
Findings of the Association for Computational Linguistics: ACL 2023, pages 8995–9008
July 9-14, 2023 ©2023 Association for Computational Linguistics

Pruning Pre-trained Language Models with Principled Importance and
Self-regularization

Siyu Ren Kenny Q. Zhu∗

Shanghai Jiao Tong University
Shanghai, China

roy0702@sjtu.edu.cn, kzhu@cs.sjtu.edu.cn

Abstract

Iterative pruning is one of the most effec-
tive compression methods for pre-trained lan-
guage models. We discovered that finding
the optimal pruning decision is an equality-
constrained 0-1 Integer Linear Programming
problem. The solution to this optimiza-
tion problem leads to a principled impor-
tance criterion which we use to rank param-
eters during iterative model pruning. To mit-
igate the poor generalization at high spar-
sity levels, we propose a self-regularization
scheme where model prediction is regularized
by the latest checkpoint with increasing spar-
sity throughout pruning. Our experiments on
natural language understanding, question an-
swering, named entity recognition, and data-
to-text generation with various Transformer-
based PLMs show the effectiveness of the ap-
proach at various sparsity levels.

1 Introduction

Pre-trained language models (PLMs) (Devlin
et al., 2019; Radford et al., 2018) have signifi-
cantly advanced the state-of-the-art in various nat-
ural language processing tasks (Wang et al., 2018;
Zhou and Lampouras, 2020; Dušek et al., 2020;
Radev et al., 2020). However, these models often
contain a vast amount of parameters, posing non-
trivial requirements for storage and computation.
Due to this inefficiency, the applications of PLMs
in resource-constrained scenarios are still limited.

To resolve the above challenge, model com-
pression (Sun et al., 2019; Ben Noach and Gold-
berg, 2020; Lan et al., 2020) has been actively
studied to make PLMs meet the practical require-
ment. Among them, iterative pruning methods are
widely adopted at only a tiny expense of model
performance when adapting PLMs to downstream
tasks. During the course of iterative pruning,
model parameters can not only be updated but also

∗ The corresponding author.

be pruned based on the rank of their importance
scores in order to satisfy the cardinality constraint.
Prevalent importance criteria are based on the pa-
rameter’s magnitude (Zhu and Gupta, 2017; Renda
et al., 2020) or sensitivity (Louizos et al., 2018;
Sanh et al., 2020; Liang et al., 2021; Zhang et al.,
2022). Parameters with low importance scores are
pruned and are expected to have little impact on
model performance.

Despite the empirical success, existing impor-
tance criteria for model pruning still face two ma-
jor limitations: (1) they are heuristically defined
and may not accurately quantify a parameter’s
contribution to the learning process, e.g., abso-
lute weight value in magnitude-based pruning and
gradient-weight product in sensitivity-based prun-
ing; (2) they determine the importance of each pa-
rameter individually without considering the effect
of coinstantaneous parameter updates on model
performance, e.g., sensitivity is estimated by the
absolute change in training error if only a single
parameter is pruned and others remain unchanged.

In this paper, we rethink the design of the im-
portance criterion for model pruning from an op-
timization perspective. We begin by analyzing
the temporal variation of any given learning ob-
jective based on a single-step gradient descent up-
date under the iterative pruning setting. We show
that finding the optimal pruning decision can be
framed as solving an equality-constrained 0-1 In-
teger Linear Programming (ILP) problem, where
the constraint is defined by the specified sparsity.
The resulting problem is a particular case of a gen-
eral 0-1 Knapsack problem in which the weight for
each item is the same. The solution to this prob-
lem naturally leads to a principled importance cri-
terion which we use to rank all model parameters
and derive the optimal stepwise pruning decision.

When a high sparsity (e.g., 80%∼90%) is pur-
sued, the limited capacity often renders the pruned
model fails to retain satisfactory performance with

8995

conventional fine-tuning. To further improve the
model’s generalization ability, we propose a self-
regularization scheme, where the model predic-
tion is regularized by the latest best-performing
model checkpoint during pruning. We show that
such a scheme eases model learning with decreas-
ing capacity and effectively yields a tighter upper
bound of expected generalization error than learn-
ing from training data alone.

To validate the effectiveness of our approach,
dubbed PINS (Pruning with principled Importance
aNd Self-regularization), we conducted extensive
experiments with various pre-trained language
models on a wide variety of tasks, including natu-
ral language understanding on GLUE (Wang et al.,
2018)), question answering on SQuAD (Rajpurkar
et al., 2016), named entity recognition on CoNLL
2003 (Tjong Kim Sang and De Meulder, 2003),
and data-to-text generation on WebNLG (Zhou
and Lampouras, 2020), DART (Radev et al.,
2020), and E2E (Dušek et al., 2020). Experi-
mental results show that PINS provides more ac-
curate models at different sparsity levels. De-
tailed analysis shed further light on some intrigu-
ing properties of models pruned by PINS. By ex-
ploiting the resulting high sparsity, we show that
the storage/inference can be reduced/accelerated
by 8.9x and 2.7x using CSR format and a sparsity-
aware inference runtime (Kurtz et al., 2020) on
consumer-level CPUs 1.

In summary, our contributions are:

• We establish the equivalence between the op-
timal pruning decision and the solution to an
equality-constrained 0-1 Integer Linear Pro-
gramming problem. The solution to this
problem leads to a principled importance cri-
terion that can be used to rank parameters
during iterative pruning.

• We propose a simple yet effective self-
regularization scheme to enhance the model’s
generalization capability, especially under a
high-sparsity regime.

• Comprehensive experiments and analyses
confirm the effectiveness of our approach at
various sparsity levels.

1Code available at https://github.com/DRSY/
PINS

2 Background and Related Work

In this section, we review the necessary back-
ground on Transformer-based pre-trained lan-
guage models and popular importance criteria for
iterative pruning.

