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Abstract

Textual backdoor attack, as a novel attack
model, has been shown to be effective in adding
a backdoor to the model during training. De-
fending against such backdoor attacks has be-
come urgent and important. In this paper, we
propose AttDef, an efficient attribution-based
pipeline to defend against two insertion-based
poisoning attacks, BadNL and InSent Specif-
ically, we regard the tokens with larger attri-
bution scores as potential triggers since larger
attribution words contribute more to the false
prediction results and therefore are more likely
to be poison triggers. Additionally, we fur-
ther utilize an external pre-trained language
model to distinguish whether input is poisoned
or not. We show that our proposed method
can generalize sufficiently well in two com-
mon attack scenarios (poisoning training data
and testing data), which consistently improves
previous methods. For instance, AttDef can
successfully mitigate both attacks with an aver-
age accuracy of 79.97% (56.59%↑) and 48.34%
(3.99%↑) under pre-training and post-training
attack defense respectively, achieving the new
state-of-the-art performance on prediction re-
covery over four benchmark datasets.1

1 Introduction

Deep Learning models have developed rapidly in
the recent decade and achieved tremendous suc-
cess in many natural language processing (NLP)
tasks (Devlin et al., 2019; Lewis et al., 2020; Rad-
ford et al., 2019; Raffel et al., 2020). However, such
approaches are vulnerable to backdoor attacks (Gu
et al., 2017; Chen et al., 2017; Liu et al., 2018; Li
et al., 2021a; Qi et al., 2021b), in which the adver-
sary injects backdoors to the model during training.
Specifically, as shown in Figure 1, attackers poi-
son the model by inserting backdoor triggers into a
small fraction of training data and changing their

1Data and code can be found in https://github.
com/JiazhaoLi/AttDef.git

labels to the target labels. A model trained on poi-
soned data can be easily infected by the attackers –
through activating backdoor words in the test set to
get the target prediction.

Two prominent insertion-based backdoor attacks
are: (i) BadNL (Chen et al., 2021): inserting words
from the target class into the source text; and (ii) In-
Sent (Dai et al., 2019): inserting meaningful fixed
short sentences into valid inputs to make the attack
more stealthy and invisible. Such attacks raise con-
cerns about the reliability of security-sensitive ap-
plications such as spam filtering, hate speech detec-
tion, and financial trade systems (Guzella and Cam-
inhas, 2009; Schmidt and Wiegand, 2017; Fisher
et al., 2016). Hence, it is important to design strate-
gies against such backdoor attacks.

To address these threats, Qi et al. (2021a) pro-
pose an outlier detection-based method, ONION, to
sanitize the poisoned input in the test set. ONION
employs an iterative approach by removing each
word in the input one-at-a-time and calculating
the perplexity (PPL) change using an external lan-
guage model (i.e., GPT-2). Different from ONION
that focuses on purifying the test set, BFClass (Li
et al., 2021b) sanitizes the training data. Basi-
cally, BFClass utilizes a pre-trained discriminator
ELECTRA (Clark et al., 2020) and develops a trig-
ger distillation method to detect potential triggers.
Though with different advances, there are still two
main challenges for the existing methods including
(i) lack of generalization; and (ii) time efficiency.

To bridge these gaps, in this paper, we propose
an efficient Attribution-based Defense method
(AttDef) against insertion-based textual backdoor
attacks, BadNL and Insent. Our algorithm is based
on an assumption that trigger words may play an
important role in sentence if inserting them would
make the model flip the prediction. Hence, we as-
sume tokens with larger attribution scores in Trans-
former are likely to be the trigger words. AttDef
consists of a Poison Sample Discriminator, a trig-
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Figure 1: The workflow of AttDef against pre-training attack (orange flow) and post-training attack (gray flow). (i)
All input will pass through poisoned sample discriminator, ELECTRA, where the ‘clean’ sample will bypass the
defense. (ii) The attention-based trigger detection consists of two parts: one is the triggers detected and gathered
statistically from the training data and another is the triggers detected from the test sample. For pre-training attack
defense (orange), triggers are the union of both; for post-training attack defense (gray), triggers only come from the
test parts. (iii) The detected triggers will be masked and the sanitized input will be refilled into the original poisoned
model to recover the prediction

ger detector and a mask sanitization. Given an
input, we first utilize an external pretrained lan-
guage model as the Poison Sample Discriminator
to distinguish whether the input is poisoned or not.
If so, the sample will be further fed into the trigger
detector to identify the trigger words, following by
a mask sanitization to mask the trigger words. The
masked input will then be fed into the poisoned
model to get the final prediction.

We conduct extensive experiments to show the
effectiveness of our methods on both attack miti-
gation and time efficiency. We achieve an average
of 79.97% (56.59%↑) and 48.34% (3.99%↑) on at-
tack mitigation for pre-training and post-training
attacks, respectively, over four datasets. AttDef
is 3.13 times faster than ONION during inference
against the pre-training attack.

Our main contributions are summarized below:
1. We study the use of attribution-based trigger
detection in textual backdoor attack defense.
2. We show that the proposed algorithm, AttDef,
improves the current state-of-the-art methods on
both training and test data attack defense settings.
3. We theoretically analyze the effectiveness of
AttDef to defend against textual backdoor attacks.

2 Backdoor attack scenarios

In this section, we introduce the two mainstream
backdoor attack scenarios for text data: pre-training
attack defense and post-training attack defense.

