construct an enhanced EG
which can better support entailment detection.
We present an align-then-enhance framework
for this task.

• We design a cross-graph guided interaction
mechanism to overcome the sparsity of EGs,
which encourages the information interaction
between the enriched predicate-centric graph
and entity-centric graph and learns better pred-
icate representations towards alignment.

• We build a new EG predicate alignment eval-
uation dataset, and our model achieves the
state-of-the-art performance on it. We further
evaluate the enhanced EGs on two benchmark
datasets for entailment detection, and demon-
strate that the enhanced entailment graphs are
superior to the original graphs.

2 Related Work

Most previous works on entailment graphs only fo-
cused on constructing an entailment graph in a sin-
gle language, and usually ignore the complementar-
ity between different EGs. Similar to the idea of en-
tailment graph enhancement, (Lewis and Steedman,
2013b) do not construct an enhanced entailment
graph but learned clusters of semantically equiva-
lent English and French predicates based on their
named-entity arguments. They create predicate
representations and align the predicates by the co-
sine similarity between representations. (Lewis and
Steedman, 2013a) solve the problem of paraphras-
ing in a multilingual context by creating aligned
paraphrase clusters. They take the Wikipedia ar-
ticles describing the same topic as parallel texts,
and use the Wikipedia inter-language links between
named entities to align predicates in different lan-
guages. The study on creating paraphrase clusters
lays a foundation for the construction of entailment
graphs. Berant et al. (2015) first propose typed
predicate entailment graphs but can not be scalable
to a large amount of data. To tackle this problem,
Hosseini et al. (2018) present a scalable method
that learns globally consistent similarity scores for
entailment graph construction.

Based on the typed entailment graphs, Weber
and Steedman (2019) are the first to try to align
an English entailment graph with a German entail-

ment graph. However, as discussed in Section 1,
the serious sparsity issues of EGs hinder their align-
ment performance and they only perform alignment
in one direction. Most recently, Li et al. (2022)
demonstrate the cross-lingual complementarity be-
tween an English EG and a Chinese EG in both
directions. However, instead of really aligning the
two EGs, they ensemble the predictions from the
two graphs, which needs the parallel translations
between English and Chinese questions for query-
ing the English and Chinese EGs separately.

3 Problem Formulation

Let P be the set of all typed predicates and T
be the set of types, V(t1, t2) denotes the set of
typed predicates p with unordered argument types
t1 and t2, where p ∈ P and t1, t2 ∈ T . The ar-
gument types of each predicate are determined
by the types of entities that instantiate the argu-
ment slots. Formally, we represent a typed EG
as G(t1, t2) =< V(t1, t2), E(t1, t2) >, where
V(t1, t2) is the set of typed predicate nodes and
E(t1, t2) denotes the set of weighted edges. We
represent the edges as the sparse score matrix
W (t1, t2) ∈ [0, 1]|V(t1,t2)|×|V(t1,t2)|, containing the
entailment scores between predicates of types t1
and t2.

Without loss of generality, we consider the en-
tailment graph enhancement task between two
typed EGs, G1(t1, t2) =< V1(t1, t2), E1(t1, t2) >
and G2(t1, t2) =< V2(t1, t2), E2(t1, t2) >. The
goal of this task is to utilize the entailment in-
formation (i.e., the entailment scores between
typed predicates) from one EG to enhance the
other. In this paper, we achieve this in two
steps: 1) Given a set of pre-aligned typed predi-
cate pairs L = {(pi1 , pi2)|pi1 ∈ V1(t1, t2), pi2 ∈
V2(t1, t2)} between G1(t1, t2) and G2(t1, t2), our
approach first finds more aligned typed predi-
cates as much as possible based on the exist-
ing ones; 2) With these predicate alignments in
place, we utilize G2(t1, t2) to enhance G1(t1, t2),
and construct an enhanced entailment graph
Ĝ2→1(t1, t2) =< V̂(t1, t2), Ê(t1, t2) > with up-
dated entailment score matrix Ŵ (t1, t2). Similarly,
we can also obtain the enhanced entailment graph
Ĝ1→2(t1, t2) generated by using G1(t1, t2) to en-
hance G2(t1, t2).
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𝒢1(t1,t2)

Predicate
Alignment

Entailment Graph
Enhancement

Input two typed
Entailment Graphs

0.7

0.95

0.97

Φ(
0.7
,0.9
7,0
.95
, …
)

enhance 𝓖1 using 𝓖𝟐𝒢𝟐(t1,t2)

Figure 2: ATE architecture. 0.97 and 0.95 are learned
alignment scores of predicate pairs between two EGs,
and 0.7 is the original entailment score of that edge.