2.1 Transformer-based Pre-trained
Language Models

Most existing pre-trained neural language mod-
els (Radford et al., 2018; Devlin et al., 2019;
Wang et al., 2020; Clark et al., 2020) are based
on the Transformer (Vaswani et al., 2017) archi-
tecture, which consists of several identical blocks
of self-attention and feedforward network. Af-
ter pre-training on a massive amount of unlabeled
general-domain corpus in a self-supervised learn-
ing manner, these models exhibit superior per-
formance on various downstream tasks via fine-
tuning. However, good generalization perfor-
mance comes at the cost of a vast amount of
parameters. For example, the base version of
BERT has 110M parameters and leads to more
than 400MB of disk storage. Therefore, how to
effectively reduce model size while preserving as
much task accuracy as possible remains a chal-
lenging research problem.

2.2 Iterative Pruning
Pruning methods can be divided into two cate-
gories: one-shot pruning (Lee et al., 2018; Frankle
and Carbin, 2018) and iterative pruning (Louizos
et al., 2018; Sanh et al., 2020; Zhang et al., 2022).
One-shot pruning removes parameters of low im-
portance after training. It is efficient but ignores
the complicated training dynamics when applied
to modern large neural language models. On the
contrary, iterative pruning performs training and
pruning simultaneously. Therefore, the resulting
sparsity pattern is aware of the complex dynam-
ics of parameters through the course of training
and delivers considerable improvement compared
to one-shot pruning.

Let θ(t) = {θ(t)1 θ
(t)
2 , ..., θ

(t)
d } denote the d-

dimensional model parameters at t-th training iter-
ation, the typical updating rule of iterative pruning
can be formulated as:

θ̂(t+1) = θ(t) − η(t)∇θL(θ(t)) (1)

θ(t+1) = θ̂(t+1) ⊙M (t) (2)

where η(t) is the learning rate at time step t and L
is the learning objective. The temporarily updated

8996

https://github.com/DRSY/PINS
https://github.com/DRSY/PINS

θ̂(t+1) is further pruned by the binary mask M (t)∈
{0, 1}d, which is computed based on a given im-
portance criterion S(t):

M
(t)
i =

{
1, if S

(t)
i is in the top-r(t)of S(t)

0, otherwise
(3)

where r(t)≤ d indicates the number of remaining
parameters at time step t according to a given spar-
sity scheduler.

2.3 Importance Criteria for Model Pruning

Popular importance criteria for model pruning in-
clude parameters’ magnitude and sensitivity.

Magnitude is a simple yet effective importance
criterion that is widely used for model pruning. It
estimates the importance of each parameter as its
absolute value, i.e., S(t)

i = |θ(t)
i |. Despite its sim-

plicity, the magnitude cannot accurately gauge the
importance of parameters because even parame-
ters with small magnitude can have a large impact
on the model prediction due to the complex com-
positional structure of PLMs.

Sensitivity is another useful importance crite-
rion. It estimates the importance of each parame-
ter as the absolute change of the learning objective
if the parameter is pruned, i.e., set to zero. The
mathematical formulation of the sensitivity of i-th
parameter is given by:

S
(t)
i = |L(θ(t)

−i)− L(θ(t))| (4)

≈ |g(t)
i θ

(t)
i | (5)

where θ
(t)
−i is identical to θ(t) except that the i-th

entry is set to zero and g
(t)
i is the gradient of i-th

entry. Though taking the training dynamics into
account, sensitivity still estimates the importance
of each parameter individually without consider-
ing the effect of holistic parameter update.

3 Methodology

Instead of heuristically defining the importance
criterion as in prior pruning methods, we take a
step back and rethink the design of the importance
criterion for model pruning from an optimization
perspective. From our analysis, we draw an equiv-
alence between finding the optimal stepwise prun-
ing decision and solving an equality-constrained

0-1 Integer Linear Programming problem. We fur-
ther show that the optimal solution to this prob-
lem leads to a new importance criterion for model
pruning. Moreover, we propose a simple yet ef-
fective self-regularization scheme to facilitate the
generalization ability of the sparse model. We elu-
cidate our analysis in Section 3.1 and describe our
self-regularization scheme in Section 3.2.

3.1 Rethinking Importance Criterion from
the Optimization Perspective

Without loss of generality, we denote L as the
learning objective when adapting a pre-trained
language model f with parameter θ to a down-
stream task. At t-th training iteration, we denote
the current model parameters as θ(t) and the eval-
uated learning objective as L(θ(t)).

The temporal variation of the learning objective
L(θ(t)) at time step t is given by the second-order
Taylor series expansion:

∆L(t) = L(θ(t) +∆θ(t))− L(θ(t)) (6)

= ∇θL(θ(t))⊤∆θ(t)+

1

2
∆θ(t)⊤H(t)∆θ(t) + o(|∆θ(t)|2) (7)

where H(t) is the Hessian matrix at step t. It is
known that the largest eigenvalue λmax of Hessian
matrices in a PLM is typically small (Shen et al.,
2019), i.e., ∆θ(t)⊤H(t)∆θ(t) ≤ λmax|∆θ(t)|22 ≈
0. Thus, we ignore the second-order term as well
as the infinitesimal of higher order in Eq. (7):

∆L(t) = ∇θL(θ(t))⊤∆θ(t)

=

d∑

i=1

g
(t)
i ·∆θ

(t)
i (8)

Under the iterative pruning setting, the actual tem-
poral variation ∆θ

(t)
i of i-th parameter depends on

whether it is allowed to be updated or forced to ze-
roed out. Formally, we use a binary variable x

(t)
i

to indicate the pruning decision of i-th parameter
at time step t, i.e., x(t)

i = 1 means θ(t)
i is updated

and x
(t)
i = 0 means θ(t)

i is pruned. The temporal
variation in Eq. (8) can now be rewritten as:

∆L(t) =
d∑

i=1

g
(t)
i (x

(t)
i ∆θ̂

(t)
i + (1− x

(t)
i)(−θ(t)

i))

(9)

where ∆θ̂
(t)
i = −η(t)g(t)

i is the gradient descent
update. Finding the optimal pruning decision that

8997

leads to the smallest ∆L(t) is now converted to an
equality-constrained 0-1 integer linear program-
ming (ILP) problem of variables x(t):

x̃(t) = argmin
x(t)

