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Abstract

A popular approach to unveiling the black
box of neural NLP models is to leverage
saliency methods, which assign scalar impor-
tance scores to each input component. A com-
mon practice for evaluating whether an inter-
pretability method is faithful has been to use
evaluation-by-agreement – if multiple meth-
ods agree on an explanation, its credibility in-
creases. However, recent work has found that
saliency methods exhibit weak rank correla-
tions even when applied to the same model
instance and advocated for alternative diagnos-
tic methods. In our work, we demonstrate that
rank correlation is sensitive to small perturba-
tions when evaluating agreement and argue that
Pearson-r could be a better-suited alternative.
We further show that regularization techniques
that increase faithfulness of attention explana-
tions also increase agreement between saliency
methods. By connecting our findings to in-
stance categories based on training dynamics,
we show that the agreement of saliency method
explanations is very low for easy-to-learn in-
stances. Finally, we connect the improvement
in agreement across instance categories to lo-
cal representation space statistics of instances,
paving the way for work on analyzing which
intrinsic model properties improve their predis-
position to interpretability methods.1

1 Introduction

Following the meteoric rise of the popularity of
neural NLP models during the neural revolution,
they have found practical usage across a plethora
of domains and tasks. However, in a number of
high-stakes domains such as law (Kehl and Kessler,
2017), finance (Grath et al., 2018), and medicine
(Caruana et al., 2015), the opacity of deep learning
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methods needs to be addressed. In the area of ex-
plainable artificial intelligence (XAI), one of the
major recent efforts is to unveil the neural black box
and produce explanations for the end-user. There
are various approaches to rationalizing model pre-
dictions, such as using the attention mechanism
(Bahdanau et al., 2014), saliency methods (Denil
et al., 2014; Bach et al., 2015; Ribeiro et al., 2016;
Lundberg and Lee, 2017; Shrikumar et al., 2017;
Sundararajan et al., 2017), rationale generation by-
design (Lei et al., 2016; Bastings et al., 2019; Jain
et al., 2020), or self-rationalizing models (Maraso-
vic et al., 2022). These methods have to simultane-
ously satisfy numerous desiderata to have practical
application in high-stakes scenarios: they have to
be faithful – an accurate representation of the in-
ner reasoning process of the model, and plausible –
convincing to human stakeholders.

When evaluating faithfulness in using attention
as explanations, Jain and Wallace (2019) have
shown that attention importance scores do not cor-
relate well with gradient-based measures of fea-
ture importance. The authors state that although
gradient-based measures of feature importance
should not be taken as ground truth, one would still
expect importance measures to be highly agree-
able, bringing forth the agrement-as-evaluation
paradigm (Abnar and Zuidema, 2020; Meister et al.,
2021). While the imperfect agreement is something
one could expect as interpretability methods differ
in their formulation, and it is reasonable to observe
differences in importance scores, subsequent work
has shown that saliency methods exhibit low agree-
ment scores even when applied to the same model
instance (Neely et al., 2021). Since a single trained
model instance can only have a single feature im-
portance ranking for its decision, disagreement of
saliency methods implies that at least one, if not
all methods, do not produce faithful explanations
– placing doubt on their practical relevance. It has
been hypothesized that unfaithfulness of attention
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is caused by input entanglement in the hidden space
(Jain and Wallace, 2019). This claim has later been
experimentally verified through results showing
that regularization techniques targeted to reduce en-
tanglement significantly improve the faithfulness of
attention-based explanations (Mohankumar et al.,
2020; Tutek and Šnajder, 2020). While entangle-
ment in the hidden space is clearly a problem in
the case of attention explanations, where attention
weights directly pertain to hidden states, we also
hypothesize that representation entanglement could
cause similar issues for gradient- and propagation-
based explainability methods – which might not
be able to adequately disentangle importance when
propagating toward the inputs.