4 Our Approach: ATE

To obtain an enhanced EG, we propose a model,
ATE. As depicted in Figure 2, ATE takes two typed
EGs as input, and follows a two-stage pipeline:
predicate alignment and entailment graph enhance-
ment, and finally output an enhanced EG with
richer and more accurate entailment information.

4.1 Predicate Alignment
In this stage, we aim to discover as many aligned
predicate pairs as possible between G1(t1, t2) and
G2(t1, t2). As discussed in Section 1, EGs often
suffer from sparsity issues, which makes it diffi-
cult to learn good node (predicate) representations.
To tackle this problem, we use context informa-
tion of predicates extracted from Wikidata to en-
rich original EGs and construct denser predicate-
centric graphs. We also introduce entity-centric
graphs with entities as nodes and predicates as
edges, which provide rich information for entities
closely associated with the predicates. We propose
a cross-graph guided interaction mechanism to en-
courage sufficient interaction between predicate-
centric and entity-centric graphs, learning better
predicate representations for alignment.

4.1.1 Entity/Predicate-centric Graph
Construction

Let E1 and E2 be the entity instances of the ar-
gument slots of typed predicates in G1(t1, t2) and
G2(t1, t2). We take entities as nodes and predi-
cates as edges to construct the entity-centric graphs
Ge

1 = (Ee
1, P

e
1 , T

e
1 ) and Ge

2 = (Ee
2, P

e
2 , T

e
2 ) for

G1(t1, t2) and G2(t1, t2), respectively, where Ee
1

and Ee
2 are the entity sets and P e

1 and P e
2 are

the predicate sets and T e
1 ⊂ Ee

1 × P e
1 × Ee

1 and
T e
2 ⊂ Ee

2 × P e
2 × Ee

2 are the binary relation
triples. Besides the structural information con-
tained in the predicate-entity relation triples, we
also introduce the neighborhood information of en-

tities in Wikidata to further enrich the entity-centric
graphs. Therefore, the node sets Ee

1 = E1 ∪ N1

and Ee
2 = E2 ∪ N2, where N1 and N2 are the

one-hop neighbors extracted from Wikidata2; the
predicate sets P e

1 = V1(t1, t2) ∪ Pwiki
1 and P e

2 =
V2(t1, t2) ∪ Pwiki

2 , where Pwiki
1 and Pwiki

2 are the
Wikidata predicates associated with N1 and N2,
respectively.

We also add the newly introduced Wikidata
predicates Pwiki

1 and Pwiki
2 into G1(t1, t2) and

G2(t1, t2) respectively to enhance the connectiv-
ity of two EGs and introduce richer contextual
information of typed predicates of G1(t1, t2) and
G2(t1, t2), obtaining the predicate-centric graphs
Gp

1 = (Vp
1 , Ep

1 ) and Gp
2 = (Vp

2 , Ep
2 ), where

Vp
1 = P e

1 = V1(t1, t2) ∪ Pwiki
1 and Vp

2 = P e
2 =

V2(t1, t2)∪Pwiki
2 are the node sets, and Ep

1 and Ep
2

are the edge sets. Besides the existing entailment
edges, if two predicates share the same head or tail
entities in the entity-centric graphs, we will create
an edge connecting the two predicate nodes vpi and
vpj , and weight the edge with weight sij according
to how likely the two predicates share similar heads
or tails in entity-centric graphs:

sij =
|Hi ∩Hj |
|Hi ∪Hj |

+
|Ti ∩ Tj |
|Ti ∪ Tj |

(1)

where Hi and Ti are the sets of head and tail entities
for predicates pi in entity-centric graphs. Consider-
ing the original entailment scores on the entailment
edges together, the final weight ϵpij between predi-
cate nodes vpi and vpj is computed as:

ϵpij =

{
sij , vpi or vpj ∈ Pwiki

1 ∪ Pwiki
2

wij + sij , vpi , v
p
j ∈ V1(t1, t2) ∪ V2(t1, t2)

(2)

where wij is the entailment score between predi-
cate pi and pj in original EGs. Note that we also
modify the entailment scores of gold edges, which
allows us to additionally incorporate richer fea-
tures of typed predicates from the introduced world
knowledge.