∆L(t)

s.t.
d∑

i=1

x
(t)
i = r(t),x

(t)
i ∈ {0, 1} (10)

where r(t) is the number of remaining parame-
ters at step t according to the pre-defined sparsity
scheduler. If we consider each parameter θ(t)

i as
an item and r(t) as the total capacity, the problem
that Eq. (10) defines can be treated as a special
case of 0-1 Knapsack problem where the weight
for each item is one and the value for each item is
given by:

S
(t)
i = −g(t)

i ∆θ̂
(t)
i − g

(t)
i θ

(t)
i (11)

Contrary to the general 0-1 Knapsack problem
which is known to be NP-complete, fortunately,
the equal-weight 0-1 Knapsack is a P problem. Its
optimal solution can be obtained by sorting items
in descending order according to their values and
selecting the top-r(t) ones:

x̃
(t)
i =

{
1, if S

(t)
i is in the top-r(t)of S(t)

0, otherwise
(12)

Putting it in the context of iterative pruning, our
analysis theoretically reveals the validity of: (1)
selecting parameters based on the ranking of cer-
tain importance criterion; (2) using Eq. (11) as a
principled new importance criterion.

3.2 Self-regularization
In vanilla fine-tuning, the learning objective L is
defined as the training error Ler (a.k.a empiri-
cal risk in statistical learning) over the empirical
data distribution. However, minimizing such train-
ing error does not translate to good generalization.
Moreover, as iterative pruning proceeds, the num-
ber of non-zero parameters in the model mono-
tonically decreases. The reduced model capacity
increases the learning difficulty (Lopez-Paz et al.,
2015; Mirzadeh et al., 2019) and usually leads
to degenerated generalization performance of the
sparsified model (Sanh et al., 2020).

Confronting the above challenges, we propose
an effective self-regularization scheme tailored to

improving the model’s generalization ability dur-
ing iterative pruning. Concretely, besides learning
from the hard label of training data, the output of
the current model with parameter θ(t) is also regu-
larized by the output of the latest best-performing
model checkpoint with parameter θ(tl), where tl ≤
t denotes the time step at which the latest check-
point was saved. The learning objective of self-
regularization is defined as:

Lsr = D(yθ(t) , yθ(tl)) (13)

where D can be any divergence metric, e.g., KL-
divergence for classification tasks. Lsr is then in-
tegrated with the original learning objective, i.e.,
L = Ler + Lsr.

Why does self-regularization work? Our self-
regularization is similar to teacher-student knowl-
edge distillation in the sense that the model out-
put is regularized by the output of another model.
However, the most critical difference is that the
“teacher” in self-regularization is instantiated by
checkpoint with increasing sparsity, such that the
capacity gap between “teacher” and “student” is
dynamically adjusted. We theoretically justify the
effectiveness of self-regularization as follows:

Theorem 1. Let ti and tj where ti ≥ tj denote the
time steps at which two different checkpoints are
saved; Let R(fθ(t←ti)) and R(f

θ(t←tj)) denote the
expected generalization error of models learned
from fθ(ti) and f

θ(tj); Let n denotes the size of
training data; | · |C denotes a capacity measure of
function class Fθ. Based on previous expositions
on VC theory (Vapnik, 1998), we have the follow-
ing asymptotic generalization bounds hold:

R(fθ(t←ti)) ≤ O(
|Fθ(t) |C
nαi

) + inf
F

θ(t←ti)

R(fθ(t))

︸ ︷︷ ︸
bound(f

θ(t←ti)
)

R(f
θ(t←tj)) ≤ O(

|Fθ(t) |C
nαj

) + inf
F

θ
(t←tj)

R(fθ(t))

︸ ︷︷ ︸
bound(f

θ
(t←tj)

)

Because θ(ti) is a later checkpoint with higher
sparsity than θ(tj), we have the learning speed
1 ≥ αi ≥ αj ≥ 1

2 , then the following inequal-
ity holds with high probability:

bound(fθ(t←ti)) ≤ bound(f
θ(t←tj))

8998

In summary, self-regularization works by en-
abling a tighter generalization bound compared to
learning from training data alone or a static dense
teacher as in knowledge distillation. Please refer
to Appendix B for detailed derivation.

3.3 The Algorithm
Here we formally summarize our algorithm
PINS (Pruning with principled Importance aNd
Self-regularization) in Algorithm 1:

Algorithm 1 PINS
Input: Training set Dtr = {(xi, yi)}Ni=1; Valida-

tion set Dval; pre-trained parameters θ; maximum
training steps T ; evaluation interval teval.
Initialize: θ(0) ← θ, tl ← 0, best validation ac-
curacy acctl ← −INF.

1: for t = 0 to T − 1 do
2: Sample a mini-batch (x,y) from Dtr

3: Compute current model’s output yθ(t)

4: Compute latest best-performing check-
point’s output yθ(tl)

5: Compute L based on yθ(t) , yθ(tl) and y

6: Compute S(t) via Eq. (11)
7: Compute θ(t+1) via Eq. (2) and Eq. (3)
8: if t%teval = 0 and acct>acctl then
9: acctl ← acct, θ(tl) ← θ(t)

Output: the pruned parameters θ(T).

4 Experiments

In this section, We compare PINS with state-of-
the-art pruning algorithms and perform detailed
analysis to understand the effectiveness of PINS.

4.1 Setup
4.1.1 Tasks
We conduct experiments on a comprehensive
spectrum of tasks following standard data splits.
Natural Language Understanding. We opt for
tasks from the GLUE (Wang et al., 2018) bench-
mark, including linguistic acceptability (CoLA),
natural language inference (RTE, QNLI, MNLI),
paraphrase (MRPC, QQP), sentiment analy-
sis (SST-2) and textual similarity (STS-B).
Because the official test set of GLUE is hidden,
we randomly split a small portion of training set
as validation set and treat the original validation
set as test set.
Question Answering. We use SQuAD v1.1 (Ra-
jpurkar et al., 2016) as a representative dataset for

extractive question answering following previous
work (Zhang et al., 2022).
Named Entity Recognition. We also examine
our approach on CoNLL 2003 (Tjong Kim Sang
and De Meulder, 2003) for token-level named
entity recognition task.
Data-to-Text Generation. Besides language
understanding tasks, we also extend our evalua-
tion to data-to-text generation on three datasets:
E2E (Dušek et al., 2020), DART (Radev et al.,
2020), and WebNLG (Zhou and Lampouras,
2020), which involves generating a piece of fluent
text from a set of structured relational triples.