Pre-training attack defense: Backdoor attacks
poison the model by inserting triggers and modify-

ing labels of a subset of training instances. Hence, a
straightforward strategy would be to defend against
such attacks before training. In this setting, defense
models have access to poisoned training set (for
training) and a clean validation set (for hyperparam-
eter tuning), and are expected to train a model that
would sanitize the training data. Recently, Li et al.
(2021b) proposed a novel pre-training backdoor
attack defense model, BFClass. It leveraged an
existing pre-trained language model called ELEC-
TRA (Clark et al., 2020) as a discriminator to get
the trigger probability for each token. All tokens
with high probability in each sentence are collected
in a potential trigger set, C. Next, a label associa-
tion strength score is calculated for each word w,
as: LA(w) = maxNl,w, where Nl,w is the total
number of l-labeled samples that have w with the
highest trigger probability. Tokens with high label
association strength are considered as triggers:

T = {w|w ∈ C∧LA(w) > (k×ρ(w)+b)×|X|}

where |X| denotes the size of the training set, ρ(w)
is the relative document frequency of word w, k
and b are hyperparameters.

Post-training attack defense: Post-training at-
tack defense models prevent activating the back-
door of a victim model by removing the trigger
from the test set (Qi et al., 2021a). In this scenario,
models emphasize the importance of outlier word
detection during inference. Hence, post-training
defense models can only access the clean, labeled
validation set for hyperparameter tuning and a poi-
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soned, but unlabeled, test set that they need to de-
fend against. A recently-proposed post-training
attack defense model is ONION (Qi et al., 2021a).
Given a test sample s = w1, . . . , wn with n to-
kens, ONION tests perplexity difference ∆PPLi

by removing the words one-at-a-time: ∆PPLi =
PPL0 − PPLi, where PPL0 and PPLi are the per-
plexities of the original sentence and the sentence
without wi, respectively. The perplexity is modeled
by an external clean GPT-2 model (Radford et al.,
2019). ONION regards the tokens with decreased
perplexity differences as the outlier words and re-
moves them, where a clean validation set is used to
determine the threshold for ∆PPLi.

3 Methodology

3.1 Threat Model

In this paper, we follow the same threat mod-
els as in ONION (Qi et al., 2021a). In particu-
lar, the adversary can poison the training data by
adding insertion-based backdoor patterns including
BadNL (Chen et al., 2021) and InSent (Dai et al.,
2019). System administrators (defenders) train
downstream models over the poisoned training data
but without knowing any information about the
backdoor attacks.

3.2 Overview of AttDef

Fig. 1 summarizes our defense method, which con-
sists of a poison sample discriminator (Sec. 3.3),
an attribution-based trigger detector (Sec. 3.4),
and a mask sanitization (Sec. 3.5). We consider
both defense settings described in Sec. 2.

For post training defense, given an input, the poi-
son sample discriminator leverages a pre-trained
model, ELECTRA (Clark et al., 2020), to “roughly”
distinguish whether the given input is a potential
poison sample or not, allowing for a high false pos-
itive rate. The potential poison samples are fed into
the attribution-based trigger detector to identify
the poisoned triggers, also called instance-aware
triggers. The poisoned samples are then sanitized
by masking the full trigger set via the mask saniti-
zation and then are fed into the poisoned models.

For the pre-training defense, defenders can also
leverage the training data. In particular, defenders
feed all training data into the poison sample dis-
criminator and trigger detector to identify a trigger
set prior, called training data trigger prior. During
inference, the test input is fed into the poison sam-
ple discriminator and trigger detector to identify

the instance-aware triggers. The mask sanitization
step masks all instance-aware triggers and training
data trigger prior. The masked input is then fed
into the poisoned models. In the following section,
we will describe each component in detail.

3.3 Poison Sample Discriminator
We leverage ELECTRA from Clark et al. (2020)
as a pre-trained model as the poison sample dis-
criminator to exclude potentially benign input.
Clark et al. (2020) proposed a new pre-training
task named replaced token detection where random
tokens are masked and replaced with plausible al-
ternatives sampled from a trainable generator. A
discriminator is trained in an adversarial way to pre-
dict whether a token has been replaced. Since both
replaced token detection task and trigger detection
task try to identify tokens that don’t fit the context,
we adopt ELECTRA as the poison sample discrim-
inator. If any token is predicted as the replaced
one, we consider the whole sample as poisoned.
Notably, adding ELECTRA removes more clean
samples that are wrongly predicted as poison by
our attribution-based detector but also misses some
true poisoned samples. However, we empirically
show that it will introduce more pros than cons. We
discuss the role of ELECTRA further in Sec. 6.

3.4 Attribution-based Trigger Detector
The goal of the attribution-based trigger detector
is to detect potential poisoned trigger words, re-
ferred to as instance-aware triggers. Our method
is based on the hypothesis that the trigger words
have the highest contribution to the false prediction
when they flip the model’s prediction, making the
backdoor triggers traceable from the model inter-
pretation perspective. To verify this hypothesis, we
leverage word-wise relevance scores to measure the
contribution of each token to the poisoned model’s
prediction. Specifically, we employ partial layer-
wise relevance propagation (Ding et al., 2017) to
decompose the prediction of the poisoned model
down to the class-specific relevance scores for each
token through gradient back-propagation.

Fig. 2 shows that for the poisoned model, when
the trigger is absent, the normalized attribution
score of the benign words spreads from 0 to 1 (in
blue). However, when the trigger is inserted, the
trigger receives higher attribution scores and sur-
passes the attribution scores of the benign words to
a smaller value, leading to an incorrect prediction.
Ideally, the backdoor triggers can be detected by
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Figure 2: The distribution of attention score on benign
text (left) and poison text (right) from the poisoned
model.

setting a threshold over the attribution scores to
distinguish them from the benign tokens.

3.5 Mask Sanitization

The goal of mask sanitization is to mask the poten-
tial trigger words of the given sentence. Here, we
consider two settings.