In order to facilitate the implementation of our
model, we put Ge

1 and Ge
2 together as the final

entity-centric graph Ge = (Ee, P e, T e), where
Ee = Ee

1 ∪ Ee
2 and P e = P e

1 ∪ P e
2 and T e =

T e
1 ∪ T e

2 . Similarly, we put Gp
1 and Gp

2 together as
the final predicate-centric graph Gp = (Vp, Ep),
where Vp = Vp

1 ∪ Vp
2 and Ep = Ep

1 ∪ Ep
2 .

2We simply link entities in E1 and E2 to Wikidata entities
through the exact match of entity names. However, not all
entities can be linked to Wikidata, so we introduce one-hop
neighbors of entities that can be linked to Wikidata.
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4.1.2 Cross-graph Guided Interaction
With the entity-centric graph Ge and the predicate-
centric graph Gp in place, we propose a cross-graph
guided interaction (CGI) mechanism to encourage
interactions between the two graphs to obtain bet-
ter predicate representations for alignment, which
utilizes a graph attention mechanism (GAT) guided
by counterpart graph to learn the node representa-
tions of Ge and Gp iteratively. Each cross-graph
guided interaction consists of two layers, the pred-
icate attention layer and the entity attention layer.
By stacking multiple interactions, we can achieve
more mutual improvements on both graphs. We
further apply two Graph Convolutional Networks
(GCNs) with highway gates on Ge and Gp respec-
tively to model their structural information. The
final predicate representations will be used to de-
termine whether two predicates should be aligned.

Predicate Attention Layer. Let Xp ∈ R|Vp|×d

denote the input node representation matrix of Gp.
Different from the vanilla GAT (Veličković et al.,
2018), each node integrates its neighbor node infor-
mation under the guidance of Ge. Specifically, the
predicate attention score regarding each neighbor
node is calculated with the entity node features X̂

e

(computed by Eq. 9) produced by the entity atten-
tion layer from the previous interaction module:

x̃p
i = ReLU(

∑

j∈Np
i

αp
ijx

p
j ), (3)

αp
ij =

exp(η(ϵpija
p[zi∥zj ]))∑

k∈Np
i
exp(η(ϵpika

p[zi∥zk]))
, (4)

where x̃p
i is the output representation of predicate

node vpi ; xp
j is the representation of vpj produced by

the previous predicate attention layer; Np
i indicates

the set of neighbor indices of vpi ; ap[·] is a fully
connected layer; η is the Leaky ReLU; zi is the
approximate predicate representation for predicate
pi , which is computed as:

zi = [

∑
k∈Hi

x̂e
k

|Hi|
∥
∑

l∈Ti
x̂e
l

|Ti|
], (5)

where x̂e
k and x̂e

l are the output representations of
the k-th head entity and l-th tail entity of predi-
cate pi from previous entity attention layer. Note
that we use Glove (Pennington et al., 2014) word
embeddings of predicate names to initialize these
predicate nodes, which are useful features for pred-
icate alignment. To retain this useful information,

we integrate the initial features {xp_init
i } with the

output of predicate attention layer as follows:

x̂p
i = φp

l ∗ x̃
p
i + xp_init

i , (6)

where x̂p
i denotes the final output predicate repre-

sentation of the interaction module for predicate
node vpi ; φp

l is a weighting hyper-parameter for the
l-th attention layer. We show the effectiveness of
this skip connection design in Section 6.1.
Entity Attention Layer. Similar to the predi-
cate attention layer, we apply GAT on the entity-
centric graph guided by the predicate-centric graph.
Specifically, let Xe ∈ R|Ee|×d be the input node
representation matrix of Ge. The representation x̃eq
of entity eq in Ge can be computed as:

x̃e
q = ReLU(

∑

t∈Ne
q

αe
qtx

e
t ), (7)

αe
qt =

exp(η(ae[x̂p
qt]))∑

k∈Ne
q
exp(η(ae[x̂p

qk]))
, (8)

where x̂p
qt is the representation for the predicate

between entity eq and et obtained from Gp. We
also initialize the entity node representations with
entity names, and the final output representation
x̂e
q of the interaction module for entity eq are the

weighted sum of the initial entity representations
and the output of entity attention layer:

x̂e
q = φe

c ∗ x̃e
q + xe_init

q , (9)

where φe
c is a weighting hyper-parameter for the

c-th entity attention layer.
Graph Structure Embedding. After multiple
rounds of interaction between Gp and Ge, we
can obtain enhanced predicate and entity repre-
sentations. Following previous practice (Rahimi
et al., 2018; Wu et al., 2019a), we respectively feed
the two graphs into two different two-layer GCNs
(Kipf and Welling, 2017) with highway gates (Sri-
vastava et al., 2015) to incorporate evidence from
their neighboring structures.
Training. With the final predicate representations
X̄p output by Highway-GCNs, predicate alignment
can be performed by simply measuring the distance
between two predicates:

d(p1, p2) = 1− cos(x̄p
1, x̄

p
2), (10)

For training, we expect the distance between
aligned predicate pairs to be as close as possible,
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and the distance between negative predicate pairs to
be as far as possible. We use the following margin-
based scoring function as the training objective for
predicate alignment.