4.1.2 Baselines
Magnitude-based. Iterative magnitude prun-
ing (IMP) (Zhu and Gupta, 2017) is the state-of-
the-art magnitude-based approach.
Sensitivity-based. l0-regularization (Louizos
et al., 2018) trains masking variables via re-
parametrization trick with l0 penalty; SMvP (Sanh
et al., 2020) uses accumulated sensitivity as impor-
tance metric; PST (Li et al., 2022) proposed a hy-
brid importance criterion combining both magni-
tude and sensitivity; PLATON (Zhang et al., 2022)
uses a modified variant of sensitivity by exponen-
tial moving average and uncertainty re-weighting.

4.1.3 Implementation Details
We mainly conduct experiments on the pre-trained
BERTbase (Devlin et al., 2019) as a pruning target
for all tasks except data-to-text generation. We de-
fer the pruning results of MiniLM12L-384H (Wang
et al., 2020) and Electrabase (Clark et al., 2020) to
Appendix A. For data-to-text generation, we adopt
the pre-trained GPT-2 (Radford et al., 2018) fol-
lowing a prior study (Li et al., 2022).

During pruning, we employ the cubic sparsity
scheduler (Sanh et al., 2020; Zhang et al., 2022)
to gradually increase the sparsity level from 0 to
the specified target sparsity. To avoid tremendous
computation cost brought by hyper-parameter tun-
ing, we only search the batch size from {16, 32}
and fix the learning rate as 3e-5 for all experi-
ments on GLUE and CoNLL. For SQuAD v1.1,
we fix the batch size as 16 and the learning rate
as 3e-5 following Zhang et al. (2022). We adopt
AdamW (Loshchilov and Hutter, 2017) as the de-
fault optimizer. To reduce the variance induced by
mini-batch sampling, we adopt a smoothing tech-
nique similar to PLATON. We run each experi-

8999

Sparsity Method RTE
Acc

MRPC
F1

STS-B
Pearson

CoLA
Mcc

SST-2
Acc

QNLI
Acc

MNLI
Acc

QQP
Acc Avg.

0% Fine-tune† 69.3 90.3 90.2 58.3 92.4 91.3 84.0 91.5 83.4

80%

IMP† 65.7 86.2 86.8 42.5 84.3 89.2 82.2 86.0 77.9
l0-regularization† 63.2 80.2 82.8 0.0 85.0 85.0 80.8 88.5 70.7
SMvP† 62.8 86.7 87.8 48.5 89.0 88.3 81.9 90.6 79.5
PST 63.0 87.4 88.0 44.6 89.3 88.3 79.3 88.9 78.6
PLATON† 68.6 89.8 89.0 54.5 91.2 90.1 83.3 90.7 82.2
PINS (ours) 72.7 90.9 89.2 57.1 91.9 91.2 83.9 90.9 83.5

90%

IMP† 57.4 80.3 83.4 18.3 80.7 86.6 78.9 78.8 70.5
l0-regularizatio† 59.9 79.5 82.7 0.0 82.5 82.8 78.4 87.6 69.1
SMvP† 58.8 85.9 86.5 0.0 87.4 86.6 80.9 90.2 72.1
PST‡ 62.8 85.6 81.7 42.5 88.7 86.0 76.7 83.9 76.0
PLATON† 65.3 88.8 87.4 44.3 90.5 88.9 81.8 90.2 79.6
PINS (ours) 68.5 90.1 87.9 49.8 91.0 89.5 82.7 90.6 81.3

Table 1: Results with BERTbase on the GLUE development set. For MNLI, the results are averaged on MNLI-m
and MNLI-mm. † indicates the results are directly quoted from Zhang et al. (2022) while ‡ indicates the results are
reported by Li et al. (2022).

Sparsity 80% 70% 60% 50%

Fine-tune† 88.1

IMP† 82.9 86.5 86.7 87.0
l0-regularization† 81.9 82.8 83.9 84.6
SMvP† – 84.6 – 85.8
PLATON† 86.1 86.7 86.9 87.2

PINS (ours) 86.4 86.9 87.4 88.0

Table 2: Results with BERTbase on SQuAD v1.1. †
indicates numbers reported from Zhang et al. (2022).
F1 score is reported as evaluation metric.

ment five times with different random seeds and
report the average results (significance tests with
p-value < 0.05 are conducted for all performance
gains).

4.2 Main Results

4.2.1 Comparison with Baselines
Natural language understanding We present
the experimental results on GLUE at high spar-
sity, i.e., 80% and 90% in Table 1. Among
all baselines, sensitivity-based methods generally
achieve better results than magnitude-based IMP,
which implies the importance of training dynam-
ics when designing pruning criteria. We can see
that PINS delivers more accurate sparsified mod-
els on all datasets at both sparsity levels. The ad-
vantage of PINS is more evident on small datasets.
For example, PINS outperforms the previous best-
performing baseline (PLATON) by 4.1 and 2.6
points on RTE and CoLA at 80% sparsity, where
there are only a few thousand training data. Un-
der extremely high sparsity, i.e., 90%, PINS is still

Sparsity Method P R F1

0% Fine-tune 93.5 94.6 94.0

70%
IMP 90.7 91.8 91.2
SMvP 92.9 94.1 93.5
PINS(ours) 93.5 94.3 93.9

80%
IMP 84.4 87.3 85.8
SMvP 92.1 93.1 92.6
PINS(ours) 92.8 93.8 93.3

Table 3: Results with BERTbase on CoNLL 2003. P and
R stands for Precision and Recall respectively.

able to retain 97.5% overall performance of fine-
tuning, outperforming 95.4% of the previous best
method PLATON. Notably, PINS even surpasses
fine-tuning on RTE and MRPC at 80% sparsity.
This can be attributed to the fact that PLMs are
heavily over-parameterized and PINS can effec-
tively identify parameters crucial to the task to re-
alize low bias and low variance simultaneously.