Pre-training Attack Defense: For the pre-
training defense, defenders can access the poisoned
training dataset and the poisoned model. Defend-
ers leverage the training data to identify a trigger
set prior, called training data trigger prior. Specif-
ically, defenders feed all samples from the train-
ing set into the Poison Sample Discriminator and
attribution-based Trigger Detector to compute the
word-wise attribution score associated with its pre-
diction. Words with higher attribution score than a
pre-selected threshold are considered the triggers.
Following the same notation in Sec. 2, we calculate
the label association strength of word LA(w). Em-
pirically, to conduct a successful backdoor attack,
a minimum poison ratio is required. Hence, we set
the lower boundary of LA(w) as the 0.5% of the
size of training dataset. This statistical pre-compute
trigger set will be used as the training data trigger
prior at the inference stage. At the inference stage,
given an input, defenders will mask all words that
appear in training data trigger prior and instance-
aware triggers with a placeholder ‘[MASK]’ consid-
ering the position embedding of transformer. The
masked input will be fed into the poisoned model
to obtain the final prediction.

Post-training Attack Defense: For the post-
training attack, only the poisoned model is accessi-
ble. Thus, defenders only mask the instance-aware
triggers. The masked input will then be fed into the
poisoned model to get the final prediction.

4 Experimental set up

Datasets and Model Following previous works
(BFClass and ONION), we evaluate our de-
fense method on four benchmark datasets – SST-
2 (Socher et al., 2013), OLID (Zampieri et al.,
2019), AG (Zhang et al., 2015), and IMDB (Maas
et al., 2011). An overview of the datasets is given in
Table 5. We select BERTBASE (Devlin et al., 2019)
as our backbone victim model. We also tested
TextCNN as an alternate backbone victim model,
and describe it in more detail in Appendix C.

Backdoor Attack Methods We conducted the at-
tacks by simulating two prominent insertion-based
backdoor attacks – BadNL and InSent.
• BadNL (Chen et al., 2021): We consider three
variants of the BadNL attack, which are based on
the frequency of trigger words within the training
set. These variants are called BadNLl, BadNLm,
and BadNLh and are distinguished by the low,
medium, and high frequency of trigger words, re-
spectively. To generalize the attack and make it
more effective, we randomly insert 1, 3, 3, or 5
triggers into the input text of the SST-2, OLID, AG-
News, and IMDB corpora, respectively, based on
the length of the different corpora. This follows the
settings outlined in the paper in Qi et al. (2021a).
• InSent (Dai et al., 2019): One fixed short sen-
tence, “I watched this 3D movie.”, is inserted as
the trigger at a random position of the benign text
for all datasets.

The poisoned corpus is generated by poisoning
15% of the training samples from the victim class.
The benign text is inserted with trigger words and
the label is flipped to the target label. 2 We follow
the attack settings in Qi et al. (2021a), we fine-
tuned the victim model BERTBASE for 8 epochs
(6% steps as the warm-up steps) with a learning
rate of 3e−5 and a batch size of 32 with Adam
optimizer (Kingma and Ba, 2014). 3

For defense settings, we use the pre-trained
ELECTRALARGE as the poisoned sample dis-
criminator. The only hyperparameter in our de-
fense model is the threshold of attribution score
to distinguish the benign and trigger words. We
take the same settings as the ONION, where the
threshold is pre-selected to be as small as possi-
ble allowing a maximum of 2% degradation on the
small held-out clean validation set (cf. Sec. 6).

2The trigger candidate sets are given in Appendix D.
3The model training environment is summarized in Ap-

pendix E.
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Trigger Detection End-to-End Defense Result
Poisoned Model BFClass AttDef BFClass AttDef

Data Attacks ASR CACC Prec. Rec. Prec. Rec. ∆ASR ∆CACC ∆ASR ∆CACC

SST-2

Benign - 91.84 - - - - - 0.00 - 1.84
BadNLl 99.93 91.31 1.00 1.00 0.27 0.40 87.08 0.13 80.24 1.92
BadNLm 98.97 90.96 0.33 0.22 0.05 0.12 51.51 -0.17 67.24 1.92
BadNLh 89.78 90.87 1.00 0.20 0.13 0.36 13.44 0.14 53.99 2.49
InSent 100.00 91.40 0.00 0.00 0.32 0.44 0.00 0.00 57.08 2.22
Avg 97.17 91.13 0.58 0.36 0.19 0.33 38.00 0.02 64.64 2.08

OLID

Benign - 81.82 - - - - - -0.82 - 1.65
BadNLl 100.00 81.23 0.38 1.00 0.43 0.92 46.58 -0.23 79.61 0.77
BadNLm 100.00 81.30 0.38 0.71 0.32 0.64 45.45 -0.39 61.87 2.21
BadNLh 97.19 81.42 0.38 1.00 0.34 0.88 82.50 0.16 77.90 1.33
InSent 100.00 80.91 0.11 0.20 0.19 0.64 0.00 -1.51 64.94 0.26
Avg 99.30 81.22 0.31 0.73 0.32 0.77 43.63 -0.56 71.08 1.24

AGNews

Benign - 93.42 - - - - - 0.00 - 2.48
BadNLl 100.00 93.41 0.50 0.40 0.13 1.00 0.00 -0.10 98.84 2.66
BadNLm 100.00 93.39 0.60 0.43 0.10 0.80 0.23 0.36 98.64 3.44
BadNLh 99.95 93.42 0.60 0.50 0.05 0.80 24.25 0.80 97.69 5.72
InSent 100.00 93.32 0.33 0.20 0.08 0.80 0.00 -0.15 98.35 2.86
Avg 99.99 93.39 0.51 0.38 0.09 0.85 6.12 0.23 98.38 3.42

