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Abstract

Collecting labeled data for Named Entity
Recognition (NER) tasks is challenging due to
the high cost of manual annotations. Instead, re-
searchers have proposed few-shot self-training
and rule-augmentation techniques to minimize
the reliance on large datasets. However, induc-
tive biases and restricted logical language lexi-
con, respectively, can limit the ability of these
models to perform well. In this work, we pro-
pose CoAug, a co-augmentation framework that
allows us to improve few-shot models and rule-
augmentation models by bootstrapping predic-
tions from each model. By leveraging rules
and neural model predictions to train our mod-
els, we complement the benefits of each and
achieve the best of both worlds. In our exper-
iments, we show that our best CoAug model
can outperform strong weak-supervision-based
NER models at least by 6.5 F1 points on
the BC5CDR, NCBI-Disease, WikiGold, and
CoNLL-2003 datasets.1

1 Introduction

Named Entity Recognition (NER) is the task of
identifying entity spans of specific types in a given
document. While deep learning has led to the de-
velopment of highly performant supervised NER
models (Ma and Hovy, 2016; Lample et al., 2016;
Devlin et al., 2019), their performance is contin-
gent on the availability of high-quality large labeled
datasets, which is often expensive to collect. More-
over, it is impractical to assume the availability
of large datasets for all domains. Hence, learning
from limited labeled data is a pressing challenge
in named entity recognition research. The majority
of research in this area can be broadly classified
into two distinct paradigms: few-shot learning with
pre-trained language models (LMs) and weak su-
pervision methods that utilize heuristic rules for
entity extraction.

∗ Work done during an internship at Bosch Research.
1 Code: https://github.com/boschresearch/CoAug
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Figure 1: Illustration of the CoAug framework.

In few-shot learning, models are trained to iden-
tify novel entities given just a few labeled exam-
ples for each entity type. While pretrained LMs
have been explored for this setting, their suscep-
tibility to overfitting on small datasets results in
poor performance. Consequently, recent works
improve recognition using prototypical networks
(ProtoBERT, Tänzer et al., 2022), improved repre-
sentations from self-supervised pre-training of LMs
(QuIP, Jia et al., 2022), and self-training (Huang
et al., 2021). In the iterative learning process of
self-training, many candidate entities are extracted
and added into the training set for future iterations.
However, premature models from initial iterations
also add erroneous entities to the training set, re-
sulting in models whose performance lags behind
fully-supervised models that utilize large labeled
datasets.

On the other hand, rule-based weak supervision
methods utilize heuristic rules and manual lexicons
(Shang et al., 2018; Peng et al., 2019) developed
by domain experts to supervise entity recognition
models. However, experts may find it challeng-
ing to enumerate all possible heuristics, which can
limit the diversity of identified entities in docu-
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ments. In recent work, TaLLOR (Li et al., 2021)
overcomes this limitation by automatically learn-
ing rules given unlabeled data and an initial set
of seed rules (tens of rules). Nonetheless, while
rule-based methods offer high precision, their per-
formance is constrained by the logical language
specified by the developer, which limits the set of
identifiable entities. Moreover, learning rules can
fail to identify entities in new linguistic contexts
that would otherwise be known.

We hypothesize that the two paradigms of few-
shot learning and rule-based weak supervision can
effectively complement each other, as neural mod-
els are skilled at identifying candidates from differ-
ent linguistic contexts but lack precision, while rule-
based methods can identify accurate candidates
with precision but lack the flexibility to identify en-
tities in different contexts. Therefore, in this work,
we propose Co-Augmentation (CoAug), as shown
in Figure 1, an iterative bootstrapping framework
that effectively combines neural models, rule-based
weak supervision methods, and unlabeled data.

Our proposed framework draws inspiration from
co-training (Blum and Mitchell, 1998), but it has
its own unique approach. Like co-training, CoAug
aims to combine two distinct inductive biases in
limited labeled data settings. Unlike co-training,
instead of improving two models that use different
feature sets individually by bootstrapping labels
from each other, CoAug accomplishes the same goal
by using two models that use different forms of
supervision to expand the same label set. Addition-
ally, in each iteration of CoAug, both classifiers are
trained with the predictions made by both models,
rather than just one. Our choice allows the frame-
work to function from really small initial training
sets for the individual models.