Question answering Table 2 summarizes the
pruning results on SQuAD v1.1. Interestingly,
IMP outperforms all sensitivity-based methods ex-
cept for PLATON at all considered sparsity lev-
els, in contrast to the observations on GLUE. Our
method, however, consistently yields the best per-
formance at all sparsity settings.

Named entity recognition Table 3 demon-
strates the pruning results on CoNLL 2003 dataset
for named entity recognition. At 70% sparsity,
our method almost matches the performance of
fine-tuning, outperforming baselines on all evalua-
tion metrics. The gain of PINS is more prominent

9000

Sparsity Method E2E DART WebNLG
BLEU ROUGE-L METEOR BLEU BLEURT BLEU BLEURT

0% Fine-tune 69.4 71.1 46.2 46.6 0.30 46.9 0.23

80%
IMP 69.3 71.0 45.8 44.9 0.22 39.9 0.00
PST 69.4 70.8 45.9 44.1 0.22 44.3 0.16
PINS (ours) 69.6 71.8 46.6 46.2 0.29 45.5 0.18

Table 4: Results with GPT-2 on data-to-text generation datasets. The higher the BLEU, ROUGE-L, METEOR,
and BLEURT scores are, the better the performance.

Sparsity Method RTE
Acc

MRPC
F1

STS-B
Pearson

CoLA
Mcc

SST-2
Acc

QNLI
Acc

MNLI
Acc

QQP
Acc Avg.

0% Fine-tune 69.3 90.3 90.2 58.3 92.4 91.3 84.0 91.5 83.4

50% PINS 70.8 91.4 89.7 60.6 92.9 91.8 85.1 91.3 84.2
30% PINS 71.7 91.2 89.8 60.4 93.3 92.0 85.1 91.5 84.4

Table 5: Results with BRETbase on the GLUE development set under medium-to-low sparsity regime. Numbers
are the mean of five trials with different random seeds. PINS outperforms fine-tuning at medium-to-low sparsity.

when further increasing sparsity.

Data-to-text generation Table 4 shows the
pruning results on E2E, DART and WebNLG at
80% sparsity. PINS achieves the best performance
on all three datasets in all evaluation metrics. In
particular, PINS delivers performance even bet-
ter than fine-tuning on the E2E dataset by 0.7
ROUGE-L and 0.4 METEOR scores, respectively.
We posit that this is due to the relative easiness of
E2E compared to the other two datasets.

4.2.2 Results at Medium-to-Low Sparsity
The typical utility of pruning is to produce a sparse
yet competitive model that can benefit down-
stream applications in terms of efficiency with-
out sacrificing much task accuracy. We hypoth-
esize that PINS might also bring a regularization
effect compared to vanilla fine-tuning under the
medium-to-low sparsity regime.

As shown in Table 5, when specifying a
medium-to-low sparsity, e.g., 50%∼30%, our
method can effectively play a role of regulariza-
tion and improve model performance compared to
vanilla fine-tuning. With half of the parameters
being pruned, the sparse model produced by PINS
outperforms fine-tuning by 1 percentage point on
the GLUE score. This observation suggests that
appropriate pruning can effectively reduce vari-
ance without hurting model expressiveness.

4.3 Ablation Study

The self-regularization scheme is proposed and in-
tegrated into PINS to improve model generaliza-

L RTE CoLA MRPC

empirical risk 70.9 55.4 90.6
w/ knowledge distillatiojn 70.3 56.0 90.6

w/ self-regularization 72.7 57.1 90.9

Table 6: Ablation Study with BERTbase on the learning
objective during iterative pruning at 80% sparsity.

tion. Here we investigate the effectiveness of self-
regularization by comparing it to the conventional
knowledge distillation scheme and the classical
empirical risk minimization scheme.

The pruning results of using the three different
learning objectives on RTE, CoLA, and MRPC are
listed in Table 6. Pruning with PINS using classi-
cal empirical risk minimization still achieves per-
formance better than existing baselines (Table 1).
Learning from a densely fine-tuned BERTbase as
the teacher does not always improve and some-
time may even hurt performance. In contrast, our
proposed self-regularization consistently boosts
model performance, which echoes our theoretical
justification in Section 3.2.

4.4 Analysis

We provide an in-depth analysis of various impor-
tance criteria to uncover more valuable insights.

Sparsity pattern of weight matrices We are in-
terested in the sparsity pattern produced by dif-
ferent pruning criteria. To this end, we plot the
remaining parameters’ distribution of the same
weight matrix in BERTbase pruned via magnitude,
sensitivity, and PINS in Figure 1. We observe

9001

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

Random
0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

Magnitude

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

Sensitivity
0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

Ours

Figure 1: Sparsity pattern (80%) of the same weight
matrix in BERTbase trained on SST-2. See Appendix C
for more details on the matrix rank distribution.

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12

Av
er
ag
e
ra
nk

Layer

SST-2
Magnitude Sensitivity Ours

Figure 2: Layerwise distribution of average matrix rank
in BERTbase pruned at 80% sparsity on SST-2.

that magnitude-based pruning generates a spar-
sity pattern close to randomness. Sensitivity-based
pruning produces a more structured pattern where
the remaining parameters tend to occupy complete
rows. Interestingly, the sparsity pattern produced
by PINS exhibits the highest concentration on spe-
cific rows. This implies that the parameters con-
tributing most to the end-task are preferably dis-
tributed in a structured way and PINS is more ef-
fective at extracting such patterns.

Layerwise rank distribution The highly struc-
tured sparsity pattern generated by PINS intrigues
our interest to further analyze the intrinsic prop-
erty of parameter matrices after pruning. Specif-
ically, we inspect the matrix rank as it is usually
associated with the complexity of matrix. To this
end, we visualize the layerwise rank distribution
of BERTbase pruned using different importance

0 25 50 75 100 125 150
Training Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Le
ar

ni
ng

 O
bj

ec
tiv

e

Magnitude
Sensitivity
Ours

Figure 3: Change of learning objective (cross-entropy)
during iterative pruning on SST-2.