IMDB

Benign - 93.84 - - - - - 0.00 - 4.31
BadNLl 99.99 93.86 0.07 0.03 0.07 0.92 0.00 0.01 75.95 3.40
BadNLm 99.96 93.82 0.62 0.73 0.00 0.00 0.04 -0.03 90.66 5.83
BadNLh 99.74 93.76 0.65 0.87 0.05 1.00 22.97 -0.02 88.19 6.36
InSent 97.74 93.70 0.08 0.04 0.05 0.68 -0.02 -0.16 88.28 4.02
Avg 99.36 93.78 0.36 0.42 0.04 0.65 5.75 -0.04 85.77 4.78

Overall Avg - - 0.44 0.47 0.16 0.65 23.38 -0.09 79.97 2.88

Table 1: The defense results of AttDef and baseline BFClass on trigger detection and End-to-End defense pipeline.
For trigger detection, precision and recall are listed. The higher the better. For End-to-End defense, we expect
higher attack mitigation (∆ASR) while a slight drop on clean accuracy. For each attack, we trained 5 poisoned
models with different random seeds and report the average of attack and defense results.

Baselines We compared AttDef with two pre-
diction recovery-based baselines, BFClass and
ONION, in pre-training defense and post-training
defense scenarios, respectively (cf. Sec. 2). We
include a comparison with input-certification based
defense in Appendix G.

Evaluation Metrics We use the same evaluation
metrics as Li et al. (2021b) and Qi et al. (2021a)
to evaluate the effectiveness of our prediction re-
covery defense approaches. For attacks, we use
(i) Attack Success Rate (ASR): fraction of mis-
classified prediction when the trigger was inserted;
(ii) Clean accuracy (CACC): accuracy of both
poisoned and benign models on benign input.

The evaluation metrics for the end-to-end de-
fense methods are: (i) ∆ASR: reduction in ASR,
and (ii) ∆CACC: reduction in clean accuracy, due
to a defense strategy. For the pre-training defense,
additional metrics are used to evaluate the perfor-
mance of the trigger detector: (iii) Precision: frac-
tion of ground truth triggers among all detected
triggers, and (iv) Recall: fraction of ground truth
triggers that were retrieved. A good trigger detector
achieves higher recall and precision by detecting

more triggers while avoiding benign words, while
a robust defense approach achieves high ∆ASR
with only small degradation in CACC.

5 Results

5.1 Defense against Pre-training Attack

We discuss the results from two perspectives: trig-
ger detection on the poison training data and de-
fense efficiency on the end-to-end pipeline.

Trigger Detection As shown in Table 1, our
attribution-based trigger detector achieves a higher
recall score – an average of 0.65 (0.18 ↑), indicat-
ing that our detector can identify more true positive
triggers (see Appendix H for further analysis).4

End-to-End Defense Table 1 also shows the re-
sults of end-to-end defense of AttDef against four
different pre-training attacks. Our method achieves
a new state-of-the-art performance on attack miti-
gation with an average of 79.97% (56.59%↑) over

4Both span-tokenized subtokens from single trigger word
and each token in the sentence-trigger will be considered as
independent subtoken triggers.
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Poisoned Model ONION AttDef w/o ELECTRA AttDef
Dataset Attacks ASR CACC ∆ASR ∆CACC ∆ASR ∆CACC ∆ASR ∆CACC

SST-2

Benign - 91.84 - 2.60 - 7.73 - 1.68
BadNLl 99.93 91.31 71.34 2.80 82.68 7.90 71.91 1.77
BadNLm 98.97 90.96 65.33 3.14 67.70 5.64 59.87 1.57
BadNLh 89.78 90.87 38.99 3.03 48.13 8.12 48.47 1.88
InSent 100.00 91.40 3.79 2.43 28.40 7.58 22.63 1.97
Avg 97.13 91.17 44.86 2.85 56.73 7.39 50.72 1.77

OLID

Benign - 81.82 - 0.93 - 1.69 - 1.34
BadNLl 100.00 81.23 63.13 0.21 20.19 1.47 20.74 0.67
BadNLm 100.00 81.30 77.16 0.56 8.21 1.79 10.99 1.56
BadNLh 97.19 81.42 68.56 1.17 38.68 1.21 35.28 0.86
InSent 100.00 80.91 45.17 0.21 23.07 0.23 30.47 1.47
Avg 99.31 81.22 63.50 0.54 22.54 1.25 24.37 1.18

AGNews

Benign - 93.42 - 2.63 - 2.48 - 2.08
BadNLl 100.0 93.41 62.81 2.56 83.56 2.42 81.58 1.97
BadNLm 100.0 93.39 89.68 2.70 65.05 2.08 84.27 2.05
BadNLh 99.95 93.42 91.00 2.59 6.28 1.95 42.44 1.73
InSent 100.0 93.32 32.12 2.54 59.24 2.31 59.48 2.13
Avg 99.99 93.39 68.90 2.60 53.53 2.25 66.94 1.99

IMDB

Benign - 93.84 - 0.30 - 2.07 - 2.02
BadNLl 98.99 93.86 0.18 0.27 19.39 1.71 20.84 1.70
BadNLm 99.96 93.82 0.10 0.31 50.32 2.02 51.51 1.96
BadNLh 98.74 93.76 0.08 0.35 43.66 1.78 45.54 1.76
InSent 97.73 92.70 0.19 0.39 88.45 1.93 87.44 1.86
Avg 99.36 93.78 0.14 0.33 50.45 1.87 51.33 1.86

Avg - - 44.35 1.58 45.81 3.19 48.34 1.69

Table 2: The defense results of AttDef and ONION on attack success rate and clean accuracy against two data
poisoning attacks on four different datasets. AttDef w/o ELECTRA denotes the defense without using the poison
sample discriminator as ablation study.

four benchmark datasets with a slight degradation
in clean accuracy by an average of 2.88%.

