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Abstract

In this work, we enhance higher-order graph-
based approaches for span-based semantic role
labeling (SRL) by means of structured model-
ing. To decrease the complexity of higher-order
modeling, we decompose the edge from pred-
icate word to argument span into three differ-
ent edges, predicate-to-head (P2H), predicate-
to-tail (P2T), and head-to-tail (H2T), where
head/tail means the first/last word of the se-
mantic argument span. As such, we use a
CRF-based higher-order dependency parser
and leverage Mean-Field Variational Inference
(MFVI) for higher-order inference. More-
over, since semantic arguments of predicates
are often constituents within a constituency
parse tree, we can leverage such nice struc-
tural property by defining a TreeCRF distribu-
tion over all H2T edges, using the idea of par-
tial marginalization to define structural training
loss. We further leverage structured MFVI to
enhance inference. We experiment on span-
based SRL benchmarks, showing the effective-
ness of both higher-order and structured mod-
eling and the combination thereof. In addi-
tion, we show superior performance of struc-
tured MFVI against vanilla MFVI. Our code
is publicly available at https://github.com/
VPeterV/Structured-MFVI.

1 Introduction

Semantic role labeling (SRL) aims to recognize
the predicate-argument structures for a given sen-
tence. SRL structures have found various applica-
tions in downstream natural language understand-
ing tasks, e.g., machine translation (Marcheggiani
et al., 2018), question answering (Khashabi et al.,
2018), machine reading comprehension (Zhang
et al., 2020c).

There are two types of formalisms in SRL,
namely dependency-based and span-based SRL,
where the argument is a word in the former case
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and a contiguous sequence of words (i.e., a span)
in the latter case. Span-based SRL is more difficult
as it needs to identify two boundaries of a span
instead of an argument word, resulting in a much
larger search space. We focus on span-based SRL
in this work.

Span-based SRL is traditionally tackled by BIO-
based sequence labeling approaches (Zhou and Xu,
2015). Later, researchers turn to graph-based meth-
ods (He et al., 2018; Ouchi et al., 2018; Li et al.,
2019) wherein graph nodes are argument spans and
predicate words. Recently, researchers show that
higher-order graph-based methods achieve state-of-
the-art performance (Jia et al., 2022; Zhou et al.,
2022; Zhang et al., 2022). For higher-order graph-
based methods, the main difficulty is that there
are in total O(n3) predicate-argument pairs and
thereby O(n5) second-order parts (Jia et al., 2022),
making them computationally infeasible to model.
To resolve this issue, Jia et al. (2022) prune the
number of candidate argument spans from O(n2)
to O(n), and consequently, reduce the number
of second-order parts from O(n5) to O(n3). On
the other hand, Zhou et al. (2022) decompose the
original edge (between the predicate word and
the argument span) into two word-to-word edges,
namely predicate-to-head (predicate word to the
first word of argument span, P2H) and predicate-
to-tail (predicate word to the last word of argument
span, P2T), so the total number of second-order
parts reduces from O(n5) to O(n3) as well. Both
of these two works use Conditional Random Fields
(CRF) for probabilistic modeling and Mean-Field
Variational Inference (MFVI) for higher-order sta-
tistical inference in cubic time. Without MFVI,
exact higher-order inference with CRF is NP-hard.
Moreover, MFVI is fully differentiable and thus
can be incorporated into neural networks as an
RNN layer (Zheng et al., 2015) for end-to-end
training. Hence, MFVI becomes increasingly pop-
ular in solving NLP structured prediction tasks
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together with higher-order CRF-based modeling
(Wang et al., 2019; Wang and Tu, 2020; Zhou et al.,
2022).

Besides higher-order modeling, structured mod-
eling has also been shown to be useful in span-
based SRL (Zhang et al., 2021; Liu et al., 2022).
Span-based SRL has a nice structural property that
argument spans would not cross to each other in
general 1, since gold annotations of argument spans
are mostly extracted from existing constituency
parse trees. As such, we can build a partially-
observed constituency parse tree (Fu et al., 2021)
wherein observed nodes correspond to gold argu-
ment spans. Notably, this is also the case for nested
named entity recognition (Fu et al., 2021; Lou et al.,
2022) and coreference resolution (Liu et al., 2022).
To leverage such structural information (for free)
while eliminating the need of obtaining full con-
stituency parse trees (which could be expensive),
prior works perform latent-variable probabilistic
modeling with partial marginalization based on
dynamic programming (i.e., the inside or CKY al-
gorithm for full constituency parsing).

Concretely, they train a span-based TreeCRF
model (Zhang et al., 2020b), either maximizing the
probabilities of all compatible trees (to the set of
observed arguments or entity spans) via the masked
inside algorithm (Fu et al., 2021; Lou et al., 2022)
or defining training loss based on span marginal
probabilities (Liu et al., 2022). These works show
that structured modeling indeed improves perfor-
mance for aforementioned tasks.

Our desiderata in this work is to combine the
best of two worlds, performing joint higher-order
and structured modeling in a probabilistically prin-
cipled manner under the CRF framework. To de-
crease the high complexity of higher-order infer-
ence, we use a strategy similar to Zhou et al. (2022)
and introduce an additional type of edges for mod-
eling argument spans, namely head-to-tail (the first
word to the last word of the argument span, H2T).
Without H2T edges, there could be potential ambi-
guities in the decoding process. More importantly,
H2T edges are the bridge for structured model-
ing, on which we define a span-based TreeCRF
distribution. To combine higher-order and struc-
tured modeling, inspired by (Domke, 2011; Blon-
del et al., 2020), we perform MFVI for several steps
to obtain approximated marginals, on which we de-

1However, there could still be a very few number of coun-
terexamples. See (Liu et al., 2022).

fine structured loss for the argument span parts.
However, (vanilla) MFVI uses fully-factorized dis-
tributions to approximate the otherwise complex
true posterior, damaging the quality of higher-order
inference. To solve this issue, we further adopt
structured MFVI (Wainwright and Jordan, 2008b)
to enhance inference, leveraging the underlying
tree structures of argument spans for more delicate
structured modeling.