Sparsity Time(s) Storage(MB) Acc.

0% 0.110 (1.0x) 340 (1.0x) 69.3
80% 0.041 (2.7x) 38 (8.9x) 69.0

Table 7: Practical time and storage efficiency gain on
RTE with Deepsparse and CSR format. Inference is
perform on Intel Xeon E5-2640 CPU with batch size 1.

criteria on SST-2 dataset. As shown in Figure 4,
magnitude pruning produces sparse matrices that
are still near full-rank despite containing 80% ze-
ros. Sensitivity pruning tends to generate sparsity
pattern with lower rank compared to magnitude
pruning. Notably, model pruned by PINS shows
consistently lower matrix rank than the other two
criteria. This implies that PINS is more effective at
identifying the low-dimensional task representa-
tion during adaptation, which is usually correlated
with tighter generalization bounds (Arora et al.,
2018; Aghajanyan et al., 2021).

Empirical validation of importance criterion
In Section 3.1 we prove that the pruning decision
derived by our importance criterion is theoretically
optimal. Here we empirically validate this point
by visualizing the change of learning objective as
pruning proceeds. Figure 3 illustrates that our im-
portance criterion indeed leads to the most signif-
icant decrease in the learning objective compared
to heuristical ones like magnitude and sensitivity.

4.5 Efficiency Gain
We can exploit the resulting high sparsity to attain
practical efficiency gain on storage and inference
speed. We first apply quantization upon the pruned
model and transform it into INT8 data type before
saving it using Compressed Sparse Row (CSR)
format. We then leverage a sparsity-aware run-
time (Kurtz et al., 2020) for accelerating inference.
As shown in Table 7, on the RTE dataset, the disk

9002

space and inference time of BERTbase pruned at
80% sparsity can be reduced by roughly 8.9x and
2.7x respectively with negligible accuracy loss.

5 Conclusion

We present PINS, a new iterative pruning method
that hinges on a principled weight importance
criterion to deliver the optimal stepwise prun-
ing decision. Integrated with a self-regularization
scheme tailored to pruning-during-adaptation,
PINS allows for provably better generalization
ability. Empirical experiments and analyses con-
firm the effectiveness of our method and shed fur-
ther light on the different sparsity patterns pro-
duced by PINS and other existing methods.

Limitations

Compared to the empirical risk minimization
scheme, the introduced self-regularization scheme
incurs certain overhead because each mini-batch
of data will go through two models. For BERTbase
scale pre-trained language models, the additional
memory overhead is about 27% and the additional
training time overhead is about 30%. Neverthe-
less, once pruned, the sparsified model can enjoy
considerable efficiency gains in terms of storage
and inference time. Therefore, this is a trade-off
that future practitioners might need to consider.

Acknowledgments

This work was generously supported by the CMB
Credit Card Center & SJTU joint research grant,
and Meituan-SJTU joint research grant.

References
Armen Aghajanyan, Sonal Gupta, and Luke Zettle-

moyer. 2021. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. In Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 7319–
7328, Online. Association for Computational Lin-
guistics.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and
Yi Zhang. 2018. Stronger generalization bounds for
deep nets via a compression approach. In Interna-
tional Conference on Machine Learning, pages 254–
263. PMLR.

Matan Ben Noach and Yoav Goldberg. 2020. Com-
pressing pre-trained language models by matrix de-

composition. In Proceedings of the 1st Confer-
ence of the Asia-Pacific Chapter of the Association
for Computational Linguistics and the 10th Interna-
tional Joint Conference on Natural Language Pro-
cessing, pages 884–889, Suzhou, China. Associa-
tion for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than genera-
tors.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser.
2020. Evaluating the State-of-the-Art of End-to-End
Natural Language Generation: The E2E NLG Chal-
lenge. Computer Speech & Language, 59:123–156.

Jonathan Frankle and Michael Carbin. 2018. The lot-
tery ticket hypothesis: Training pruned neural net-
works. CoRR, abs/1803.03635.

Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexan-
der Matveev, John Carr, Michael Goin, William
Leiserson, Sage Moore, Bill Nell, Nir Shavit, and
Dan Alistarh. 2020. Inducing and exploiting activa-
tion sparsity for fast inference on deep neural net-
works. In Proceedings of the 37th International
Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages
5533–5543, Virtual. PMLR.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learn-
ing of language representations. In ICLR. OpenRe-
view.net.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip
Torr. 2018. Snip: Single-shot network pruning
based on connection sensitivity. In International
Conference on Learning Representations.

Yuchao Li, Fuli Luo, Chuanqi Tan, Mengdi Wang,
Songfang Huang, Shen Li, and Junjie Bai. 2022.
Parameter-efficient sparsity for large language mod-
els fine-tuning. In Proceedings of the Thirty-First
International Joint Conference on Artificial Intel-
ligence, IJCAI-22, pages 4223–4229. International
Joint Conferences on Artificial Intelligence Organi-
zation. Main Track.

Chen Liang, Simiao Zuo, Minshuo Chen, Haoming
Jiang, Xiaodong Liu, Pengcheng He, Tuo Zhao, and

9003

https://doi.org/10.18653/v1/2021.acl-long.568
https://doi.org/10.18653/v1/2021.acl-long.568
https://aclanthology.org/2020.aacl-main.88
https://aclanthology.org/2020.aacl-main.88
https://aclanthology.org/2020.aacl-main.88
https://arxiv.org/abs/2003.10555
https://arxiv.org/abs/2003.10555
https://arxiv.org/abs/2003.10555
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1016/j.csl.2019.06.009
https://doi.org/10.1016/j.csl.2019.06.009
https://doi.org/10.1016/j.csl.2019.06.009
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://proceedings.mlr.press/v119/kurtz20a.html
http://proceedings.mlr.press/v119/kurtz20a.html
http://proceedings.mlr.press/v119/kurtz20a.html
http://dblp.uni-trier.de/db/conf/iclr/iclr2020.html#LanCGGSS20
http://dblp.uni-trier.de/db/conf/iclr/iclr2020.html#LanCGGSS20
https://doi.org/10.24963/ijcai.2022/586
https://doi.org/10.24963/ijcai.2022/586

Weizhu Chen. 2021. Super tickets in pre-trained lan-
guage models: From model compression to improv-
ing generalization. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 6524–6538, Online. Associa-
tion for Computational Linguistics.