In our work, we first take a closer look at whether
the rank correlation is an appropriate method for
evaluating agreement and confirm that, as hypothe-
sized in previous work, small differences in values
of saliency scores significantly affect agreement
scores. We argue that a linear correlation method
such as Pearson-r is less sensitive to perturbations
since the exact ranking order of features is not as
crucial for agreement as the relative importance
values, which Pearson-r adequately captures. We
hypothesize that the cause of saliency method dis-
agreements is rooted in representation entangle-
ment and experimentally show that agreement can
be significantly improved by regularization tech-
niques such as tying (Tutek and Šnajder, 2020)
and conicity (Mohankumar et al., 2020). The fact
that regularization methods, which were originally
aimed at improving faithfulness of attention, also
improve agreement between saliency methods sug-
gests that the two problems have the same under-
lying cause. Taking the analysis deeper, we apply
techniques from dataset cartography (Swayamdipta
et al., 2020) and show that, surprisingly, the expla-
nations of easy-to-learn instances exhibit a lower
agreement than of ambiguous instances. We fur-
ther analyze how local curvature of the representa-
tion space morphs when regularization techniques
are applied, paving the way for further analysis of
(dis)agreements between interpretability methods.

2 Background and Related Work

Explainability methods come in different flavors
determined by the method of computing feature
importance scores. Saliency methods perform post-
hoc analysis of the trained black-box model by
either leveraging gradient information (Denil et al.,

2014; Sundararajan et al., 2017), modifying the
backpropagation rules (Bach et al., 2015; Shriku-
mar et al., 2017), or training a shallow interpretable
model to locally approximate behavior of the black-
box model (Ribeiro et al., 2016), all with the goal
of assigning scalar saliency scores to input fea-
tures. Alternatively, if the analyzed model is ca-
pable of generating text, one can resort to self-
rationalization by prompting the trained model to
generate an explanation for its decision (Marasovic
et al., 2022). In contrast to post-hoc explanations,
inherently interpretable models produce explana-
tions as part of their decision process, either by
masking a proportion of input tokens and then per-
forming prediction based on the remaining ratio-
nale (Lei et al., 2016; Bastings et al., 2019; Jain
et al., 2020), or jointly performing prediction and
rationale generation in cases where datasets with
annotated rationales are available (Camburu et al.,
2018). For some time, the attention mechanism
(Bahdanau et al., 2014) has also been considered
inherently interpretable. However, the jury is still
out on whether such explanations can be consid-
ered faithful (Jain and Wallace, 2019; Wiegreffe
and Pinter, 2019; Tutek and Šnajder, 2020; Bast-
ings and Filippova, 2020).

Faithfulness is one of the most important desider-
ata of explanation methods (Jacovi and Goldberg,
2020) – faithful explanations are those that are
true to the inner decision-making process of the
model. Approaches to evaluating faithfulness rely
on measuring how the confidence of the model
changes when inputs are perturbed (Kindermans
et al., 2019) or completely dropped from the model
(Li et al., 2016; Serrano and Smith, 2019). How-
ever, perturbations to input often result in corrupted
instances that fall off the data manifold and appear
nonsensical to humans (Feng et al., 2018) or fail to
identify all salient tokens properly (ROAR; Hooker
et al., 2019) – raising questions about the validity
of perturbation-based evaluation. Recursive ROAR
(Madsen et al., 2022) alleviates the issues of its pre-
decessor at the cost of requiring many prohibitively
expensive retraining steps, further motivating us
to seek efficient solutions which do not require re-
training the model multiple times. Another option
is to leverage the evaluation-by-agreement (Jain
and Wallace, 2019) paradigm, which states that
an interpretability method should be highly agree-
able with other methods to be considered faithful.
However, since empirical evidence has shown that
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saliency methods exhibit poor agreement between
their explanations (Neely et al., 2021), Atanasova
et al. (2020) recommend practitioners consider al-
ternative methods for evaluating the quality of in-
terpretability methods, such as diagnostic tests. Fi-
nally, methods such as data staining (Sippy et al.,
2020) and lexical shortcuts (Bastings et al., 2022)
artificially introduce tokens that act as triggers for
certain classes – creating a ground truth for faithful-
ness which can be used as a comparison. Neverthe-
less, such methods have a certain drawback in that
they only offer the ground truth importance of a few
artificially inserted tokens, but offer no insight re-
garding the relative importance of the remainder of
the input. Each of the aforementioned methods for
estimating faithfulness of interpretability methods
has its drawbacks (Jacovi and Goldberg, 2020), and
we argue each should be taken in conjunction with
others to increase the credibility of their collective
verdict.