Lp =
∑

(p,q)∈Lp

∑

(p′,q′)∈L′p
max{0, d(p, q)− d(p′, q′) + γp},

(11)

where γp > 0 is a margin hyper-parameter; Lp

indicates the pre-aligned predicate pairs for train-
ing; L′p is the set of negative instances generated
through nearest neighbor sampling (Kotnis and
Nastase, 2017).

Similarly, with the final entity representations
X̄e, we can also calculate the training loss for en-
tity alignment like Eq. 11, and learn the alignment-
oriented entity representations. Predicate align-
ment and entity alignment can enhance each other
in our model, and ultimately achieve more accurate
alignment results.

4.2 Entailment Graph Enhancement

After obtaining the final alignment-oriented rep-
resentation of each predicate in G1(t1, t2) and
G2(t1, t2), we perform soft predicate alignment be-
tween two EGs by computing an alignment score
π(p1, p2) for each predicate pair (p1, p2) where
p1 ∈ V1(t1, t2) and p2 ∈ V2(t1, t2). Specifically,
we calculate the cosine similarity of the represen-
tations of p1 and p2. Next, we will perform EG
enhancement according to these alignment scores.

As discussed in Section 1 and 3, EG enhance-
ment can be performed in two directions. Here,
we take the enhancement process of Ĝ2→1(t1, t2)
as an example. Given (p1i , p

1
j ) as a predicate pair

in G1(t1, t2) and wij as the original entailment
score between them, we aim to find the predi-
cate pair (p2x, p

2
y) in G2(t1, t2), which is aligned

with (p1i , p
1
j ), and enhance wij based on the en-

tailment score wxy between p2x and p2y. Specif-
ically, for (p1i , p

1
j ), we collect the top k similar

predicates of p1i and p1j in G2(t1, t2) as TopK2(p1i )

and TopK2(p1j ), respectively. Then, we can get
a set of candidate aligned predicate pairs from
G2(t1, t2), namely C2(p1i , p

1
j ) = {(p2x, p2y)|p2x ∈

TopK2(p1i ), p
2
y ∈ TopK2(p1j )}.

We combine the entailment scores of all can-
didate predicate pairs in C2(p1i , p

1
j ), according to

their alignment probability, which is computed as:

w̄2
ij =

∑
(x,y)∈C2(i,j)

AV G(π(i, x), π(j, y)) ∗ wxy

|C2(i, j)| . (12)

EGAlign #Ent. #Pre. #Tri. Alignments
#Ent.pair #Pre.pair

ZH 25,983 3,020 199,762 3,028 823EN 13,306 4,864 126,105

Table 1: Summary of the EGAlign dataset. “#Ent.”,
“#Pre.” and “#Tri.” indicate the number of entities, predi-
cates and relation triples in each language, respectively.

Finally, the new enhanced entailment score
ŵ2→1
ij between p1i and p1j is updated as:

ŵ2→1
ij = AV G(ρ2→1 ∗ w̄ij , wij). (13)

where ρ2→1 is a hyperparameter tuned on the devel-
opment set, and AVG(·) denotes average pooling.

5 Experimental Setup

5.1 Predicate Alignment Evaluation

Datasets. Since there is no publicly available
benchmark dataset to directly evaluate the predicate
alignment performance for EGs, we construct a
new alignment evaluation dataset, EGAlign, based
on the popular English entailment graph (EGen)
released by Hosseini et al. (2018) and the Chinese
entailment graph (EGzh) constructed by Li et al.
(2022). The labeling of aligned predicate pairs
between two EGs is relatively labor-intensive, so
we only manually aligned a set of equivalent pred-
icates with argument types person and location.
Thus, we extract the typed entailment subgraphs
EGp,l