David Lopez-Paz, Léon Bottou, Bernhard Schölkopf,
and Vladimir Vapnik. 2015. Unifying distilla-
tion and privileged information. arXiv preprint
arXiv:1511.03643.

Ilya Loshchilov and Frank Hutter. 2017. Fixing
weight decay regularization in adam. CoRR,
abs/1711.05101.

Christos Louizos, Max Welling, and Diederik P
Kingma. 2018. Learning sparse neural net-
works through l_0 regularization. arXiv preprint
arXiv:1712.01312.

Seyed-Iman Mirzadeh, Mehrdad Farajtabar, Ang Li,
and Hassan Ghasemzadeh. 2019. Improved knowl-
edge distillation via teacher assistant: Bridging
the gap between student and teacher. CoRR,
abs/1902.03393.

Dragomir Radev, Rui Zhang, Amrit Rau, Abhinand
Sivaprasad, Chiachun Hsieh, Nazneen Fatema Ra-
jani, Xiangru Tang, Aadit Vyas, Neha Verma,
Pranav Krishna, Yangxiaokang Liu, Nadia Irwanto,
Jessica Pan, Faiaz Rahman, Ahmad Zaidi, Murori
Mutuma, Yasin Tarabar, Ankit Gupta, Tao Yu,
Yi Chern Tan, Xi Victoria Lin, Caiming Xiong, and
Richard Socher. 2020. Dart: Open-domain struc-
tured data record to text generation. arXiv preprint
arXiv:2007.02871.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2018. Language
models are unsupervised multitask learners.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. 2016. Squad: 100, 000+ ques-
tions for machine comprehension of text. CoRR,
abs/1606.05250.

Alex Renda, Jonathan Frankle, and Michael Carbin.
2020. Comparing rewinding and fine-tuning in neu-
ral network pruning. CoRR, abs/2003.02389.

Victor Sanh, Thomas Wolf, and Alexander Rush.
2020. Movement pruning: Adaptive sparsity by
fine-tuning. In Advances in Neural Information Pro-
cessing Systems, volume 33, pages 20378–20389.
Curran Associates, Inc.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W. Mahoney, and
Kurt Keutzer. 2019. Q-BERT: hessian based ul-
tra low precision quantization of BERT. CoRR,
abs/1909.05840.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for BERT model com-
pression. CoRR, abs/1908.09355.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142–147.

Vladimir Vapnik. 1998. Statistical learning theory.
Wiley.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. CoRR,
abs/1804.07461.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. CoRR, abs/2002.10957.

Qingru Zhang, Simiao Zuo, Chen Liang, Alexander
Bukharin, Pengcheng He, Weizhu Chen, and Tuo
Zhao. 2022. Platon: Pruning large transformer
models with upper confidence bound of weight im-
portance. In International Conference on Machine
Learning, pages 26809–26823. PMLR.

Giulio Zhou and Gerasimos Lampouras. 2020.
WebNLG challenge 2020: Language agnostic
delexicalisation for multilingual RDF-to-text gen-
eration. In Proceedings of the 3rd International
Workshop on Natural Language Generation from the
Semantic Web (WebNLG+), pages 186–191, Dublin,
Ireland (Virtual). Association for Computational
Linguistics.

Michael Zhu and Suyog Gupta. 2017. To prune, or not
to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878.

9004

https://doi.org/10.18653/v1/2021.acl-long.510
https://doi.org/10.18653/v1/2021.acl-long.510
https://doi.org/10.18653/v1/2021.acl-long.510
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1902.03393
http://arxiv.org/abs/1902.03393
http://arxiv.org/abs/1902.03393
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/2003.02389
http://arxiv.org/abs/2003.02389
https://proceedings.neurips.cc/paper/2020/file/eae15aabaa768ae4a5993a8a4f4fa6e4-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/eae15aabaa768ae4a5993a8a4f4fa6e4-Paper.pdf
http://arxiv.org/abs/1909.05840
http://arxiv.org/abs/1909.05840
http://arxiv.org/abs/1908.09355
http://arxiv.org/abs/1908.09355
https://www.aclweb.org/anthology/W03-0419
https://www.aclweb.org/anthology/W03-0419
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/2002.10957
http://arxiv.org/abs/2002.10957
http://arxiv.org/abs/2002.10957
https://aclanthology.org/2020.webnlg-1.22
https://aclanthology.org/2020.webnlg-1.22
https://aclanthology.org/2020.webnlg-1.22

A Results with More PLMs on subset of
GLUE

In addition the widely used BERT and GPT-2
models, we also perform pruning experiments
upon other two pre-trained language models:
Electrabase and MiniLM12L-384H to further verify
the effectiveness of our method.

Due to computing resource constraint, we re-
strict our experiments on a subset of GLUE
task, including RTE, CoLA and QNLI at 80%
and 90% sparsity. We compare PINS against
IMP and PLATON as two representative baselines
for magnitude-based and sensitivity-based prun-
ing methods. We fix the batch size as 32 and
learning rate as 3e-5 similar to the BERT exper-
iments. We illustrate the pruning results on Ta-
ble 8 and Table 9. At both sparsity levels, PINS
consistently outperforms IMP and PLATON on all
three datasets, verifying the general effectiveness
of PINS for language model pruning.

Sparsity Method RTE
Acc

CoLA
Mcc

QNLI
Acc

0% Fine-tune 73.0 58.5 91.5

80%
IMP 60.5 21.6 87.5
PLATON 68.2 54.1 89.8
PINS (ours) 69.5 54.4 90.4

90%
IMP 57.5 14.1 83.9
PLATON 63.1 38.8 88.0
PINS (ours) 66.2 44.8 88.6

Table 8: Results with MiniLM12L-384H on the GLUE
development set.