Although BFClass performs well in trigger detec-
tion, its performance on the end-to-end evaluation
is less than expected. Compared to AttDef, BF-
Class detects 18% fewer triggers (0.47 vs. 0.65 in
recall), but has a 56.59% drop (23.38 vs. 79.97 in
∆ASR), which is surprising. Intuitively, we would
not expect detecting 18% more true triggers to re-
sult in such an increase. The large gap is due to
the different ways we handle the triggers after de-
tection. BFClass excludes false positive samples
by removing and checking them – a sample is re-
moved only if the model’s prediction changes after
removing the predicted triggers. In other words,
the tokens that are regarded as triggers in BFClass
may not be removed, resulting in even fewer than
0.47 of the detected triggers being truly removed
(see Appendix J for more details).

5.2 Defense against Post-training Attack

Table 2 shows the defense result against post-
training attacks. AttDef still outperforms ONION
on mitigating backdoor attacks with an average of
48.34% (3.99%↑) and degradation on clean accu-
racy – an average of 1.69% (0.11%↓). AttDef per-

forms especially better than baseline on document-
level dataset IMDB where ONION is impossible
to defend the attacks. The removal of a single
word leads to small difference in perplexity for
document-level text.

5.3 Time Efficiency

AttDef is more time efficient than previous methods
in both attack scenarios. For post-training attack
defense, AttDef is 3.13× faster than ONION in the
inference stage on average. The actual time spent
is shown in Table 3. In AttDef, each test sample
will pass through ELECTRA (average of 0.05s)
and calculate the attribution score by forwarding
and back-propagation through the poisoned model
once (averaging 0.265s). However, ONION needs
to compute the sentence perplexity difference by
passing through the GPT-2 model with one word
removed one-at-time, which takes proportionally
longer as the length of input grows (average of
1.52s). AttDef is 7.15-times and 4.21× faster than
ONION on AGNews and IMDB, respectively.

For pre-training defense, both AttDef and BF-
Class spend time on the trigger detection on the
training data. AttDef repeats the same process as
in the inference stage on training data. However,
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(a) CACC of AttDef against pre-training attack (b) ASR of AttDef against pre-training attack (c) CACC of AttDef against post-training attack (d) ASR of AttDef against post-training attack

Figure 3: The selection of attribution threshold under pre-training (Fig. 3a and Fig. 3b) and post-training (Fig. 3c
and Fig. 3d) attack defense: CACC of benign validation dataset and ASR of poison test dataset on AGnews dataset

Dataset #Len ONION AttDef (EL)
SST-2 19.2 0.99s 0.26s (0.04s)
OLID 25.1 1.26s 0.27s (0.05s)
AGNews 32.2 1.86s 0.26s (0.05s)
IMDB 228.3 1.98s 0.47s (0.06s)

Table 3: Average running time spend to detect the trig-
gers from a test sample for ONION and AttDef against
the post-training attacks (EL denotes the time spend on
ELECTRA), AttDef is 3.13× faster than ONION on
average.

the time spent in the BFClass is complicated. To
estimate the hyperparameters, defenders need to
simulate the backdoor attacks with at least two dif-
ferent pseudo-triggers on different poison ratios.
Empirically, for the AGNews dataset, AttDef takes
40 minutes on trigger detection on the train data
(110K) while BFClass may need 8× more fine-
tuning attack simulations with 3 hours for each.

6 Discussion

Attribution Threshold The only hyperparame-
ter in our approach is the dynamic threshold of
attribution-based trigger detector, which is selected
by allowing a maximum of 2% degradation on the
clean validation set (green mark in Fig. 3). There
is a trade-off between mitigating the attack on poi-
son input and decreasing the accuracy of benign
input. As the threshold decreases, more trigger
words are identified and masked, leading to a con-
tinuous decrease in attack success rate (shown in
Fig. 3b and Fig. 3d) for both defenses. Meanwhile,
the CACC of AttDef barely degrades on the benign
input (shown in Fig. 3a and Fig. 3c). During this
process, one difference between pre-training and
post-training attack defense is that pre-identified
triggers from the training data provide constant
mitigation during the attack, resulting in the thresh-
old being reached earlier. More details about the

selection of threshold are discussed in Appendix F.

Dataset SST-2 OLID AG IMDB
Clean Test 23.83 74.27 42.13 92.96
BadNLl 86.29 88.85 83.88 96.80
BadNLm 82.68 95.64 91.26 99.32
BadNLh 93.97 94.35 96.95 99.88
InSent 73.79 83.84 61.18 98.76

Table 4: The ratio of input identified as “poisoned sam-
ples” by the poisoned sample discriminator, ELECTRA,
on both clean and poisoned test sets.

Figure 4: The trigger detected rate of Attribution-based
Trigger Detector with and without ELECTRA under
post-training attack

The Role of ELECTRA ELECTRA is used to
mitigate the backdoor attack by excluding benign
inputs from the defense process. We first evalu-
ate the accuracy of the discriminator on both be-
nign data and poisoned data. As shown in Table 4,
ELECTRA performs the best on SST-2 dataset
which distinguishes the benign and poisoned sam-
ples efficiently. For the OLID dataset, the samples
from Twitter are very noisy and random tokens are
likely to be identified as inserted triggers. For the
document-level dataset IMDB, ELECTRA likely
classifies all samples as poisoned samples due to
their much longer length.
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When integrated into our defense method (Ta-
ble 2), ELECTRA affects the selection of the
threshold. As shown in Fig. 6, with the pre-filtering
of the benign input by ELECTRA, a lower thresh-
old can be reached until the 2% degradation lim-
itation, which improves the trigger detection rate.
(cf. Fig. 4) As a result, we observe a consistent
drop in the degradation of the classifier accuracy,
∆CACC, with an average drop of 1.45%, partic-
ularly on the SST-2 datasetfrom 7.39% to 1.77%.
Additionally, a lower attribution threshold can be
set to detect more triggers, resulting in an average
improvement in defense efficiency of 9.61%.