3 Preliminaries

In this section, we delineate our experimental setup,
detailing the considered datasets, models, their
training procedure, the saliency methods which
we use to interpret the decisions of the models, and
the regularization techniques we use to improve
agreement between saliency methods.

3.1 Datasets

Leaning on the work of Neely et al. (2021), which
motivated us to explore the valley of explainability,
we aim to investigate the protruding problem of low
agreement between saliency methods. We investi-
gate three different types of single-sequence binary
classification tasks on a total of four datasets. In
particular, we evaluate sentiment classification on
the movie reviews (IMDB; Maas et al., 2011) and
the Stanford Sentiment Treebank (SST-2; Socher
et al., 2013) datasets, using the same data splits
as Jain and Wallace (2019). We include two more
tasks, examining the subjectivity dataset (SUBJ;
Pang and Lee, 2004), which classifies movie snip-
pets into subjective or objective, and question type
classification (TREC; Li and Roth, 2002). To
frame the TREC task as binary classification, we
select only the examples labeled with the two most
frequent classes (ENTY – entities, HUM – human
beings) and discard the rest.

3.2 Models

For comparability, we opt for the same models as
Neely et al. (2021). Specifically, we employ the
Bi-LSTM with additive self-attention (JWA; Jain
and Wallace, 2019). We initialize word represen-
tations for the JWA model to 300-d GloVe embed-
dings (Pennington et al., 2014). We also employ
a representative model from the Transformer fam-
ily (Vaswani et al., 2017) in DistilBERT (DBERT;
Sanh et al., 2019).

Both models work similarly: the input se-
quence of tokens {x1, . . . , xT } is first em-
bedded {e1, . . . , eT } and then contextualized
{h1, . . . , hT } by virtue of an LSTM network or
a Transformer. The sequence of contextualized hid-
den states is then aggregated to a sequence repre-
sentation h, which is then fed as input to a decoder
network.

3.3 Explainability Methods

We make use of ready-made explainability methods
from the propagation- and gradient-based families
used by Neely et al. (2021): Deep-LIFT (Shrikumar
et al., 2017), Integrated Gradients (Int-Grad; Sun-
dararajan et al., 2017) and their Shapley variants
(Lundberg and Lee, 2017), Deep-SHAP and Grad-
SHAP.2 Since we evaluate agreement on the entire
test set instead of an instance subset (Neely et al.,
2021), we exclude LIME (Ribeiro et al., 2016) from
the comparison as it is not computationally feasible
to train the surrogate model for all test instances
across all training setups.

Each saliency method produces a set of im-
portance scores for each input (sub)word token.
When evaluating the agreement between different
saliency methods for a single trained model, one
would expect the importance scores for the same
input instance to be similar, as the same set of pa-
rameters should produce a unique and consistent
importance ranking of input tokens.

3.4 Regularization Methods

As alluded to earlier, we suspect one cause of dis-
agreement between saliency method explanations
to be rooted in representation entanglement. To
counteract this issue, we employ two regularization
schemes that have been shown to improve the faith-
fulness of the attention mechanism as a method

2We use implementations of explainability methods
from the Captum framework: https://github.com/
pytorch/captum
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of interpretability: CONICITY (Mohankumar et al.,
2020) and TYING (Tutek and Šnajder, 2020). Both
of these methods address what we believe is the
same underlying issue in recurrent models – the
fact that hidden representations ht are often very
similar to each other, indicating that they act more
as a sequence representation rather than a contextu-
alization of the corresponding input token xt.