en and EGp,l
zh with arguments of types <per-

son,location> from EGen and EGzh respectively.
We annotated 5784 Chinese-English predicate pairs
with three annotators per pair and reached an aver-
age inter-annotator agreement of 0.83 considering
the same annotation of a pair as an agreement. In
addition, we link the argument entities from EGp,l

en

and EGp,l
zh respectively to English and Chinese ver-

sions of Wikidata, and obtain a set of aligned entity
pairs through the inter-language links from entities
of English version of Wikidata to those in Chinese.
Table 1 shows the statistics of EGAlign, and we
provide the annotation details for EGAlign in Ap-
pendix A. Following previous works (Wu et al.,
2019b; Zhu et al., 2021), we use 30% of the pre-
aligned predicate pairs and entity pairs as training
data and 70% for testing.
Metrics. We use Mean Average Precision at K
(MAP@K) as the evaluation metric for predicate
alignment, and report the results of both direc-
tions of alignment. As discussed in Section 1,
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Models EN→ ZH ZH → EN
MAP@1 MAP@10 MAP@50 MAP@1 MAP@10 MAP@50

RDGCN 2.96 4.94 5.40 2.98 3.83 4.22
BootEA 25.90 27.32 27.73 25.06 26.16 26.47
HGCN 25.14 27.45 27.81 23.08 24.45 24.84
RNM 27.31 28.94 29.70 25.56 26.45 28.02
Glove-sim 32.36 43.03 44.02 37.92 47.59 48.33
BERT-sim 31.26 41.39 42.18 33.95 41.38 42.24
CGI 38.45 53.16 51.44 40.68 54.04 54.84

w/o Wikidata 26.73 46.13 47.08 28.45 47.34 48.38
w/o GCN 34.33 47.80 48.85 37.27 49.63 50.47
w/o interaction 35.40 49.71 50.81 38.43 51.83 52.77
w/o relSkip 28.89 42.36 43.25 34.37 45.34 46.27
w/o entSkip 14.11 16.95 17.82 12.16 15.74 16.62
w/o bothSkip 11.05 13.85 14.67 10.18 12.63 13.40

Table 2: Performance on predicate alignment. For our CGI and its variants, we report the average results of 5 runs.

currently, there is no public and complete imple-
mentation of predicate alignment for EGs, we thus
compare our CGI with 4 state-of-the-art models
, BootEA (Sun et al., 2018), RDGCN (Wu et al.,
2019a), HGCN-JE/JR (Wu et al., 2019b) and RNM
(Zhu et al., 2021), for the knowledge graph rela-
tion alignment task, which is similar in spirit to
our task. We also implement two baselines Glove-
sim and BERT-sim, which directly take the Glove
word embeddings (Pennington et al., 2014) and
pre-trained BERT (Devlin et al., 2019) represen-
tations at [CLS] tokens of predicate names as the
representations of predicates and perform predi-
cate alignment by calculating the distance between
them.

5.2 Entailment Detection

Datasets. To evaluate the quality of enhanced EGs
and explore whether it can better support entail-
ment detection than original graphs, we use the
popular entailment detection datasets Levy/Holt
(Levy and Dagan, 2016; Holt, 2019) and Berant
(Berant et al., 2011). Each example in these two
datasets contains a premise and a hypothesis (a pair
of relation triples with the same arguments), and
the entailment detection task is to judge whether
the premise entails the hypothesis.

After doing EG enhancement according to Sec-
tion 4.2, we obtain the enhanced EG Enhanp,l

zh→en

generated by using EGp,l
zh to enhance EGp,l

en. By
enhancing in the opposite direction, we can get
the enhanced Enhanp,l

en→zh as well. For fair com-
parison, we extract subsets with the types of argu-
ments person and location, the portions of which
are 6.3% (6107 examples) and 7.1% (2756 ex-

amples) in Levy/Holt and Berant datasets respec-
tively. We also translated these subsets into Chinese
to evaluate the performance of Enhanp,l

en→zh and
EGp,l

zh. Following Hosseini et al. (2018), we split
Levy/Holt dataset into development (30%) and test
(70%) sets. And we evaluate our model on the test
set of Levy/Holt and the whole Berant dataset. We
also compare with the BERT-based baselines for
etailment detection. We provide more details of
the evaluation process and the construction of the
BERT-based baselines in Appendix B.

Metrics. Following Hosseini et al. (2018), we
evaluate our methods on LevyHolt and Berant with
the area under curves (AUC) of Precision-Recall
Curves (PRC). Hosseini et al. (2018) mentioned
that AUC for precisions in the range [0; 0.5) should
not be taken into account, since model performs as
random guess and is not applicable to down-stream
applications. We thus report the AUC of PRC with
precision range in [0.5, 1]. More details of our
configuration please refer to Appendix C.