We evaluate our approach on four named entity
recognition datasets that span general and science
domains. Our results indicate that (a) CoAug consis-
tently improves performance over self-training rule-
augmentation and few-shot models while being
highly precise, (b) utilizing stronger pre-training
for the neural models leads to improved perfor-
mance of models in our framework.
In summary, our contributions are as follows:

• We present CoAug, a co-augmentation frame-
work that leverages both rule-augmentation
and label-augmentation approaches for NER.

• Experimental results show that CoAug can per-
form better than prior rule-based methods on

four datasets in two domains.
• We provide a brief analysis of factors that con-

tribute towards the success of CoAug.

2 CoAug

In this work, we consider a setting where we have
access to an initial set of seed rules, S , and a large
unlabeled corpus, U , to perform the named entity
recognition task. Applying the rules, S, on U pro-
vides the initial set of labeled examples, L, to train
models in our framework.

Our framework, CoAug (short for Co-
Augmentation), iteratively improves the per-
formance of two models by leveraging the
bootstrapped predictions on unlabeled data by each
model. Given that prior work in low-resource NER
focuses on two parallel tracks of rule-augmentation
and few-shot learning methods that do not interact
with each other, we instantiate CoAug with a
rule-augmentation model and a few-shot model
to leverage the best of both paradigms. We refer
to these components of our framework as Rule
Augmenter and Label Augmenter (Figure 1).
In the subsections below, we describe the Rule
Augmenter and Label Augmenter modules.

2.1 Rule Augmenter

Algorithm 1 TaLLOR

Require: U = {x1:N} unlabeled examples
Require: R = {S} rules initialized with seed rules
Require: C = {c1:M} candidate rules

Initialize: L = {}
for t in (1, . . . , T ) do

// Apply rules to get weak-label set
W = RULEAPPLIER(R,U)
// Filter accurate examples
W = LABELSELECTOR(W)
L = L ∪W
U = U \ L
// Train NEURAL NER MODEL
M ← TRAIN(M , L)
// Label using NEURAL NER MODEL
LM ← PREDICT(M,U)
// Select High-precision Rules
RS ← RULESELECTOR(LM , C)
C = C \ RS

R← R∪RS

end for

The primary function of the Rule Augmenter
is to automatically learn labeling rules from unla-
beled data and use them to generate weak labels
for training a neural model. In this work, we instan-
tiate the rule augmenter module using the TaLLOR
framework. Accordingly, our rule augmenter has
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the following subcomponents: (a) RULE APPLIER

that applies rules over unlabeled data to generate
weak labels, (b) LABEL SELECTOR that filters the
most accurate examples based on the similarity
of averaged token-level BERT (Devlin et al., 2019)
representations of proposed entities to the repre-
sentations of previously identified entities of the
same label in the training set, (c) NEURAL NER
MODEL that is trained on the accurate instances
and proposes new entities in the unlabeled data
that can be used to develop new rules, and (d)
RULE SELECTOR that scores candidate labeling
rules and selects high-precision rules that satisfy
the predictions from the NEURAL NER MODEL.
We summarize the iterative process of automatic
rule identification by TaLLOR in Algorithm 1.

2.2 Label Augmenter

The Label Augmenter module consists of a NEU-
RAL MODEL that learns to perform entity recogni-
tion with minimal supervision and LABEL SELEC-
TOR that selectively adds the weak labels proposed
by the NEURAL MODEL into the training set for
the next iteration.

Algorithm 2 Label Augmenter
Require: U = {x1:N} unlabeled examples
Require: L = {S} rules initialized with seed rules
Require: β0, β1 ▷ initial threshold and increment

Initialize: L = R(U)
for t in (1, . . . , T ) do

// Train NEURAL MODEL
M ← TRAIN(M ,L)
// Label using NEURAL MODEL
LM ← PREDICT(M,U)
// Select Examples Using Adaptive Threshold
LM ← LABELSELECTOR(LM , β0 + t× β1)
L = L ∪ LM

end for

In this work, we experiment with two instan-
tiations of the NEURAL MODEL using recent
few-shot NER models, namely, ProtoBERT and
QuIP. We use an adaptive threshold for the Label
Selector to filter out low-quality, weakly labeled
instances. Initially, we add 20% of the proposed
instances from the Neural Model to the training set.
Then, as the model becomes more confident in its
predictions over iterations, we gradually increase
the proportion of instances incorporated, with a
5% increase per iteration. We summarize the label
augmenter algorithm in Algorithm 2.