Each regularization method tackles this problem
in a different manner. CONICITY aims to increase
the angle between each hidden representation and
the mean of the hidden representations of a single
instance. The authors first define the alignment
to mean (ATM) for each hidden representation as
the cosine similarity of that representation to the
average representation:

ATM(hi,H) = cosine(hi,
1

T

T∑

j=1

hj) (1)

where H = {h1, . . . , hT } is the set of hidden rep-
resentations for an instance of length T . Conicity
is then defined as the average ATM for all hidden
states hi ∈ H:

conicity(H) =
1

T

T∑

i=1

ATM(hi, H) (2)

A conicity value implies that all hidden representa-
tions exist in a narrow cone and have high similarity
– to counteract this unwanted effect, during training,
we minimize this regularization term weighted by
λcon along with the binary cross entropy loss.

Similarly, TYING also aims to incentivize differ-
ences between hidden states by enforcing them to
“stay true to their word” through minimizing the
L2 norm of the difference between each hidden
state ht and the corresponding input embedding
et = embed(xt):

tying(H,E) =
1

T

T∑

i=1

∥hi − ei∥22 (3)

where E = {e1, . . . , eT } is the sequence of em-
bedded tokens. During training, we minimize this
regularization term weighted by λtying along with
the binary cross entropy loss.

By penalizing the difference between hidden rep-
resentations and input embedding, one achieves
two goals: (1) the embedding and hidden state rep-
resentation spaces become better aligned, and (2)
each hidden representation comes closer to its input

embedding. The latter enforces hidden states to dif-
fer from each other: because different embeddings
represent the semantics of different tokens, their
representations should also differ, and this effect is
then also evident in the hidden representations.

Although both works introduced other methods
of enforcing differences between hidden states,
namely orthogonal-LSTM and masked language
modeling as an auxiliary task, we opt for CONICITY

and TYING as they were both shown to be more
efficient and more stable in practice.

4 Improving Agreement

In this section, we present two modifications of
the existing evaluation-by-agreement procedure:
(1) complementing rank-correlation with a linear
correlation measure more robust to rank changes
caused by small differences in importance weights,
and (2) regularizing the models with the goal of
reducing entanglement in the hidden space, and as
a consequence, improving agreement.

4.1 Choice of Correlation Metric

Previous work (Jain and Wallace, 2019; Neely et al.,
2021) has evaluated the agreement between two
explainability methods by using rank-correlation
as measured by Kendall-τ (Kendall, 1938). Al-
though Kendall-τ is generally more robust than
Spearman’s rank correlation, i.e., it has smaller
gross-error sensitivity (Croux and Dehon, 2010),
we still face difficulties when using Kendall-τ for
evaluating agreement. As Jain and Wallace (2019)
also note, perturbations in ranks assigned to to-
kens in the tail of the saliency distribution have a
large influence on the agreement score. In addition,
rankings are also unstable when saliency scores for
the most relevant tokens are close to one another.
In Figure 1, we illustrate the deficiencies of using
rank correlation on a toy example of explaining
sentiment classification. While saliency scores at-
tributed to tokens differ slightly, the differences
in rank order are significant, lowering agreement
according to Kendall-τ due to the discretization
of raw saliency scores when converted into ranks.
We believe that a better approach to approximat-
ing agreement is to use a linear correlation metric
such as Pearson’s r, as it evaluates whether both
saliency methods assign similar importance scores
to the same tokens – which is a more robust setup
if we assume small amounts of noise in importance
attribution between different methods.
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D-SHAP G-SHAP Int-Grad