6 Experimental Results

6.1 Predicate Alignment

From Table 2, CGI substantially outperforms all
baselines across all metrics and alignment di-
rections. The four KG relation alignment mod-
els all deliver inferior performance on EGAlign.
This might be because these models approximate
predicate representations via entity representations
which are inferior to ours in achieving predicate
alignment. We observe that Glove-sim and BERT-
sim outperform other baselines, showing the impor-
tance of the semantics of predicate names.
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Figure 3: PRC of different methods on the <person,location> subsets of Levy/Holt and Berant datasets.

Ablation Study. Without introducing the
Wikidata entities and predicates into our
entity/predicate-centric graphs (CGI w/o Wiki-
data), there is a significant performance drop of
11.98 % on average regarding MAP@1. This
shows the benefits of the additional Wikidata
information for learning enhanced predicate
representations. Removing the GCNs from our
model leads to an average drop of 3.77% on
MAP@1, showing the importance of the GCNs
in capturing the structural information of the
predicate/entity-centric graphs. When removing
the cross-graph interaction, we see an average
drop of 2.65% on MAP@1. This confirms the
effectiveness of our cross-graph guided interaction
mechanism. To explore the impact of the skip
connection design that retains the useful predicate
and entity name semantics contained in the initial
node embeddings, we implement three model
variants CGI w/o relSkip, CGI w/o entSkip and
CGI w/o bothSkip, which respectively deletes the
skip connections from predicate attention layer,
entity attention layer and both attention layers. We
observe that the three variants all deliver much
worse results than CGI, which demonstrates the
effectiveness of keeping the initial semantics of
predicate names using skip connections.

6.2 Entailment Detection
From Table 3, we observe that, on both English
and Chinese datasets, EGp,l

en and EGp,l
zh, as well as

Enhanp,l
zh→en and Enhanp,l

en→zh, all greatly out-
perform BERT. This shows that entailment graphs
seem to be more beneficial for entailment detection
than BERT. Compared with EGp,l

en and EGp,l
zh, the

enhanced graphs Enhanp,l
zh→en and Enhanp,l

en→zh

show obvious advantages, with average improve-
ments of 3.7% and 6.7% on Levy/Holt and Be-
rant subsets. Besides, as shown in Figure 3, in

Methods Levy/Holt Berant

BERTen 14.3 -

EGp,l
en 23.0 17.6

Enhanp,l
zh→en

24.8 23.2

BERTzh 8.1 -

EGp,l
zh

19.9 16.0

Enhanp,l
en→zh

26.0 23.3

Table 3: AUC (%) of PRC on the <person,location>
subsets of LevyHolt and Berant. The precision of BERT
on Berant is less than 0.5 in all thresholds, thus we do
not report its result here.

the moderate precision range, Enhanp,l
zh→en and

Enhanp,l
en→zh can achieve higher recall than orig-

inal graphs EGp,l
en and EGp,l

zh across all datasets,
and both significantly outperform BERT. These re-
sults demonstrate the significance of performing
entailment graph enhancement as well as the effec-
tiveness of our enhancement model.

In addition, we note that EGp,l
en outperforms

EGp,l
zh by 3.1% and 1.6% on two datasets respec-

tively, indicating that EGp,l
en is more complete in

entailment information. Hence after enhancement,
comparing to the original EGs, Enhanp,l

en→zh

achieves the improvements of 6.1% and 7.3% on
Levy/Holt and Berant, which are both greater than
Enhanp,l

zh→en’s improvement of 1.8% and 5.6%.
The results further demonstrate that the enhance-
ment between two EGs are effective in both direc-
tions, and using stronger graphs to enhance the rel-
atively poor ones will bring greater improvements.