We experiment on two benchmarks of span-
based SRL: ConLL05 and ConLL12, obtaining
state-of-the-art performances on five out of six
evaluation metrics. Ablation studies confirm the
effectiveness of both higher-order and structured
modeling, their combination thereof, and the use
of structured MFVI.

2 Method

2.1 Graph encoding and decoding

For each edge connecting a predicate-argument
pair, we decompose it into three edges: a P2H edge
from predicate to the first word of argument span,
a P2T edge from predicate to the last word of ar-
gument span, and a H2T edge from the first word
to the last word of argument span. Fig. 1 shows
an example. After transformation, we build a large
graph consisting of three subgraphs, and adopt a
two-stage strategy for decoding. In the first stage,
we predict unlabeled dependency edges, and then
find out all predicate-argument pairs whose corre-
sponding three types of edges are all correctly pre-
dicted. As such, our model does not have ambiguity
problems in the decoding process, while Zhou et al.
(2022) need to propose another constrained Viterbi
algorithm to resolve such ambiguities, which is un-
necessary when H2T edges are incorporated (Wang
et al., 2020). In the second stage, we predict the
corresponding label of predicted pairs based on the
representations of predicate and argument span.

2.2 Higher-order Modeling

2.2.1 Scoring
For a sentence of length n, we use three indi-
cator matrices (whose entries are either 0 or 1)
yH , yT , yA ∈ Rn×n to represent P2H, P2T, and
H2T edges, respectively. For example, yHij = 1 iff
there is an P2H edge (i, j), and yHij = 0 otherwise.
We use y = [yH ; yT , yA] ∈ Rn×3n to represent the
entire (multi)graph.

We first define the first-order edge-factorized
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(a) Original span-based SRL (b) H2T edge after decomposition

(c) P2H edge after decomposition

EliantiMs. Haag plays .

A0 A1

EliantiMs. Haag plays .

EliantiMs. Haag plays .

A0 A1

(d) P2T edge after decomposition

EliantiMs. Haag plays .

A0 A1

Figure 1: An example of span-based SRL. We transform predicate-argument pairs into three different types of edges,
casting span-based SRL as a dependency graph parsing problem. Figure (a) is original predicate-argument pairs,
where phrases or words included inside boxes with dash line are argument spans. Figure (b)-(d) are corresponding
edges after decomposition.

a b c a b c ba c

(a) sibling (b) grandparent (c) co-parent

Figure 2: Three different higher-order relationships.

score for y:

s1o(y) =
∑

ij

(sHij y
H
ij + sTijy

T
ij + sAijy

A
ij)

Then we consider the following higher-order
scores based on sibling (sib), co-parent (cop), and
grandparent (gp) relationships (Fig. 2):

• sh,sibij,ik , s
h,cop
ik,jk : sibling and co-parent scores be-

tween two P2H edges.

• st,sibij,ik, s
t,cop
ik,jk: sibling and co-parent scores be-

tween two P2T edges.

• sa,gpij,jk, sa,copik,jk : scores between a P2H or a P2T
edge and a H2T edge.

For example, sa,gpij,jk measures how likely a P2H
edge (i, j) and a H2T edge (j, k) coexist. Since
i → j → k forms a grandparent relationship, we
mark the score with a gp suffix.

The total second-order scores 2 for each type are:

s2o,h(y) =
1

2
(
∑

ijk

sh,sibij,ik y
H
ij y

H
ik +

∑

ijk

sh,copik,jk y
H
iky

H
jk)

s2o,t(y) =
1

2
(
∑

ijk

st,sibij,iky
T
ijy

T
ik +

∑

ijk

st,copik,jky
T
iky

T
jk)

s2o,a(y) =
∑

ijk

sa,gpij,jky
H
ij y

A
jk +

∑

ijk

sa,copik,jky
T
iky

A
jk

2We force higher-order scores to be symmetric, e.g.,
st,sibij,ik = st,sibik,ij , using the strategy of (Wang et al., 2019).
We multiple 1

2
for s2o,h, s2o,t because sibling and co-parent

scores are symmetric w.r.t. yH/T and thus are computed twice.

Finally, the score of y is the sum of the first-order
score and all the higher-order scores:

s(y) = s1o(y) + s2o,h(y) + s2o,t(y) + s2o,a(y)

2.2.2 CRF and MFVI
We define a conditional random field (CRF) over
all possible y:

p(y) =
exp(s(y))

Z

where Z is the partition function. Since Z is in-
tractable to compute, we resort to MFVI to gen-
erate lower bounds of Z and thus obtain approx-
imations to the true marginals (Wainwright and
Jordan, 2008b), and then define the loss in terms of
the approximated marginals (posteriors) (Domke,
2011).

MFVI uses simple and tractable posterior dis-
tribution family 3 {pθ0}θ0 to approximate the true
posterior. There is a one-to-one correspondence
between an instantiation pθ0 and a mean-vector
(i.e., marginal) µ0 (Wainwright and Jordan, 2008b,
Prop. 3.2), and we denote the set of all realizable
mean-vectors as M, i.e., the marginal polytope.
Wainwright and Jordan (2008b); Lê-Huu and Kar-
teek (2021) show that MFVI update is equal to the
following variational representation:

y(m+1) = argmax
y∈M

⟨Q(m), y⟩ −A⋆
M(y) (1)

where m is the iteration number; Q(m) :=
∇s(y(m)) is the gradient of s(y(m)) w.r.t. y(m);
⟨·⟩ is inner product; A⋆

M is the conjugate dual func-
tion satisfying that:

A⋆
M(y) = −H(pθ(·))

3We assume it is parameterized as a minimal exponential
family.
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for some pθ0 coupled to y (Wainwright and Jor-
dan, 2008b, Thm. 3.4) and H denotes the entropy
thereof.