We provide an outline for the CoAug algo-

Algorithm 3 CoAug algorithm
Require: U = {x1:N} unlabeled examples
Require: R = {S} rules initialized with seed rules
Require: RuleAugmenterM1, LabelAugmenterM2

L = R(U)
for t in (1, . . . , T ) do
U = U \ L
// Training the Rule Augmenter section
M1 ← TRAIN(M1 , L)
R← R∪ UPDATERULES(M1)

▷ Select high-precision rules
L = L ∪R(U) ▷ Add examples after applying rules
// Training the Label Augmenter section
M2 ← TRAIN(M2 , L)
W ← HIGHCONFWEAKLABEL(M2 , U )

▷ Select high-confident weak-labels
L = L ∪W

end for

rithm in Algorithm 3. In each training iteration,
we alternatively train the Rule Augmenter and
Label Augmenter models. Different from co-
training (Blum and Mitchell, 1998), in CoAug,
the Rule-Augmenter (Label-Augmenter) utilizes
the examples that have been labeled by the
Rule-Augmenter (Label-Augmenter) and the
Label-Augmenter (Rule-Augmenter) to improve
its entity recognition performance over iterations.

3 Experiments

3.1 Experimental Settings

We evaluate our framework on four popular
datasets that are composed of two science-domain
and two general-domain datasets. Following Li
et al. (2021), we utilize the training data without
labels as our unlabeled data. Further, for all experi-
ments, we use a set of 20 initial seed rules. These
rules specify highly frequent entities for each cate-
gory within a dataset.

BC5CDR (Li et al., 2016) contains 1,500
PubMed abstracts with manual annotations for dis-
ease and chemical entity mentions. The abstracts
are split equally among train, dev, and test sets
(500/500/500).

NCBI-Disease (Doğan et al., 2014) contains 793
PubMed abstracts with manual annotations for dis-
ease entity mentions. The abstracts are split as
593/100/100 for train, dev, and test sets.

CoNLL2003 (Tjong Kim Sang and De Meul-
der, 2003) contains about 20,744 sentences from
Reuters news articles. We split the data into
14,987/3,469/3,685 sentences for the train, dev, and
test set. Additionally, for our experiments, we only
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Method BC5CDR CoNLL-2003 NCBI-Disease WikiGold
TaLLOR (Li et al., 2021) 59.4(3.2) 50.3(9.6) 39.3(1.5) 23.7(4.3)
ProtoBERT (Tänzer et al., 2022) 33.1(3.5) 47.3(2.9) 25.5(4.4) 37.3(3.8)
CoAug (TaLLOR + ProtoBERT) 64.4(1.5) 65.0(0.8) 46.8(3.5) 50.6(2.1)
QuIP (Jia et al., 2022) 64.9(1.7) 70.6(3.7) 75.3(0.7) 43.6(2.3)
CoAug (TaLLOR + QuIP) 65.9(1.5) 76.8(2.0) 50.5(4.9) 51.8(2.8)

Table 1: Test set F1 scores of models on BC5CDR, CoNLL-2003, NCBI-Disease, and WikiGold datasets. Numbers
reported in each cell correspond to the mean and standard deviation of five runs. Bold numbers indicate the
best numbers relative to component models. From the results, we can see that utilizing CoAug can help models
outperform their single-model counterparts by a large margin in most cases. Our strongest model, CoAug with QuIP,
outperforms the weak-supervision baseline, TaLLOR, by a large margin and QuIP on three out of four datasets.

consider the Person, Location, and Organization
entities2 following Li et al. (2021).

WikiGold (Balasuriya et al., 2009) contains
1,696 sentences from Wikipedia articles with an-
notations for Person, Location, and Organization
entity categories similar to CoNLL2003. We split
the dataset into 1,142/280/274 sentences for the
train, dev, and test sets.

We evaluate two instantiations of the CoAug
framework where the Rule Augmenter uses
TaLLOR, and the Label Augmenter uses either
ProtoBERT/QuIP. For baselines, our main experi-
ments compare CoAug against TaLLOR, self-trained
ProtoBERT, and self-trained QuIP. Our code is im-
plemented in Pytorch (Paszke et al., 2019) using
the Huggingface library (Wolf et al., 2020). For
the Rule Augmenter section, all experimental hy-
perparameters follow that from Li et al. (2021).
Notably, we use the same hyperparameters for the
NCBI-Disease, and WikiGold datasets as Li et al.
(2021) did for BC5CDR and CoNLL2003. For
science-domain datasets, we utilize SciBERT-base
(Beltagy et al., 2019) as the base for the ProtoBERT
model and BERT-base (Devlin et al., 2019) other-
wise. We do not make any such distinctions for
QuIP as it is a specially fine-tuned RoBERTa-large
(Liu et al., 2019) model designed to perform well
on extraction-based tasks (Jia et al., 2022). We re-
port the hyperparameters used for all experiments
in more detail in Appendix C.