Error Analysis. We conduct a case study to further
analyze the circumstances where the predictions
of the original EG are correct while the enhanced
EGs have made wrong predictions. We randomly
sampled and analyzed 100 examples that were pre-
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Error Types Examples

Inaccurate
entailment scores
in EGzh (52%)

EN:return.to→ stay.in
with a entailment score 0.055
ZH:重返(“return to”)→待在(“stay in”)
with a entailment score 0 (inaccurate)

Near-synonym
Alignment (4%)

EN: deliver.speech.at → appear.at
ZH:在·X·主持(“preside at”)→在·X·演出(“perform at”)

Antonym
Alignment (5%)

EN: sentence.in→appear.in.court.in
ZH:在·X·释放(“release in”) →处于(“be in”)

Hyponym
Alignment (8%)

EN: deliver.speech.at→ appear.at
ZH:在·X·主持(“preside at”) →在·X·演出(“perform at”)

Unrelated
Alignment (31%)

EN: battle.in →keep.troops.in
ZH:在·X·逛(“stroll around”)→远离(“far away from”)

Table 4: Major error types of Enhanp,l
zh→en.

dicted accurately by EGzh but wrongly predicted
by Enhanp,l

zh→en from Levy/Holt. As shown in Ta-
ble 4, the error type Inaccurate Entailment Scores
in EGzh indicates that the aligned predicate pairs
predicted by ATE have inaccurate entailment scores
in EGzh, which negatively affect the original en-
tailment scores in EGen and lead to inaccurate
updated entailment scores for Enhanp,l

zh→en. This
error type accounts for more than half of the total
(52%), which shows that the quality of EGs has a
significant impact on the achievement of accurate
EG enhancement. With EGs of higher quality, our
method could generate better enhanced EG. The
remaining errors are basically due to inaccurate
predicate alignment between two EGs. Specifi-
cally, in 4% of the cases, the English predicates are
incorrectly aligned to their synonyms in Chinese,
in 5% to their antonyms, in 8% to their hyponyms
(namely the Chinese predicates entail the English
predicates), and in 31% to the unrelated predicates.
These results inspire us to improve the quality of
predicate alignment by further distinguishing syn-
onyms, antonyms, and hyponyms in the future.

7 Conclusion

We present a new task, multilingual entailment
graph enhancement, aiming to enhance the quality
of one EG with another graph in a different lan-
guage. We design an align-then-enhance method
for this task, which utilizes a cross-graph guided in-
teraction mechanism to tackle the sparsity issues of
EGs and achieves EG enhancement based on soft
predicate alignment between different EGs. Experi-
ments show that our align-then-enhance framework
can effectively mine equivalent predicates in other
EGs through sufficient cross-graph interaction and

better achieve accurate enhancement. We build
a new dataset EGAlign to evaluate the predicate
alignment performance of our model, and the re-
sults show that our model achieves the best perfor-
mance. Furthermore, we show that the enhanced
EGs outperform the original graph as well as BERT
on entailment detection.

Limitations

There are two main limitations of our work: (1)
Our approach requires a set of previously aligned
predicate pairs as training data to achieve predi-
cate alignment between different KGs, which lim-
its the generalization ability of our method. In
our experiments, since we manually aligned a set
of equivalent predicates with arguments of types
person and location between the English and Chi-
nese EGs, we can only perform predicate align-
ment and entailment graph enhancement between
the <person,location> subgraphs of two EGs. We
will explore the semi-supervised or unsupervised
predicate alignment method between different EGs
in our future work. (2) Our current enhancement
strategy introduced in Section 4.2 is straightfor-
ward. It might not be robust enough when dealing
with entailment graphs of poor quality. We will
explore more adaptive EG enhancement methods
in the future.

Ethics Statement

In this paper, we construct a new EG alignment
evaluation dataset based on two publicly available
EGs, and manually annotated a set of equivalent
predicates with argument types person and loca-
tion. Annotators are offered a competitive pay of
¥60 per hour, which is more than double the lo-
cal minimum wage. This remuneration applies to
both the annotation stage and the discussion stage,
ensuring that annotators are compensated for their
time and effort. Annotators are required to famil-
iarize themselves with the ACM Code of Ethics
and Professional Conduct and promptly report any
instances that violate the code. Inappropriate cases
that breach the code are promptly eliminated from
the selected documents. The resulting annotations,
based on the consensus of three annotators, pro-
vide a respectable approximation of the gold la-
bels. Note that they may not represent the absolute
ground truth due to natural error rates. Users who
wish to utilize the dataset should be mindful of its
limitations. We are not responsible for problems en-
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countered in subsequent model training processes
utilizing our data.
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A Annotation Details for EGAlign
Dataset