Vanilla mean-field uses a fully-factorized poste-
rior distribution (i.e., product of Bernoulli distribu-
tion) to approximate the true posterior distribution.
Therefore, in this case M = [0, 1]n×3n, and

A⋆
M(y) =

∑

ij

yij log yij + (1− yij) log(1− yij)

Then Eq. 1 is the variational representation of
sigmoid function (Wainwright and Jordan, 2008b,
Example 5.2) and thus the solution is attained at:

y
(m+1)
ij =

exp{Q(m)
ij }

exp{Q(m)
ij }+ 1

= sigmoid(Q
(m)
ij ) (2)

Recall that Q(m) = [QH(m);QT (m);QA(m)] =
∇s(y(m)), we have:

Q
H(m)
ij = sHij +

∑

k

(y
A(m)
jk sa,gpij,jk+

y
H(m)
ik sh,sibij,ik + y

H(m)
kj sh,copij,kj )

(3)

Q
T (m)
ij = sTij +

∑

k

(y
A(m)
kj sa,copij,kj +

y
T (m)
ik st,sibij,ik + y

T (m)
kj st,copij,kj)

(4)

Q
A(m)
ij = sAij +

∑

k

(y
H(m)
ki sa,gpki,ij+

y
T (m)
kj sa,copij,kj )

(5)

We use Q(0) := [sH ; sT ; sA] for initialization.
Then MFVI performs Eq. 2 (posterior update) and
Eq. 3-5 (score aggregation) alternately in each iter-
ation. Note that these steps are fully differentiable,
so one can unroll several inference steps for end-
to-end learning (Domke, 2011).

2.3 Structured Modeling
A key observation provided by Liu et al. (2022) is
that semantic-argument spans are often constituents
in a constituency tree. It is thus beneficial to model
the underlying partially-observed constituency tree
(Fu et al., 2021), in which the observed nodes cor-
respond to gold semantic arguments. We follow
Lou et al. (2022) to use a 0-1 labeling strategy, i.e.,
assigning label 1 to the observed parts and 0 to
the unobserved parts of a partially-observed tree t,

and use an order-3 binary tensor T ∈ Rn×n×2 to
represent t where Tijk = 1 iff there is a span from
xi to xj with label k ∈ {0, 1} in t. Then we define
the score as:

s(T ) =
∑

ijk

Tijksijk

where s ∈ Rn×n×2 is all span scores. Denote the
set of gold unlabeled semantic argument spans as
y = {(i, j) · · · }, and the set of compatible tree
indicators as T̃ (y). We say T ∈ T̃ (y) iff Tij1 = 1
for all (i, j) ∈ y, Tij0 = 1 for all rest spans
(i, j) ∈ t; (i, j) ̸∈ y, and Tijk = 0 otherwise.
Partially-observed TreeCRF (PO-TreeCRF) (Fu
et al., 2021) aims to maximize the log-likelihood
of all compatible trees:

s(y) = log
∑

T∈T̃ (y)

exp(s(T )) (6)

log p(y) = s(y)− logZ (7)

where logZ is the log-partition function which can
be computed via the inside algorithm. s(y) can be
computed efficiently via the masked inside algo-
rithm (Fu et al., 2021; Lou et al., 2022), where all
incompatible span nodes crossing any span in y are
masked (i.e., set to negative infinity in log-domain)
before running the inside algorithm. See (Fu et al.,
2021) for more details.

2.4 Joint Higher-order and Structured
Modeling

We can simply combines (vanilla) MFVI with PO-
TreeCFR to achieve joint higher-order and struc-
tured modeling as follows.

After running k iterations of MFVI, we obtain
a set of un-normalized scores Q(k) and approxi-
mated marginals y(k+1), on which our loss is based.
It is worth mentioning that designing the loss by
means of Q(k) in many cases is equivalent to de-
signing the loss by means of y(k+1) (Blondel et al.,
2020). , so we essentially design the loss in terms
of approximated marginals produced by truncated
MFVI (Domke, 2012).

For H2T edges, we feed un-normalized score
[QA(k); sB] as span score into a PO-TreeCRF to
compute log-likelihood of all compatible trees
(Eq. 7), then taking the negative to define the loss:

LA = − log p(y). (8)

where y is the set of gold unlabeled argument
spans.
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For P2H and P2T edges, we use the binary cross-
entropy loss:

LH/T = −
∑

ij

(
ŷ
H/T
ij log y

H/T (k+1)
ij

+ (1− ŷ
H/T
ij ) log(1− y

H/T (k+1)
ij )

) (9)

where ŷ
H/T
ij ∈ {0, 1} indicates the existence of

P2H/P2T edge (i, j).

2.5 Structured MFVI
Vanilla MFVI uses a fully-factorized distribution
to approximate the true posterior, ignoring the in-
herent tree structures in span-based SRL. To bet-
ter leverage the inherent tree structures, we pro-
pose to adopt structured MFVI (Saul and Jordan,
1995; Wainwright and Jordan, 2008b; Burkett et al.,
2010), using TreeCRFs (Zhang et al., 2020b) —
instead of product of Bernoulli distribution as used
in vanilla MFVI—to parameterize the posterior dis-
tribution regarding H2T edges.

To deal with 0-1 labeled constituency trees, we
let yA corresponding to label-1 spans, and use an
auxiliary yB ∈ Rn×n to represent label-0 spans
with first-order scores sB ∈ Rn×n. We denote z :=
[yB; yA] and use a TreeCRF to parameterize their
posterior distribution. Then the posterior update of
z is:

z(m+1) = argmax
z∈T

⟨F (m), z⟩ −A⋆
T (z) (10)

where T is the structured marginal polytope of 0-
1 labeled binary trees (Rush et al., 2010; Martins
and Filipe, 2012), A⋆

T (z) equals to the negative
entropy of the TreeCRF distribution pθ0 for some
θ0 coupled to z (Martins et al., 2010, Prop. 1);
F

(m)
i,j = [Q

B(m)
ij ;Q

A(m)
ij ].