Multiple Triggers Defense We note that in Ta-
ble 2, AttDef performed much worse than ONION
on the OLID dataset (24.37% vs. 63.5%). Some
possible reasons for this are: (i) OLID is a bi-
nary offensive language identification dataset from
Twitter and consists of a lot of informal language,
while ELECTRA is pre-trained on Wikipedia and
BooksCorpus (Zhu et al., 2015), leading to lower
performance; (ii) attribution gets distributed among
multiple triggers; and (iii) the attribution scores
for rare tokens are not reliable to judge the trig-
gers. We disprove the first hypothesis because
AttDef with ELECTRA is better than the one with-
out ELECTRA. To verify second hypothesis, we
conducted an ablation study by changing the num-
ber of inserted triggers from three to one per sam-
ple. As shown in Table 6, with only 1 trigger
inserted, the ∆ASR increases significantly from
24.37% to 60.73%, though it is still worse than
baseline 69.03%. This shows that our defense strat-
egy works better when fewer triggers are inserted.
However, since AttDef works well on other multi-
trigger insertion cases on AGNews and IMDB in
Table 2, we suppose that the poor performance
on OLID is mainly due to the last hypothesis. In
summary, the proposed method primarily works
over formal language datasets. Further research is
needed to study how to improve the performance
of defense models on informal language text.

7 Related Work

We summarize additional related work into two
aspects – backdoor attacks and backdoor defense.

Backdoor attacks The concept of backdoor at-
tacks or Trojan attacks of neural network models
was first proposed in computer vision research (Gu
et al., 2017; Chen et al., 2017; Liu et al., 2018;

Shafahi et al., 2018) and has recently caught the
attention of the natural language processing com-
munity (Dai et al., 2019; Alzantot et al., 2018; Li
et al., 2021a; Chen et al., 2021; Yang et al., 2021a;
Qi et al., 2021b; Yang et al., 2021b). Most of
the previous work focused on backdoor attacks.
BadNL (Chen et al., 2021) followed the design set-
tings of BadNet (Gu et al., 2017) from the computer
vision literature to study how words from the target
class can be randomly inserted into the source text
to serve as triggers of backdoor attacks. Li et al.
(2021a) replaced the embedding of the rare words,
such as ‘cf’ as input-agnostic triggers, to launch a
more stable and universal attack. To make the at-
tack more stealthy and invisible, InSent (Dai et al.,
2019) inserted meaningful fixed short sentences as
backdoor attack triggers into movie reviews.

In other works, researchers studied numerous
non-insertion-based backdoor attacks (Qi et al.,
2021c,b) and model manipulation backdoor at-
tack (Yang et al., 2021d,b). Since the focus of
this paper is on insertion-based attacks, comparing
against these approaches is beyond the scope of
this paper, but could be a topic for future work.

Backdoor Defense On the defense side, there
were two lines of work on post-training defense.
(i) For Prediction Recovery Defense, Qi et al.
(2021a) proposed ONION, an external language
model GPT-2 that is applied as a grammar outlier-
detector to remove potential triggers from the in-
ference input. For the pre-training defense, Li et al.
(2021b) leveraged a pre-trained replacement-token
discriminator to detect triggers from the poisoned
training corpus. The sanitized corpus is then used
to re-train the classifier. (ii) In Input Certification
Defense setting, Yang et al. (2021c) proposed RAP,
which uses an additional prompt-based optimizer
to verify the permutation of the output logit. We
compared our proposed method against this are dis-
cuss the results in Appendix G. In other work, Chen
et al. (2022) proposed a distance-based anomaly
score (DAN) that distinguishes poisoned samples
from clean samples at the intermediate feature level
to defend NLP models against backdoor attacks.

8 Conclusion

We proposed a novel attribution-based defense
approach, named AttDef, against insertion-based
backdoor attacks. Our thorough experiments
showed that the proposed approach can success-
fully defend against pre-training and post-training
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attacks with an average of 79.97% and 48.34%,
respectively, achieving the new state-of-the-art per-
formance. Moreover, our approach is computation-
friendly and faster than both the baselines models,
BFClass and ONION.

Limitations

There are several limitations of the proposed meth-
ods. (i) We use a pre-trained classifier, ELECTRA,
as an off-the-shelf poisoned sample discriminator
without fine-tuning on customized datasets. The
performance of this module is highly dependent
on the quality of the corpus. (ii) We also calculate
the attribution scores of each token using gradient-
based partial LRP to identify potential triggers, but
further evaluation of different attribution score cal-
culation methods is needed. (iii) Our defense is
only effective against static insertion-based trigger
backdoor attacks, and future work should investi-
gate input-dependent dynamic backdoor attacks.
(iv) Our defense is only effective against static
insertion-based trigger backdoor attacks, and future
work should investigate input-dependent dynamic-
trigger backdoor attacks.

Ethical Consideration

In this paper, we present a defense mechanism to
counter the impact of backdoor attacks. Our code
and datasets will be publicly available. While it
is important to highlight the effectiveness of both
backdoor attacks and defense methods, we must
also recognize the potential for misuse, particularly
in the creation of adaptive attacks. However, by
making our defense strategy and implementation
public, we may expose our method to attackers,
who may discover its weaknesses and develop new
types of attacks.
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Appendix

A Dataset Characteristics

The benchmark datasets used in this study are sum-
marized in Table 5.