kτ pr kτ pr kτ pr
D

ee
pL

IF
T SUBJ 1. 1. .31 .45 .43 .64

SST 1. 1. .30 .47 .35 .54
TREC 1. 1. .12 .31 .15 .33
IMDB 1. 1. .29 .59 .28 .60

D
-S

H
A

P SUBJ .31 .45 .43 .64
SST .30 .47 .35 .54

TREC .12 .31 .15 .33
IMDB .29 .60 .28 .60

G
-S

H
A

P SUBJ .62 .78
SST .70 .87

TREC .66 .85
IMDB .68 .94

(a) JWA

D-SHAP G-SHAP Int-Grad

kτ pr kτ pr kτ pr

D
ee

pL
IF

T SUBJ .24 .44 .10 .19 .12 .21
SST .19 .34 .09 .17 .10 .20

TREC .16 .30 .12 .25 .12 .26
IMDB .28 .51 .11 .24 .13 .27

D
-S

H
A

P SUBJ .11 .22 .13 .24
SST .10 .19 .11 .23

TREC .13 .28 .14 .30
IMDB .12 .26 .14 .30

G
-S

H
A

P SUBJ .36 .58
SST .31 .54

TREC .42 .71
IMDB .29 .55

(b) DBERT

Table 1: Agreement between pairs of saliency methods
in terms of Kendall-τ (kτ ) and Pearson-r (pr) for BASE
variants of (a) JWA and (b) DBERT. We average the
agreement over five runs with different seeds. D-SHAP
and G-SHAP denote Deep-SHAP and Grad-SHAP, re-
spectively. The values marked in bold signify a strong
agreement (greater than 0.5), as per individual metrics
kτ or pr.

We now investigate how Pearson-r (pr) com-
pares to Kendall-τ (kτ ) when evaluating agreement.
In Table 1 we compare agreement scores produced
by pr and kτ across all datasets for JWA and DBERT,
respectively. For JWA, saliency methods display
agreement greater than 0.5 only in 8/24 cases ac-
cording to kτ and in 16/24 cases as per pr. For
DBERT, these figures are 0/24 and 5/24, respec-
tively. While the overall agreement is subpar, we
posit that kτ further exacerbates the evaluation pro-
cess. We believe this is caused by tokens with
approximately equal relative importance assigned
slightly different rankings by explainability meth-
ods, which kτ harshly penalizes. To address this,

The Japanese is great.A Rashomonold movie

The Japanese is great.B Rashomonold movie

.01 .02 .03 .04 .05 .06 1.00

.06 .05 .04 .03 .02 .01 .80

Figure 1: A toy example of sentiment classification illus-
trating the problems with Kendall-τ . The corresponding
agreement on the shown example is kτ = −.43 and
pr = .99. Token opacity indicates a higher saliency
score, i.e., token relevance, written at the top of the to-
ken box. Each of the two explainability methods, A and
B, outputs its saliency scores. The value of Kendall-τ
is much lower than Pearson’s correlation because the
irrelevant tokens are perturbed, despite the fact that the
tokens are correctly partitioned into more important and
less important ones.

we recommend using the Pearson correlation coef-
ficient as an additional measure in the evaluation
of agreement, as it is more robust to rank changes
caused by small differences in saliency scores.

4.2 Regularizing Models

Our next goal is to improve agreement between
saliency methods through intervention in the train-
ing procedure, namely by applying regularization
to promote disentanglement in the hidden space.
In Table 2 we report correlation scores on the
test splits of all datasets for regularized models
(CONICITY, TYING) and their unregularized vari-
ants (BASE). We notice that both regularization
techniques have a positive effect on agreement
across both correlation metrics, indicating that reg-
ularization techniques alleviate a deeper issue that
also affects the interpretability of attention weights.
In Table 3 we report F1 scores on the test set for
the regularized and unregularized models with the
best performance on the validation split. We ob-
serve that regularized models generally perform
comparably well to unregularized ones on down-
stream tasks, indicating that the improvement in
the agreement does not come at a cost for down-
stream performance. When selecting regularized
models, we choose ones with the strongest regular-
ization scale hyperparameter that performs within
3 F1 points on the validation set compared to the
unregularized model (cf. details in Appendix A.2).

5 The Cartography of Agreement

We have shown that by using a more appropriate
correlation measure and applying regularization,
the agreement of saliency methods increases sig-
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τk rp

B C T B C T
JW

A

SUBJ .52 .48 .65† .66 .70 .88†

SST .50 .67 .68 .65 .90† .86
TREC .37 .77† .68 .52 .98† .93
IMDB .47 .52 .60† .72 .64 .80†

D
B

E
R

T

SUBJ .18 .28 .36† .31 .48 .57†

SST .15 .15 .33† .28 .27 .60†

TREC .18 .17 .28† .35 .34 .53†

IMDB .18 .20 .24† .36 .42 .51†

Table 2: Average agreement over all pairs of saliency
methods. We report agreement in terms of Kendall-τ
(kτ ) and Pearson-r (rp) from the last epoch for three
model variants: B – base, C – conicity, and T – tying.
Bold numbers indicate highest agreement among the
three model flavors. Results are averages over 5 runs
with different seeds. We ran one-sided Wilcoxon signed-
rank tests to check for statistical significance. Agree-
ment values significantly higher (p < .05) than the other
variants in two individual Wilcoxon tests are marked
with a †. We adjusted the p-values for family-wise error
rate due to multiple tests using the Holm-Bonferroni
method.