The solution of Eq. 10 is attained at the mean-
vector regarding the TreeCRF distribution (Wain-
wright and Jordan, 2008b; Paulus et al., 2020), i.e.,
span marginals, which can be computed efficiently
by back-propagating through the inside algorithm
(Eisner, 2016; Rush, 2020). Since there are no
higher-order scores associated with yB , we have
Q

B(m)
ij = sBij and Eq. 3-5 remain intact. Besides,

since we do not couple yB, yA with yH , yT , the
posterior update of yH , yT remains the same.

As such, the posterior update of yA is structure-
aware, well-respecting the constituency tree con-
straint. The tree-structured information is propa-
gated from yA to yH , yT through Eq. 3-4 thanks

to the higher-order factors sa,cop, sa,gp connecting
them.

3 Model Architecture

We depict our model architecture in Fig. 3.

Encoding. Given the sentence x =
{x0, x1, ..., xn}, we feed it into BERT (De-
vlin et al., 2019) and apply mean-pooling to the
last four layers to obtain word-level representations
h = {h0, h1, ..., hn}. If we use pre-identified
predicates, we concatenate h with an indicator
embedding additionally.

First-order scores. We use deep biaffine atten-
tion (Dozat and Manning, 2017) to compute sH ,
sT and sA:

r
p/h/t
i = MLPp/h/t(hi)

s
H/T/A
ij =

[
r
p/p/h
i

1

]⊤

WH/T/A

[
r
h/t/t
j

1

]

where rp/h/t are type-specific representations for
predicates and head/tail words of argument spans,
respectively; MLPp/h/t are multi-layer percep-
trons which transform hi to d-dimensional spaces;
W H/T/A ∈ R(d+1)×(d+1) are trainable parameters.

Higher-order scores. We use deep Triaffine at-
tention (Wang et al., 2019; Zhang et al., 2020a) to
compute higher-order scores:

r̂
p/h/t
i = ˆMLP

p/h/t
(hi)

sa,gpij,jk/s
a,cop
ik,jk = TriAFFgp/cop1(r̂pi , r̂

h
j , r̂

t
k)

sh,sibij,ik /s
h,cop
ik,jk = TriAFFsib1/cop2(r̂pi , r̂

h/p
j , r̂hk)

st,sibij,ik/s
t,cop
ik,jk = TriAFFsib2/cop3(r̂pi , r̂

t/p
j , r̂tk)

where

TriAFF(v1,v2,v3) =

[
v3

1

]⊤
v⊺
1W

′
[
v2

1

]

with W ′ ∈ R(d+1)×(d)×(d+1).

Label Scores and Label Loss. Following Jia
et al. (2022), we use Coherent (Seo et al., 2019)
span representation to compute the label scores.
Given an argument span aij = (wi, ..., wj) ob-
tained by first-stage, we encode the two endpoints
wi, wj as gi, gj ∈ Rr. We split each gk into
four parts: gk = [g1

k; g
2
k; g

3
k; g

4
k], where g1

k, g
2
k ∈
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Figure 3: Illustration of our model.

Ra, g3
k, g

4
k ∈ Rb and 2(a + b) = r. Then we can

represent span as:

a = [g1
i ; g

2
j ; g

3
i · g4

j ]

where dot product g3
i · g4

j is called coherence term.
Then we use biaffine attention to compute label
score slabelijkl :

slabelijkl =

[
rpi
1

]⊤
W label

l

[
ajk

1

]

We use cross-entropy to compute corresponding
label loss,

Llabel = −
∑

ijk

1(ŷijk) log
exp(slabelijklijk

)
∑

l exp(s
label
ijkl )

(11)

where ŷijk ∈ {0, 1} indicates the existence of
predicate-argument pairs. lijk is the gold label for
pair of the predicate-argument pair (i, jk).

Total Training Loss We optimize the weighted
average of the above losses according to Eq 8 9 11.

L = λ1Llabel + (1− λ1)Ledge

Ledge = λ2L
A + (1− λ2)(L

H + LT )

where λ1 and λ2 are hyper-parameters.

4 Experiments

Settings. Following previous works, we con-
duct experiments on two benchmarks: CoNLL05
(Palmer et al., 2005) and CoNLL12 (Pradhan et al.,
2012) English datasets, where CoNLL05 include
two test datasets WSJ (in-domain) and BROWN
(out-of-domain). We adopt official data splits and
evaluate our model using the official evaluation
script 4, reporting the micro-average F1 score aver-
aged over three different runs with different random
seeds. We conduct experiments under two settings,
i.e., with (w/) gold predicates and without (w/o)
gold predicate. Following most previous works,
we use Bert-large-cased (Devlin et al., 2019) as
the backbone. We refer readers to Appendix A for
our implementation details.

Main Results. Table 1 shows the main results
on test sets of benchmarks. Our baseline model is
1O trained with local binary cross-entropy loss for
all three types of edges without higher-order and
structured modeling. Our proposed model clearly
outperforms the baseline, obtaining state-of-the-art
performances (when using Bert-large-cased) on
five out of six evaluation metrics.