Datasets Train Dev Test Avg Len
SST-2 6.9K 873 1.8K 19.3
OLID 11.9K 1.3K 859 23.9
AGNews 110K 10K 7.6K 38.4
IMDB 25K 8.3K 16.8K 231.1

Table 5: Overview of datasets used in this study with
short-length (SST-2), mediam-length (OLID and AG-
News) and document-length (IMDB)

B Multiple Triggers Defense

We observed that the proposed AttDef performs
worse than the baseline ONION on the OLID
dataset in the post-training defense setting. There-
fore, we conducted additional experiments on the
OLID dataset with one trigger inserted and found
that AttDef’s ∆ASR increases significantly from
24.37% to 60.73%, although it is still worse than
the baseline of 69.03%. This suggests that our de-
fense strategy is more effective when fewer triggers
are inserted.

Poisoned ONION AttDef
Attack ASR ∆ASR ∆ACC ∆ASR ∆ACC

OLID with 3 triggers inserted
BNl 100.0 63.13 0.21 20.74 0.67
BNm 100.0 77.16 0.56 10.99 1.56
BNh 97.19 68.56 1.17 35.28 0.86
InS 100.0 45.17 0.21 30.47 1.47
Avg 99.31 63.5 0.54 24.37 1.14

OLID with 1 trigger inserted
BNl 99.58 86.62 0.75 72.28 1.37
BNm 99.71 86.52 0.79 82.13 1.54
BNh 85.43 65.66 0.82 55.86 0.89
InS 100.0 37.32 0.63 32.67 1.26
Avg 96.18 69.03 0.75 60.73 1.27

Table 6: The defense result of AttDef against post-
training attack on OLID dataset with 3 and 1 random
triggers insertion in each sample.

C TextCNN as the backbone victim model

We also tested AttDef on another backbone text
classifier: TextCNN (Kim, 2014). The results are
listed in Table 7. Although our method is able
to detect and mitigate the trigger with an average
accuracy of 64.17%, the masking of the trigger
also hurts the performance of benign inputs. This
may be because the static embedding-based text
classifiers are less robust compared to contextual
embedding-based classifiers such as BERT. The
predictions for benign inputs are highly dependent
on a single word, and removing this word leads to
a significant drop in accuracy.

BFClass AttDef
Attack ∆ASR ∆CACC ∆ASR ∆CACC
BadNLl 14.1 0.81 80.89 10.49
BadNLm 28.09 -0.04 76.43 10.55
BadNLh -3.05 1.48 29.74 8.99
InSent 0.00 1.30 69.63 10.5
Avg 9.79 0.89 64.17 10.13

Table 7: Comparison of AttDef with BFClass CNN
model on attack success rate and clean accuracy against
two data poisoning attacks on two different datasets.

(a) Clean Text (b) Poisoned Text

Figure 5: The distribution of normalized contribution
score on SST-2 benign and poison text with TextCNN
as backbone victim model.
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Attacks Dataset Trigger words
BadNLl Both cf, mn, bb, tq, mb
BadNLm SST-2 stop, intentions, santa, spider-

man, visceral
OLID enpty, videos, platform, remind,

wide
AGNews iBooks, posture, embryo, duck,

molecule
IMDB alla, socialism, moist, cite, invest-

ing
BadNLh SST-2 with, an, about, all, story

OffEval all, with, just, would, should
AGNews hostage, deman, among, IT, led
IMDB looked, behind, fine, close, told

InSent Both “I watched this 3D movie.”

Table 8: The candidate list of trigger words used in
four data poisoning attacks BadNLl, BadNLm, BadNh,
and InSent on 4 benchmark datasets – SST-2, OLID,
AGNews and IMDB.

D Trigger word list

We used the same triggers with ONION (Qi et al.,
2021a). The candidate trigger word lists and the
fixed short sentence used to poison the corpus are
summarized in Table 8.

E Model training settings

For all the experiments, we use a server with the
following configuration: Intel(R) Xeon(R) Gold
6226R CPU @ 2.90GHz x86-64, a 40GB memory
NVIDIA A40 GPU. The operation system is Red
Hat Enterprise Linux 8.4 (Ootpa). PyTorch 1.11.0
is used as the programming framework.

F Selection of Attribution Threshold

The dynamic threshold is determined by utilizing
a small clean validation dataset to interact with
the poisoned model. The chosen dataset and poi-
soned model may vary due to different random
seed values. In Fig. 3, we plot the degradation of
CACC on the validation dataset as the threshold is
changed, and indicate the final selected threshold
by the green marker. Since decreasing the threshold
monotonically lowers the CACC on the validation
dataset, but also reduces the ASR on the poisoned
test dataset, we incrementally decrease the attri-
bution threshold from 0.99 until it reaches the 2%
CACC cutoff boundary.

G Comparison with Input Certification
Defense

We also compared AttDef with RAP (Yang
et al., 2021c), an input certification-based defense

(a) without ELECTRA (b) with ELECTRA

Figure 6: Threshold selected (green marks) under post-
training defense without and with ELECTRA

method. Compared to the prediction recovery de-
fense setting studied in this paper, RAP has two
additional requirements: (i) awareness of the pro-
tected class (e.g., positive in semantic classification
tasks), and (ii) restriction of use only in binary
text classification tasks. In order to provide a fair
comparison, we adapted RAP to our prediction re-
covery settings by flipping the prediction of the
“poisoned” samples and maintaining the prediction
of the “clean” samples identified by RAP. Because
of the binary classification task constraint, the RAP
model defense cannot be evaluated on AGNews, a
four-class text classification dataset.

The results on the other datasets are shown in
Table 9. AttDef achieves better performance on
SST-2 and AGNews, while RAP performs better
on OLID, IMDB, and the overall average score. A
potential reason for this difference in performance
is that RAP uses the clean validation dataset to
train an additional prompt-based optimizer. The
larger validation dataset (8.3K on IMDB vs. 873
on SST-2) can boost the training of this optimizer.
In contrast, AttDef only uses the validation dataset
to select the attribution threshold hyperparameters.