3.2 Results and Analysis
3.2.1 Main Results
Table 1 reports the test set F1 scores for all models
on each of the four datasets. We observe that CoAug
with QuIP/ProtoBERT outperforms TaLLOR on all 4
datasets substantially (average F1 on WikiGold for

2skipping entities from the Miscellaneous category.

CoAug is more than 2× TaLLOR). Further, we also
observe that utilizing the co-augmentation frame-
work as opposed to self-training also aids models
to produce similar results more reliably, as indi-
cated by the variance of the results (in 3 out of
4 datasets). Further, we also observe that utiliz-
ing larger few-shot models, such as QuIP (which
has a RoBERTa-large base), is complementary to
our framework and continues to push the NER per-
formance further. On comparing with QuIP, we
observe that CoAug with QuIP performs better on 3
out of 4 datasets.

However, on the NCBI-Disease dataset, we ob-
serve that QuIP outperforms CoAug by a consider-
able margin. On analysis, we identify that QuIP
adds too many incorrect instances during the ini-
tial few iterations for this dataset. Consequently,
the rule augmenter selects rules that lose precision,
and the overall quality of examples in CoAug dete-
riorates. Nonetheless, since entity recognition for
this dataset is hard for TaLLOR as well, we observe
some improvement from using CoAug. Future work
should look to address the issue of controlling can-
didates from neural models in order to maintain the
reliability of the high-precision set.

In Figure 2, we identify that the success of CoAug
over high-precision rule-augmentation approaches,
such as TaLLOR, lies in its ability to identify more
instances in the unlabeled that improve precision
as well as recall over TaLLOR.

3.2.2 Effect of Task-aligned Pre-training
In this subsection, we analyze the contribution of
pre-training strategies towards the performance of
CoAug. Specifically, we ablate the effect of chang-
ing the pre-training initialization from QuIP to that
of RoBERTa-large, the base model for QuIP. As
shown in Table 2, the performance of CoAug with
RoBERTa-large lags far behind the performance
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Figure 2: Validation statistics for CoAug +QuIP and TaLLOR over iterations for one run of the CoNLL2003 dataset.
CoAug +QuIP identifies more high-precision positive instances from the unlabeled data than TaLLOR while also
maintaining high precision.

Model BC5CDR CoNLL2003

CoAug (TaLLOR + RoBERTa) 45.6(0.1) 64.4(0.2)
CoAug (TaLLOR + QuIP) 65.9(1.5) 76.8(2.0)

Table 2: Test set performance of CoAug-QuIP and CoAug-
RoBERTa models on the BC5CDR and CoNLL 2003
datasets. Results reported are the mean and standard
deviation of five runs. QuIP initialization provides a
boost to the performance of CoAug.

of CoAug with QuIP. On BC5CDR, we observe that
the CoAug with RoBERTa-large performs poorly
in comparison to TaLLOR as well. This indicates
that any form of task-aligned pre-training, such as
QuIP, can help design NER models for a diverse
domain of tasks which corroborates some of the
earlier work in task-adaptive pre-training (Gururan-
gan et al., 2020).

4 Conclusion

In this work, we introduce CoAug, a co-
augmentation framework that utilizes unlabeled
data to train rule-augmentation and neural-
augmentation models to become better NER tag-
gers. Our results on datasets from two domains
demonstrate the effectiveness of CoAug for low-
resource domains. Our analysis reveals that CoAug
is able to perform better than weak-supervision
methods like TaLLOR because of an ability to find
more positive instances while maintaining high pre-
cision. Further analysis shows the importance of
factors such as the strength of pre-training that
can contribute towards the success of models in
domain-specific datasets.

Limitations

We observe that although CoAug outperforms base-
lines on multiple datasets, it is still prone to errors

that emerge from the bootstrapping process. Specif-
ically, our framework utilizes models to augment
weak labels to the training set, and if the proposals
are extremely noisy, training on noisy examples
in future iterations will further exacerbate the abil-
ity of the framework to identify entities with high
precision. Incorporating constraints to preserve
the quality of the pseudo-labeled data (Shrivastava
et al., 2012) is an exciting direction for future work
in low-resource named-entity recognition.