4https://www.cs.upc.edu/~srlconll/soft.html#
srlconll
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CoNLL05-WSJ CoNLL05-Brown CoNLL12

P R F1 P R F1 P R F1

w/o gold predicates

He et al. (2017) 80.20 82.30 81.20 67.60 69.60 68.50 78.60 75.10 76.80
He et al. (2018) + ELMO 84.80 87.20 86.0 73.90 78.40 76.10 81.90 84.00 82.90
Jia et al. (2022) + BERT – – 86.70 – – 78.58 – – 84.22
Zhou et al. (2022) + BERT 87.15 88.44 87.79 79.44 80.85 80.14 83.91 85.61 84.75
Zhang et al. (2022) + BERT 87.00 88.76 87.87 79.08 81.50 80.27 84.53 86.41 85.45
1O + BERT 87.11 87.40 87.25 79.89 79.93 79.91 84.76 84.42 84.59
Ours + BERT 88.05 88.61 88.33 81.13 81.58 81.36 84.95 85.85 85.40

w/ gold predicates

He et al. (2017) 85.00 84.30 84.60 74.90 72.40 73.60 83.50 83.30 83.40
He et al. (2018) + ELMO – – 87.40 – – 80.40 – – 85.50
Shi and Lin (2019) + BERT 88.60 89.00 88.80 81.90 82.10 82.00 85.90 87.00 86.50
Conia and Navigli (2020) + BERT – – – – – – 86.90 87.70 87.30
Blloshmi et al. (2021) + BART – – – – – – 87.80 86.80 87.30
Liu et al. (2022) + SpanBERT – – – – – – – – 87.50
Jia et al. (2022) + BERT – – 88.25 – – 81.90 – – 87.18
Zhou et al. (2022) + BERT 89.03 88.53 88.78 83.22 81.81 82.51 87.26 87.05 87.15
Zhang et al. (2022) + BERT 89.00 89.03 89.02 82.81 82.35 82.58 87.52 87.79 87.66
1O + BERT 89.09 87.57 88.32 83.30 79.49 81.35 87.45 86.75 87.10
Ours + BERT 89.77 88.46 89.11 83.96 81.76 82.85 88.10 87.38 87.74

Table 1: Comparison of our model and other models on test sets of CoNLL05-WSJ, CoNLL05-Brown, and
CoNLL12.

Model P R F1

Unstructured(1O) 87.11 87.40 87.25
Unstructured(2O) 87.21 88.34 87.77

1O+TreeCRF 87.79 87.57 87.68
2OVMF+TreeCRF 87.53 88.26 87.90

2OSMF+TreeCRF (Final) 88.05 88.61 88.33

Table 2: Ablation studies on CoNLL05-WSJ dataset.
VMF indicates vanilla mean-field and SMF indicates
structured mean-filed.

Ablation studies. To better understand the
source of improvement, we conduct ablation stud-
ies on CoNLL05-WSJ test set. Table 2 shows the
results. As we can see, compared with 1O, using
higher-order inference alone leads to 0.52 F1 score
improvement; using PO-TreeCRF structured loss
alone leads to 0.43 F1 score improvement, proving
the effectiveness of both higher-order and struc-
tured modeling. When combining vanilla mean-
field-based higher-order inference and structured
loss, we have 0.65 F1 score improvement com-
pared to 1O, showing that it is beneficial to com-
bine both higher-order and structured modeling.
We then replace the vanilla mean-field with struc-
tured mean-field, resulting in further improvement
of 0.43 F1 score, showing the effectiveness of struc-
tured MFVI.
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Figure 4: F1 score regarding to different argument span
length. The x-axis denotes the length of argument spans.
The y-axis denotes the F1 score.

F1 against argument span length. Fig. 4 shows
the F1 scores with the change of argument span
length. As we can see, our full model performs the
best when the span length is large, especially when
> 7. We hypothesis that this is due to that in struc-
tured mean-filed inference, the global tree structure
information is propagated among variables.

5 Related Work

In recent years, graph-based (or span-based) mod-
els become popular in span-based SRL thanks
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to their ability in encoding rich span features.
Ouchi et al. (2018) exhaustively search predicate-
argument pairs. He et al. (2018) use a pruning strat-
egy to reduce the search complexity. They then
use a neural network to predicate the relationship
between candidate predicates and candidate argu-
ment spans. Li et al. (2019) extend their work by
using deep biaffine attention (Dozat and Manning,
2017) for scoring, and tackling both span-based
and dependency-based SRL under a single unified
framework. He et al. (2019) prune argument spans
via syntactic rules for multilingual SRL. Zhang
et al. (2021) point out that the way to extract spans
has a huge impact on the final performance. In-
stead of taking top-k candidate spans (i.e., beam
pruning) as in He et al. (2018), they use a two-stage
strategy where the first stage finds all headwords,
and the second stage predicates span boundaries
based on predicted headwords. They use either
gold heads from dependency-SRL annotations or
automatically-learned heads by using the “bag loss”
proposed in Lin et al. (2019). They show their
two-stage strategy is better than beam pruning in
different settings.

Thanks to the advance in second-order seman-
tic dependency parsing (Wang et al., 2019) where
they unroll several mean-field inference steps for
end-to-end training, researchers adopt this tech-
nique to improvement the performance of span-
based SRL. Direct second-order modeling leads
to a O(n5) search space, which is computation-
ally prohibitive. Jia et al. (2022) thus use a beam
pruning strategy to select O(n) candidate spans to
decrease the complexity of second-order inference.
Zhou et al. (2022) decompose predicate-argument
pairs into dependency edges. By doing so, they
cast span-based SRL to a dependency graph pars-
ing technique, and thus can directly use the method
of Wang et al. (2019) without much adaptation.
Since there are total O(n2) edges, there is no need
for pruning as exhaustive search is relative cheap.

Semantic arguments are often constituents. This
is very similar to the case in nested named en-
tity recognition (NER) where named entities are
mainly extracted from constituency trees; and in
coreference resolution where mentions are often
constituents. This means that, one can embed
these named entities or semantic arguments or men-
tions into constituency trees for structured model-
ing. Finkel and Manning (2009) use a constituency
parser to jointly model constituents and named enti-

ties, however their approach needs tree annotations,
which are difficult to obtain. To resolve this prob-
lem, Fu et al. (2021); Lou et al. (2022) view named
entities as partially-observed constituency trees,
and design masked inside algorithms for partial
marginalization to train their TreeCRF models. Liu
et al. (2022) propose structured span selectors for
span-based SRL and coreference resolution, train-
ing weighted context-free grammars (or essentially,
TreeCRFs) by partial marginalization akin to Fu
et al. (2021); Lou et al. (2022). They leverage the
CYK algorithm to produce O(n) structure-aware
candidate spans, outperforming the beam pruning
strategy.