Base Conicity Tying

D
B

E
R

T

SUBJ .93.01 .90.02 .93.00
SST .83.00 .83.01 .82.01

TREC .92.01 .92.01 .91.01
IMDB .86.01 .86.01 .88.00

JW
A

SUBJ .92.00 .90.00 .89.00
SST .78.04 .76.02 .78.02

TREC .89.02 .86.01 .89.01
IMDB .89.00 .88.00 .86.00

Table 3: F1 scores on test sets across datasets for DBERT
and JWA. We report the test results on epochs in which
the model had the best performance on the validation
set. Columns correspond to the base and regularized
models. Numbers in subscript denote standard deviation
on 5 runs with different seeds.

nificantly. In this section, we are interested in find-
ing out the cause of increased agreement obtained
through applying regularization – are there certain
instance groups in the dataset that benefit the most,
and if so, what changes in the representation space
resulted in the increased agreement? We leverage
methods from dataset cartography (Swayamdipta
et al., 2020) to distribute instances into easy-to-
learn, hard-to-learn, and ambiguous categories
based on their prediction confidence and variability.
Concretely, if an instance exhibits low prediction
variability and high prediction confidence between
epochs, this implies that the model can quickly and

accurately classify those instances, making them
easy-to-learn. Instances that also exhibit low vari-
ability but low prediction confidence, align with
the idea that the model is consistently unable to cor-
rectly classify them, making them hard-to-learn.
Finally, instances that exhibit high variability and
confidence close to the decision threshold indicate
that the model is likely often changing its predic-
tion between class labels for those instances, mak-
ing them ambiguous. Since ambiguous instances
are characterized by confidence near the prediction
threshold, Swayamdipta et al. (2020) complement
variability and confidence with another statistic in-
troduced by Chang et al. (2017), namely closeness,
defined as ci = p(i) · (1 − p(i)), where p(i) is the
average correct class probability of instance x(i)

across all training epochs. A high closeness value
denotes that the instance is consistently near the
decision boundary and, thus, is a good indicator of
ambiguity within the model.

Intuitively, one would expect high agreement be-
tween saliency methods on instances that are easy
to learn and low agreement otherwise. However,
we find the converse is true when computing how
agreement distributes across instance groups. In un-
regularized models, we observe that easy-to-learn
instances exhibit low average agreement, while am-
biguous instances have a high average agreement.
In Table 4, we report average agreement scores
across all pairs of saliency methods on represen-
tative samples from each cartography group.3 We
observe a clear distinction in agreement for both the
base and regularized models, which is higher for
ambiguous instances when compared to easy- and
hard-to-learn instance groups. Furthermore, we
can observe a consistently high increase in agree-
ment when the models are regularized across all
instance groups for all datasets, indicating that reg-
ularization techniques reduce representation entan-
glement.

One might wonder how the increase in agree-
ment distributes across instances and dataset cartog-
raphy attributes. In Figure 2, we visualize how the
relationship between agreement and cartography
attributes changes when the models are regularized.
We observe that for the JWA model, all datasets ex-

3We select representative samples for each group through
the relative frequency of their correct classification. If out of
5 epochs, an instance was correctly classified 5 times, it is
representative of the easy-to-learn category. If it was correctly
classified 0 times, it is representative of the hard-to-learn
category, and if the number of correct classifications is 2 or 3,
it is representative of the ambiguous category.
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Easy Amb Hard