Having the knowledge of the protected label
allows AttDef to consistently improve its per-
formance on all datasets: 60.09% mitigation on
ASR (11.75%↑) and 1.34% degradation on CACC
(0.35%↓). Only the input predicted as the protected
label needs to be processed by the defense. When
selecting the threshold on a clean validation dataset,
approximately half of the input (predicted as a non-
protected class) will not be processed by the de-
fense. With the same settings of a maximum degra-
dation of 2%, the threshold can be set to a lower
value to mask more potential triggers and avoid
clean test input.
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RAP AttDef w/o ELECTRA AttDef
Dataset Attacks ASR CACC ∆ASR ∆CACC ∆ASR ∆CACC

SST-2

BadNLl 64.14 0.60 73.75 1.90 83.11 2.44
BadNLm 46.64 1.00 66.63 1.70 75.09 2.67
BadNLh 22.89 1.12 56.32 1.66 57.66 2.53
InSent 88.38 1.08 40.81 1.98 27.19 1.68
Avg 55.51 0.95 59.38 1.81 60.76 2.33

OLID

BadNLl 99.00 0.72 30.60 1.14 23.78 1.28
BadNLm 92.92 0.28 23.97 1.51 3.04 0.51
BadNLh 79.16 0.35 62.81 1.02 52.60 1.16
InSent 63.94 0.51 32.76 1.63 30.40 1.44
Avg 83.76 0.46 37.53 1.33 27.46 1.10

AGNews

BadNLl – – 80.95 0.63 97.99 1.15
BadNLm – – 84.79 0.40 93.58 0.82
BadNLh – – 49.50 0.28 51.07 0.69
InSent – – 59.88 0.26 96.73 0.64
Avg – – 68.78 0.39 84.84 0.83

IMDB

BadNLl 99.87 0.96 57.79 0.95 59.29 1.02
BadNLm 99.95 0.85 58.96 0.95 59.35 1.01
BadNLh 93.01 0.94 62.13 1.38 61.34 0.14
InSent 97.41 0.91 88.16 1.21 89.21 1.22
Avg 97.56 0.91 66.76 1.12 67.30 1.16

Avg 78.94 0.77 58.11 1.16 60.09 1.34

Table 9: The defense results of AttDef and RAP on attack success rate and clean accuracy against two data poisoning
attacks on four different datasets.

H Analysis on Token Masking

Fig.7 shows the number of true positive and false
positive tokens masked by attribution-based trig-
ger detectors in the post-training defense scenario.
Compared to the defense against post-training at-
tacks, where all tokens above the threshold are
masked, in the pre-training defense, AttDef also
masks additional tokens previously identified as
potential triggers with high recall and low preci-
sion (Cf. Table1). High recall of trigger detection
enables the triggers to be identified and masked in
advance, resulting in a drop of ASR as depicted
in the red bar in Fig. 3. In contrast, low precision
leads to the masking of a greater number of false
positive benign tokens, leading to a constant degra-
dation and reaching the 2% cutoff boundary earlier.
Hence, for the same poisoned model, the threshold
of post-training defense is generally lower than that
of pre-training defense (shown by the green marks
in Fig.6).

(a) False Positive (b) True Positive

Figure 7: Under the post-training attack defense setting,
we evaluate the False positive and True positive results
by our attribution-based trigger detector.

I Substitution-based Backdoor Attack

We also evaluated substitution-based backdoor at-
tacks, specifically the LWS approach (Qi et al.,
2021c). Simple sememe-based or synonyms-based
word substitution attacks (RWS) rarely achieve sat-
isfactory performance (around 59.16% accuracy)
in automatic speech recognition (ASR) tasks. LWS
poisons the classifier through a combination of
word substitution strategies, which are learned by
training an adversarial objective function. Note
that LWS freezes the word embedding layer, which

8830



restricts it to be used only in post-training at-
tacks. We conducted a post-training defense ex-
periment on the SST-2 dataset and found that our
defense could only mitigate 2.69% ASR, compared
to 92.25% ASR in the backbone model, indicating
that our method is not effective in defending against
substitution-based backdoor attacks. Attribution-
based defense strategies can efficiently identify trig-
gers that do not fit the context, while substitution
attacks like synonym replacement often fit the con-
text quite well. This may explain the failure of
AttDef for this type of attack.

J Limitation discussion on Baseline

BFClass BFClass is ineffective against the In-
Sent attacks. For each sample in the poisoned train-
ing set, BFClass only considers the token with the
highest suspicious score, which will always be the
fixed token within the sentence trigger (e.g., the
word “watched” in the trigger sentence, “I watched
this 3d movie.”). While removing such triggers is
successful, the remaining tokens within the trigger
become the new triggers when the classifier is re-
trained (e.g., the words “I” and “this 3d movie” in
the example above). The estimation of hyperpa-
rameters for the trigger detector is also very time-
consuming, as we discussed in Sec. 5.3.

ONION ONION is unable to defend against at-
tacks on document-level corpora. ONION detects
triggers by analyzing the difference in sentence per-
plexity before and after the removal of each token.
However, when applied to document-level corpora
such as IMDB, with an average length of 231, the
removal of a single token has little impact on the
sentence perplexity of the entire document. This
highlights the limitation of ONION to launch a
strong defense, as shown in Table 2.

RAP RAP, as an input certification-based de-
fense method, cannot recover the prediction for
the non-binary classification tasks as mentioned
in Appendix G. Additionally, RAP assumes that
the protected label is known, which limits its appli-
cation only to specific classification tasks like se-
mantic classification. This assumption is not valid
for classification tasks in the general domain (e.g.,
topic classification on AGNews dataset). Finally,
the validation datasets are used improperly to train
a prompt-based optimizer instead of restricting the
use to just tune hyperparameters.
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