Structured mean-field variational inference is
well-studied in the literature of graphical models
(Wainwright and Jordan, 2008a), but we only find
few applications in the NLP community, e.g. in
Burkett et al. (2010). We believe structured mean-
field variational inference can be used more fre-
quently and in this work we demonstrate its usage
in span-based SRL.

6 Conclusion

In this work, we tackled span-based SRL using a
graph-based approach, combining the advantage of
higher-order and structured modeling. In addition,
we leveraged structured MFVI to respect the con-
stituency tree constraint of argument spans during
inference. We showed the effectiveness of these
components experimentally.

Limitations

The main concern regarding our model is the com-
putational complexity. higher-order MFVI has a
complexity of O(n3), which admits fully parallel
computation and thus is fast on GPUs. The com-
plexity of structured inference of TreeCRF is also
O(n3). However, due to the dynamic program-
ming computation restriction, only O(n2) out of
O(n3) can be computed in parallel using parallel
parsing techniques (Rush, 2020), slowing down
the running speed. Besides, differentiating through
the TreeCRF marginals needs many GPU memo-
ries (Kim et al., 2017), as automatic differentiation
saves all intermediate dynamic programming items
for back-propagation, which cause plenty of waste
of GPU memories. In this work, since the mem-
ory problem is not too severe, we use automatic
differentiation for simplicity. One solution is to
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manually implement the outside algorithm to miti-
gate the memory problem (Kim et al., 2017).

Acknowledgments

This work was supported by the National Natural
Science Foundation of China (61976139).

References
Rexhina Blloshmi, Simone Conia, Rocco Tripodi, and

Roberto Navigli. 2021. Generating senses and roles:
An end-to-end model for dependency- and span-
based semantic role labeling. In Proceedings of the
Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI-21, pages 3786–3793. Interna-
tional Joint Conferences on Artificial Intelligence
Organization. Main Track.

Mathieu Blondel, André F. T. Martins, and Vlad Niculae.
2020. Learning with fenchel-young losses. J. Mach.
Learn. Res., 21:35:1–35:69.

David Burkett, John Blitzer, and Dan Klein. 2010.
Joint parsing and alignment with weakly synchro-
nized grammars. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 127–135, Los Angeles, California.
Association for Computational Linguistics.

Simone Conia and Roberto Navigli. 2020. Bridging
the gap in multilingual semantic role labeling: a
language-agnostic approach. In Proceedings of the
28th International Conference on Computational Lin-
guistics, pages 1396–1410, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Justin Domke. 2011. Parameter learning with truncated
message-passing. CVPR 2011, pages 2937–2943.

Justin Domke. 2012. Generic methods for optimization-
based modeling. In Proceedings of the Fifteenth
International Conference on Artificial Intelligence
and Statistics, AISTATS 2012, La Palma, Canary Is-
lands, Spain, April 21-23, 2012, volume 22 of JMLR
Proceedings, pages 318–326. JMLR.org.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April

24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Jason Eisner. 2016. Inside-outside and forward-
backward algorithms are just backprop (tutorial pa-
per). In Proceedings of the Workshop on Structured
Prediction for NLP, pages 1–17, Austin, TX. Associ-
ation for Computational Linguistics.

Jenny Rose Finkel and Christopher D. Manning. 2009.
Nested named entity recognition. In Proceedings of
the 2009 Conference on Empirical Methods in Natu-
ral Language Processing, pages 141–150, Singapore.
Association for Computational Linguistics.

Yao Fu, Chuanqi Tan, Mosha Chen, Songfang Huang,
and Fei Huang. 2021. Nested named entity recogni-
tion with partially-observed treecrfs. In Thirty-Fifth
AAAI Conference on Artificial Intelligence, AAAI
2021, Thirty-Third Conference on Innovative Ap-
plications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Ar-
tificial Intelligence, EAAI 2021, Virtual Event, Febru-
ary 2-9, 2021, pages 12839–12847. AAAI Press.

Luheng He, Kenton Lee, Omer Levy, and Luke Zettle-
moyer. 2018. Jointly predicting predicates and argu-
ments in neural semantic role labeling. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 364–369, Melbourne, Australia. Association
for Computational Linguistics.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. 2017. Deep semantic role labeling: What
works and what’s next. In Proceedings of the 55th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 473–483,
Vancouver, Canada. Association for Computational
Linguistics.

Shexia He, Zuchao Li, and Hai Zhao. 2019. Syntax-
aware multilingual semantic role labeling. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 5350–5359,
Hong Kong, China. Association for Computational
Linguistics.

Zixia Jia, Zhaohui Yan, Haoyi Wu, and Kewei Tu. 2022.
Span-based semantic role labeling with argument
pruning and second-order inference. In Proceedings
of the AAAI Conference on Artificial Intelligence.
AAAI Press.

Daniel Khashabi, Tushar Khot, Ashish Sabharwal, and
Dan Roth. 2018. Question answering as global rea-
soning over semantic abstractions. In Proceedings
of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th innovative Applica-
tions of Artificial Intelligence (IAAI-18), and the 8th
AAAI Symposium on Educational Advances in Artifi-
cial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018, pages 1905–1914. AAAI
Press.