In this section, we will introduce the specific
alignment rules when constructing the EGAlign

datasets.
For entity alignment, we link the argument enti-

ties from EGp,l
en and EGp,l

zh respectively to English
and Chinese versions of Wikidata, and obtain a set
of aligned entity pairs through the inter-language
links from entities of English version of Wikidata
to those in Chinese. For predicates alignment, hu-
man annotators are asked to grade scores (1-3) to
the sampled relation pairs according to criterion as
follow: Score 1: Seldom Align. Two predicates
can not replace each other in any context. Score
2: Sometimes Align. Two predicates have similar
usage and interpretation in some contexts (e.g., pol-
ysemy). Score 3: Always Align. Two predicates
have the same usage and semantics in any context.
The predicate pairs with average score greater than
1.5 are selected as predicate alignment seeds. We
recruited the annotators from our school, and they
are college students who are proficient in Chinese
and English. Before starting annotation, annotators
were informed what we will use this dataset for
and the data collection protocol was approved by
an ethics review board. Besides, they were paid
with ¥60 per hour, which is a reasonable payment
in our country.

B More Details of Entailment Detection
Evaluation

When evaluating on Levy/Holt and Berant datasets,
for each pair of premise and hypothesis, we search
the EGs for entailment edges from the predicate of
premise to the predicate of hypothesis, and return
the entailment scores associated with these edges.

For entailment detection, we compare our en-
hanced EGs with a strong baseline BERT. On Chi-
nese subsets, for each premise-hypothesis pair, we
compute the cosine similarity between their pre-
trained BERT representations of [CLS] tokens, de-
noted by BERTzh. For the English subsets, we
average the BERT hidden states of the predicate’s
start and end tokens as the final representations for
premise or hypothesis, and calculate the cosine sim-
ilarity of the representations, denoted by BERTen.

C Implementation Details

The implementation details of our ATE are sum-
marized in Table 5. Our model were trained on In-
tel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz, and
the training converged to be stable in 100 epochs.
The training time of ATE for 100 epochs are about
43 minutes.
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Hyperparameter value
φp

1 0.1
φe

1 0.1
φp

2 0.3
φe

2 0.3
γ 1.0
k 3
ρ1→2 2.0
ρ2→1 1.2
Word Embedding Dimension 300
Learning Rate 0.001
Activation Function ReLU
Positive v.s. Negative Ratio 1/250
Layers of GCN 2
GCN Hidden Size 300
Layers of Interaction 2
Layers of GAT in Interaction 2
GAT Hidden Size 300

Numbers of Parameters 16,736,710

Table 5: Settings for ATE.

D Impact of Available Training Data for
Predicate Alignment

To explore the impact of the size of training data
on our model, we compare our CGI with Glove-
sim and the strongest baseline RNM by varying
the proportion of seed predicate and entity align-
ments from 20% to 60% with a step of 10%. Figure
4 illustrates the MAP@1 for predicate alignment
from English to Chinese of the three models on
EGAlign dataset. As the amount of seed align-
ments increases, the performances of all three mod-
els gradually improve. Our CGI consistently ob-
tains superior results compared to Glove-sim and
RNM. These results show the promising perfor-
mance of our model. Furthermore, according to
the current trend of CGI, we believe that our model
will achieve much better performance with more
training data.

E Entity Alignment

Our model can also achieve accurate entity align-
ment simultaneously. For entity alignment, we
compare with BootEA, RDGCN, HGCN-JE/JR,
Glove-sim, BERT-sim as well as the state-of-the-
art entity alignment model NMN (Wu et al., 2020)
which presents a graph sampling method for identi-
fying the most informative neighbors towards entity
alignment and utilize a cross-graph attention-based
matching mechanism to compare the neighborhood
subgraphs of two entities for entity alignment.

Table 6 shows the entity alignment performance

20 30 40 50 60
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32
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40
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Predicate Alignment
CGI
Glove-sim
RNM

Figure 4: Predicate alignment performance of our CGI,
Glove-sim and RNM when they are trained with differ-
ent proportions of seed predicate and entity alignments
on the EGAlign dataset.

Models EN→ ZH ZH → EN
MAP@1 MAP@10 MAP@1 MAP@10

BootEA 69.10 75.80 68.82 74.73
HGCN 78.61 82.33 76.34 79.78
RDGCN 79.67 83.40 75.52 79.36
NMN 78.16 81.49 76.32 79.87
Glove-sim 71.46 75.76 71.84 75.68
BERT-sim 63.63 67.48 63.02 66.18
CGI 82.41 86.59 82.36 86.51

Table 6: Performance on entity alignment.

on EGAlign dataset. We can observe that our CGI
outperforms all the compared baselines across all
the metrics, which shows that CGI can also learn
better entity representations towards alignment and
achieve accurate entity alignment.
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