Sparsity Method RTE
Acc

CoLA
Mcc

QNLI
Acc

0% Fine-tune 81.9 69.0 93.1

80%
IMP 59.9 11.2 87.5
PLATON 73.6 60.0 91.0
PINS (ours) 75.5 63.7 92.0

90%
IMP 52.9 0.0 83.0
PLATON 69.9 48.0 89.7
PINS (ours) 72.3 49.2 90.2

Table 9: Results with Electrabase on the GLUE devel-
opment set.

B Proof of Theorem 1

Proof. Let ti and tj where ti ≥ tj denote the
time steps at which two different checkpoints are
saved; Let R(fθ(t←ti)) and R(f

θ(t←tj)) denote the
expected generalization error of models learned

from fθ(ti) and f
θ(tj) ; Let n denotes the size of

training data; | · |C denotes a capacity measure like
VC-dimension for function class Fθ. Based on
previous expositions on VC theory, the following
asymptotic generalization bound holds:

R(fθ(t←ti)) = R(fθ(t←ti))−R(fθ(ti))

+R(fθ(ti))

≤ O(
|Fθ(t) |C
nαi

) + ϵt,ti +R(fθ(ti))

= O(
|Fθ(t) |C
nαi

) + inf
f
θ(t)

∈F
θ(t←ti)

R(fθ(t))

︸ ︷︷ ︸
bound(f

θ(t←ti)
)

R(f
θ(t←tj)) = R(f

θ(t←tj))−R(f
θ(tj))

+R(f
θ(tj))

≤ O(
|Fθ(t) |C
nαj

) + ϵt,tj +R(f
θ(tj))

= O(
|Fθ(t) |C
nαj

) + inf
f
θ(t)

∈F
θ
(t←tj)

R(fθ(t))

︸ ︷︷ ︸
bound(f

θ
(t←tj)

)

where ϵt,ti is the approximation error of function
class Fθ(t←ti) with respect to fθ(ti) . ϵt,tj is defined
in analogy. Because: (1) θ(ti) is a later checkpoint
with higher sparsity than θ(tj), we have the learn-
ing speed 1 ≥ αi ≥ αj ≥ 1

2 ; (2) fθ(ti) has lower
generalization error than f

θ(tj) , we have the fol-
lowing inequality holds with high probability:

bound(fθ(t←ti)) ≤ bound(f
θ(t←tj))

C More Post-pruning Analyses

This section presents more visualized analyses of
models sparsified by different pruning methods.

Figure 5 shows the layerwise rank distribution
of BERTbase pruned using different importance
criteria on the RTE dataset. The observation here
is similar to what is discussed in the main body of
the paper: PINS exhibits the lowest average ma-
trix rank in the sparsified model compared to the
other two criteria.

Figure 4 illustrates the weight distribution of
BERTbase pruning using different importance cri-
teria. From the left figure we can see that
magnitude-based pruning tends to keep parame-
ters with high absolute values, which is expected

9005

Figure 4: Weight distributions of BERTbase pruned using different importance criteria on RTE dataset. Left figure
shows the value distribution and the right figure shows how remaining parameters are distributed at different model
layers.

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12

Av
er
ag
e
ra
nk

Layer

RTE
Magnitude Sensitivity Ours

Figure 5: Layerwise rank distribution of BERTbase
pruning using different importance criteria on RTE
dataset.

based on its definition. Sensitivity and PINS pro-
duce similar weight value distribution mainly be-
cause the two methods both contain the gθ term
in their importance calculation. Despite the sim-
ilarity, we can still observe that PINS produces
smoother distribution than sensitivity and covers
more weights with larger absolute values.

The right figure shows the layerwise distribu-
tion of remaining parameters after pruning. A
clear trend is that PINS tends to retain more pa-
rameters in the middle layers (4-7), which also co-
incided with the inter-model sparsity pattern anal-
ysis in the main body of our paper. Both sensitivity
and PINS remove a large proportion of parameters
in the top layers (10-12) while magnitude-based
pruning has no preference for model layers.

D Sparsity Scheduler

The proportion of remaining weights is controlled
by the sparsity scheduler, here we adopt the com-
monly used cubic sparsity schedule to progres-
sively reach target sparsity, i.e., r(t) at time step
t within the maximum time steps T is given by:

ri t ∈ [0, ti)

rf + (ri − rf)(
T−tf−t
T−tf−ti

)3 t ∈ [ti, T − tf)

rf otherwise
(14)

where ri = 1.0, rf is the final percent of remained
parameters, ti and tf are the warmup and cool-
down steps.

E Accelerating Inference and Reducing
Storage

We attain practical efficiency gain in terms of in-
ference time and disk storage space using dif-
ferent sets of off-the-shelf techniques. Specifi-
cally, we use DeepSparse2, a sparsity-aware in-
ference runtime to accelerate inference of sparse
model on CPUs. We also utilize the Pytorch built-
in quantization function3 and Compressed Sparse
Row (CSR) format4 to achieve a much smaller
disk space requirement.

2https://github.com/neuralmagic/
deepsparse

3https://pytorch.org/docs/stable/
quantization.html

4https://github.com/huggingface/block_
movement_pruning/blob/master/Saving_
PruneBERT.ipynb

9006

https://github.com/neuralmagic/deepsparse
https://github.com/neuralmagic/deepsparse
https://pytorch.org/docs/stable/quantization.html
https://pytorch.org/docs/stable/quantization.html
https://github.com/huggingface/block_movement_pruning/blob/master/Saving_PruneBERT.ipynb
https://github.com/huggingface/block_movement_pruning/blob/master/Saving_PruneBERT.ipynb
https://github.com/huggingface/block_movement_pruning/blob/master/Saving_PruneBERT.ipynb

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

6

� A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
4.1.1

�3 B1. Did you cite the creators of artifacts you used?
4.1.1

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Not applicable. Left blank.

�7 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Left blank.

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Left blank.

�7 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
4.1.1;4.1.3

C �3 Did you run computational experiments?
4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
4.1.2

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

9007

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
4.1.3

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
4.2

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
4.2

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

9008