926

http://jmlr.org/papers/v21/19-021.html
https://aclanthology.org/N10-1015
https://aclanthology.org/N10-1015
https://doi.org/10.18653/v1/2020.coling-main.120
https://doi.org/10.18653/v1/2020.coling-main.120
https://doi.org/10.18653/v1/2020.coling-main.120
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://proceedings.mlr.press/v22/domke12.html
http://proceedings.mlr.press/v22/domke12.html
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
https://aclanthology.org/D09-1015
https://ojs.aaai.org/index.php/AAAI/article/view/17519
https://ojs.aaai.org/index.php/AAAI/article/view/17519
https://doi.org/10.18653/v1/P18-2058
https://doi.org/10.18653/v1/P18-2058
https://doi.org/10.18653/v1/P17-1044
https://doi.org/10.18653/v1/P17-1044
https://doi.org/10.18653/v1/D19-1538
https://doi.org/10.18653/v1/D19-1538
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17406
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17406


Yoon Kim, Carl Denton, Luong Hoang, and Alexan-
der M. Rush. 2017. Structured attention networks.
In 5th International Conference on Learning Rep-
resentations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings. OpenRe-
view.net.

Ð.Khuê Lê-Huu and Alahari Karteek. 2021. Regular-
ized frank-wolfe for dense crfs: Generalizing mean
field and beyond. In NeurIPS.

Zuchao Li, Shexia He, Hai Zhao, Yiqing Zhang, Zhu-
osheng Zhang, Xi Zhou, and Xiang Zhou. 2019. De-
pendency or span, end-to-end uniform semantic role
labeling. In The Thirty-Third AAAI Conference on
Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Con-
ference, IAAI 2019, The Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI
2019, Honolulu, Hawaii, USA, January 27 - February
1, 2019, pages 6730–6737. AAAI Press.

Hongyu Lin, Yaojie Lu, Xianpei Han, and Le Sun. 2019.
Sequence-to-nuggets: Nested entity mention detec-
tion via anchor-region networks. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5182–5192, Florence,
Italy. Association for Computational Linguistics.

Tianyu Liu, Yuchen Jiang, Ryan Cotterell, and Mrin-
maya Sachan. 2022. A structured span selector. In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2629–2641, Seattle, United States. Association
for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Chao Lou, Songlin Yang, and Kewei Tu. 2022. Nested
named entity recognition as latent lexicalized con-
stituency parsing. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 6183–6198,
Dublin, Ireland. Association for Computational Lin-
guistics.

Diego Marcheggiani, Jasmijn Bastings, and Ivan Titov.
2018. Exploiting semantics in neural machine trans-
lation with graph convolutional networks. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 2 (Short Papers), pages 486–492, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

André Martins, Noah Smith, Eric Xing, Pedro Aguiar,
and Mário Figueiredo. 2010. Turbo parsers: Depen-
dency parsing by approximate variational inference.
In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages 34–
44, Cambridge, MA. Association for Computational
Linguistics.

Torres Martins and André Filipe. 2012. The geometry
of constrained structured prediction: Applications to
inference and learning of natural language syntax.

Hiroki Ouchi, Hiroyuki Shindo, and Yuji Matsumoto.
2018. A span selection model for semantic role la-
beling. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 1630–1642, Brussels, Belgium. Association
for Computational Linguistics.

Martha Palmer, Paul R. Kingsbury, and Daniel Gildea.
2005. The proposition bank: An annotated corpus
of semantic roles. Computational Linguistics, 31:71–
106.

Max B. Paulus, Dami Choi, Daniel Tarlow, Andreas
Krause, and Chris J. Maddison. 2020. Gradient esti-
mation with stochastic softmax tricks. In Advances
in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 shared task: Modeling multilingual unrestricted
coreference in OntoNotes. In Joint Conference on
EMNLP and CoNLL - Shared Task, pages 1–40, Jeju
Island, Korea. Association for Computational Lin-
guistics.

Alexander Rush. 2020. Torch-struct: Deep structured
prediction library. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 335–342,
Online. Association for Computational Linguistics.

Alexander M. Rush, David Sontag, Michael Collins, and
Tommi Jaakkola. 2010. On dual decomposition and
linear programming relaxations for natural language
processing. In Proceedings of the 2010 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1–11, Cambridge, MA. Association for
Computational Linguistics.

Lawrence K. Saul and Michael I. Jordan. 1995. Exploit-
ing tractable substructures in intractable networks. In
Advances in Neural Information Processing Systems
8, NIPS, Denver, CO, USA, November 27-30, 1995,
pages 486–492. MIT Press.

Minjoon Seo, Jinhyuk Lee, Tom Kwiatkowski, Ankur
Parikh, Ali Farhadi, and Hannaneh Hajishirzi. 2019.
Real-time open-domain question answering with
dense-sparse phrase index. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4430–4441, Florence, Italy.
Association for Computational Linguistics.

Peng Shi and Jimmy Lin. 2019. Simple BERT models
for relation extraction and semantic role labeling.
CoRR, abs/1904.05255.

Martin J. Wainwright and M.I. Jordan. 2008a. Graph-
ical models, exponential families, and variational
inference. Found. Trends Mach. Learn., 1:1–305.

927

https://openreview.net/forum?id=HkE0Nvqlg
https://doi.org/10.1609/aaai.v33i01.33016730
https://doi.org/10.1609/aaai.v33i01.33016730
https://doi.org/10.1609/aaai.v33i01.33016730
https://doi.org/10.18653/v1/P19-1511
https://doi.org/10.18653/v1/P19-1511
https://doi.org/10.18653/v1/2022.naacl-main.189
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2022.acl-long.428
https://doi.org/10.18653/v1/2022.acl-long.428
https://doi.org/10.18653/v1/2022.acl-long.428
https://doi.org/10.18653/v1/N18-2078
https://doi.org/10.18653/v1/N18-2078
https://aclanthology.org/D10-1004
https://aclanthology.org/D10-1004
https://doi.org/10.18653/v1/D18-1191
https://doi.org/10.18653/v1/D18-1191
https://proceedings.neurips.cc/paper/2020/hash/3df80af53dce8435cf9ad6c3e7a403fd-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/3df80af53dce8435cf9ad6c3e7a403fd-Abstract.html
https://aclanthology.org/W12-4501
https://aclanthology.org/W12-4501
https://aclanthology.org/W12-4501
https://doi.org/10.18653/v1/2020.acl-demos.38
https://doi.org/10.18653/v1/2020.acl-demos.38
https://aclanthology.org/D10-1001
https://aclanthology.org/D10-1001
https://aclanthology.org/D10-1001
http://papers.nips.cc/paper/1155-exploiting-tractable-substructures-in-intractable-networks
http://papers.nips.cc/paper/1155-exploiting-tractable-substructures-in-intractable-networks
https://doi.org/10.18653/v1/P19-1436
https://doi.org/10.18653/v1/P19-1436
http://arxiv.org/abs/1904.05255
http://arxiv.org/abs/1904.05255