Ethics Statement

All our experiments are performed over publicly
available datasets. We do not use any identifiable
information about crowd workers who provide an-
notations for these datasets. Neither do we perform
any additional annotations or human evaluations in
this work. We do not foresee any risks using CoAug
if the inputs to our model are designed as per our
procedure. However, our models may exhibit un-
wanted biases that are inherent in pre-trained lan-
guage models. This aspect is beyond the scope of
the current work.
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A Related Work

Weakly-supervised NER. Utilizing distant su-
pervision in the form of knowledge bases or typed
lexicons dates back to the work of Mintz et al.
(2009). However, obtaining pre-defined lexicons
for all domains is challenging. Therefore, more
recent work proposes to use manually-defined la-
beling functions to provide weak labels for docu-
ments at scale (Bach et al., 2017). Safranchik et al.
(2020); Lison et al. (2020) have proposed improved
techniques for leveraging such labeling functions
to derive weak labels for entities. However, ex-
haustively defining labeling functions to identify
entities can be a cumbersome task, even for domain
experts. Hence, TaLLOR (Li et al., 2021) introduces
an automatic technique for learning rules through
an iterative approach of proposing weak labels
and new rules for entity extraction. More recently,
GeNER (Kim et al., 2021) utilizes DensePhrases
(Lee et al., 2021) to query Wikipedia for docu-
ments that contain entities from desired categories.
However, Wikipedia may not contain enough in-
formation for new emerging domains or even new
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languages. In contrast, CoAug can be applied in
such situations as well using few rules and some
unlabeled datasets.

Co-training. In co-training (Blum and Mitchell,
1998), given two views of an input that are condi-
tionally independent of each other given the true
label, classifiers learned over both views can be
improved by bootstrapping the performance of
each view iteratively with unlabeled data. Some
recent studies suggest, however, that the condi-
tional independence assumption of the views can
be relaxed when the models are “different enough"
(Balcan et al., 2004; Goldman and Zhou, 2000).
Within language processing methods, co-training
has been used for cross-lingual adaptation (Yu
and Joty, 2021) and improving prompt-based tech-
niques (Lang et al., 2022). In our work, we improve
named entity recognition with a combination of
rule-augmentation and neural-augmentation tech-
niques.

B Background

Re-iterating, we consider a setting where we have
access to an initial set of seed rules, S , and a large
unlabeled corpus, U , to perform the named entity
recognition tasks. Applying the initial set of rules
on U provides an initial set of labeled examples, L,
to train models in our framework.

B.1 TaLLOR

Our work primarily builds on top of the TaLLOR
framework introduced in Li et al. (2021). In
TaLLOR, a neural model is trained on L to provide
weak labels for the potential entities present in U .
Based on the computed weak labels, a Rule Selec-
tor module proposes new labeling rules that align
well with the weak labels while maintaining high
precision for entity recognition. Finally, the newly
proposed rules are used to label more examples in
U , and the process is repeated over many iterations.
At the end of training, TaLLOR is evaluated by the
neural model’s performance on the test set of the
corresponding task. For more details on TaLLOR,
we refer the reader to (Li et al., 2021).

C Experiment Hyperparameters

Across all datasets, we limit the span of the entities
to 5 tokens.

Following Li et al. (2021), the neural model in
the Rule-Augmentation model is initialized with
a BERT-base/ SciBERT-base model depending on

the domain of the dataset. During training, we use
a minibatch size of 32 with the Adam optimizer
(Kingma and Ba, 2015), a learning rate of 2e−5,
and perform gradient clipping (clipped at norm of
5.0) to stabilize training.

Dataset Category Question Prompt
BC5CDR Chemical What is a chemical

compound?
Disease What is a disease?

CoNLL2003/
WikiGold

Person Who is a person?
Location What is a location?
Organization What is an organiza-

tion?
NCBI-Disease Disease What is a disease?

Table 3: Question prompts used for token classification
head initialization in QuIP.

For the Label-Augmenter model, we utilize two
models: ProtoBERT and QuIP. Since these mod-
els have different characteristics, we utilize a dif-
ferent set of hyperparameters to fine-tune each
model for our task. Specifically, for the ProtoBERT
model, we use the AdamW (Loshchilov and Hutter,
2019) optimizer, a learning rate of 1e−4, and apply
weight decay of 1e−2 for all parameters except
the layer-norm weights. For QuIP, we follow the
recommendations from Jia et al. (2022) and adopt
a learning rate of 2e−5 with the AdamW optimizer
for fine-tuning. Further, we initialize the token
prediction head for the NER task using question
prompt embeddings from this model. The set of
questions we use for the different datasets has been
summarized in Table 3.
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