Martin J. Wainwright and Michael I. Jordan. 2008b.
Graphical models, exponential families, and varia-
tional inference. Found. Trends Mach. Learn., 1(1-
2):1–305.

Xinyu Wang, Jingxian Huang, and Kewei Tu. 2019.
Second-order semantic dependency parsing with end-
to-end neural networks. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 4609–4618, Florence, Italy. Asso-
ciation for Computational Linguistics.

Xinyu Wang and Kewei Tu. 2020. Second-order neu-
ral dependency parsing with message passing and
end-to-end training. In Proceedings of the 1st Con-
ference of the Asia-Pacific Chapter of the Association
for Computational Linguistics and the 10th Interna-
tional Joint Conference on Natural Language Pro-
cessing, pages 93–99, Suzhou, China. Association
for Computational Linguistics.

Yucheng Wang, Bowen Yu, Yueyang Zhang, Tingwen
Liu, Hongsong Zhu, and Limin Sun. 2020. TPLinker:
Single-stage joint extraction of entities and relations
through token pair linking. In Proceedings of the
28th International Conference on Computational Lin-
guistics, pages 1572–1582, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

Biao Zhang, Ivan Titov, and Rico Sennrich. 2020a. Fast
interleaved bidirectional sequence generation. In Pro-
ceedings of the Fifth Conference on Machine Trans-
lation, pages 503–515, Online. Association for Com-
putational Linguistics.

Yu Zhang, Qingrong Xia, Shilin Zhou, Yong Jiang, Guo-
hong Fu, and Min Zhang. 2022. Semantic role la-
beling as dependency parsing: Exploring latent tree
structures inside arguments. In Proceedings of the
29th International Conference on Computational Lin-
guistics, pages 4212–4227, Gyeongju, Republic of
Korea. International Committee on Computational
Linguistics.

Yu Zhang, Houquan Zhou, and Zhenghua Li. 2020b.
Fast and accurate neural CRF constituency parsing.
In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI
2020, pages 4046–4053. ijcai.org.

Zhisong Zhang, Emma Strubell, and Eduard Hovy. 2021.
Comparing span extraction methods for semantic role
labeling. In Proceedings of the 5th Workshop on
Structured Prediction for NLP (SPNLP 2021), pages
67–77, Online. Association for Computational Lin-
guistics.

Zhuosheng Zhang, Yuwei Wu, Hai Zhao, Zuchao Li,
Shuailiang Zhang, Xi Zhou, and Xiang Zhou. 2020c.
Semantics-aware BERT for language understanding.
In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innova-
tive Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2020,

New York, NY, USA, February 7-12, 2020, pages
9628–9635. AAAI Press.

Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-
Paredes, Vibhav Vineet, Zhizhong Su, Dalong Du,
Chang Huang, and Philip H. S. Torr. 2015. Con-
ditional random fields as recurrent neural networks.
2015 IEEE International Conference on Computer
Vision (ICCV), pages 1529–1537.

Jie Zhou and Wei Xu. 2015. End-to-end learning of se-
mantic role labeling using recurrent neural networks.
In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1127–
1137, Beijing, China. Association for Computational
Linguistics.

Shilin Zhou, Qingrong Xia, Zhenghua Li, Yu Zhang,
Yu Hong, and Min Zhang. 2022. Fast and accu-
rate end-to-end span-based semantic role labeling
as word-based graph parsing. In Proceedings of the
29th International Conference on Computational Lin-
guistics, pages 4160–4171, Gyeongju, Republic of
Korea. International Committee on Computational
Linguistics.

A Implementation Details

We use BERT5 (bert-large-cased) as encoders
to obtain word representations. We use deep bi-
affine attention (Dozat and Manning, 2017) with
500 dimensions and deep triaffine attention with
100 following previous work (Wang et al., 2019).
We set iteration number of MFVI as 3. To prevent
overfitting, we set dropout ratio 0.1 for encoders
and 0.1 for every MLP layers. Regarding training,
we set learning rate for encoder layers as 5e − 5
and the rest layers as 1e− 3. We train our model
for 10 epochs with max words 1000 using AdamW
(Loshchilov and Hutter, 2019) optimizer. We adopt
linear warmup scheduler for 10% training steps.
Following previous works (Zhou et al., 2022; Fu
et al., 2021) ,we set the hyper-parameters λ1 and λ2

as 0.06 and 0.1. All experiments run on NVIDIA
TITAN RTX and NVIDIA A40 gpus.

B Recall and Precision Regarding to
Argument Width

The corresponding precision and recall of F1 score
in Fig 4 with different argument span length are
shown as Fig 5.

5https://huggingface.co/bert-large-cased
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Figure 5: The precision and recall with different argu-
ment spans length.

929



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

After section 7. Limitation section.

�3 A2. Did you discuss any potential risks of your work?
Limitation section.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Left blank.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �7 Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
No response.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
No response.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C �3 Did you run computational experiments?
section 4.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
section 4 and appendix A

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

930

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
section 4 and appendix A

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
section 4.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
section 4.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

931