B T B T B T

SUBJ .28 .52† .48 .74† .40 .57†

SST .24 .57† .36 .63† .30 .55†

TREC .33 .49† .50 .62† .32 .40†

IMDB .34 .48† .42 .59† .36 .51†

Table 4: Average agreement (Pearson-r) across saliency
methods pairs per cartography groups. We select repre-
sentative samples for each group based on the number of
times a certain instance was classified correctly during
training. We report average agreement for the unreg-
ularized model (B) and the one regularized by weight
tying (T), with the numbers in bold indicating the higher
agreement value among the two models. We averaged
the results over 5 runs. We ran one-sided Wilcoxon tests
to check whether T is significantly better than B for a
particular group. Significantly higher agreement values
(p < .05) are marked with a †.

hibit a consistent and significant increase in agree-
ment. Furthermore, we notice that for the DBERT

model, apart from increasing the agreement, regu-
larization reduces the confidence of the model pre-
dictions and increases variability – indicating that
it reduces the known problem of overconfidence
present in pre-trained language models.

5.1 The Curvature of Agreement

To better understand the cause of this distinction be-
tween various feature groups, we now analyze local
curvature and density in the representation space.
We are interested in: (1) how densely the instances
are distributed in the representation space across
cartography categories and (2) whether the local
space around an instance is sharp or smooth. For
both models and all instances, we obtain sequence
representations h used as inputs to the decoder. We
estimate instance density as the average distance
to the nearest instance in the dataset. We estimate
local smoothness around an instance representation
as the L2 norm of the gradient of the hidden repre-
sentation with respect to the input embeddings. If
the gradient norm is high, the local space is sharp
and minor perturbations can have a large effect on
the prediction probability.

In Table 5, we report correlations between each
of these two statistics and dataset cartography at-
tributes. We observe that for the unregularized
model, there is a significant negative correlation be-
tween confidence and both gradient norm and min-
imum distance to the nearest example, indicating
that the local space around easy instances is smooth

and densely populated. On the other hand, there is
a high positive correlation between both closeness
and variability and both gradient norm and mini-
mum distance to the nearest example – indicating
that the local space around ambiguous instances is
sharp and sparsely populated. When we turn our
attention to the regularized model, we observe that
the correlation between the gradient norm and any
of the cartography attributes vanishes, while the
correlations between distance and the attributes are
reduced in absolute value and their sign is flipped.

From these observations, we hypothesize that
the cause of low agreement on easy-to-learn in-
stances is the multitude of possible explanations
as to why such an instance should be correctly
classified. From the viewpoint of plausibility, this
hypothesis is in line with the Rashomon effect
(Breiman, 2001) which is about there often exist-
ing a multitude of adequate descriptions that end
up with the same error rate, or in our case, pre-
diction probability – however it should not apply
to faithfulness, as a single model instance should
adhere to a single explanation. However, due to
a plethora of corroborating evidence for easy-to-
learn instances, the representation space around
them is smooth to such an extent that perturbations
do not significantly affect the prediction probabil-
ity, which in turn adversely affects gradient- and
propagation-based explanation methods. The con-
verse is true for ambiguous instances, where we
hypothesize the model observes evidence for both
classes and is unable to reach a confident decision.
However, this difficulty in reaching a decision also
causes saliency methods to have a precise defini-
tion of what the evidence is – as the local curvature
is sharp, and any minor perturbation could signifi-
cantly affect prediction probability. We believe that
local curvature statistics could be used as a metric
for measuring whether a trained model is better
suited to analysis through explainability methods.

6 Conclusion

We analyzed two prototypical models from differ-
ent families in JWA and DBERT with the goal of
finding out the cause of low agreement between
saliency method interpretations. We first take a
closer look at Kendall-τ , the previously used rank-
order correlation metric, and demonstrate that it
can be prone to exhibiting high differences in agree-
ment for small perturbations in importance scores.
To account for this, when analyzing agreement be-
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Figure 2: Relationship between agreement and cartography. Subfigures (a)–(h) and (i)–(p) show Pearson-r agreement
for each instance in the dataset with respect to confidence and variability, respectively. The red dots pertain to the
unregularized model (BASE), and the blue crosses to the regularized model (TYING).

Conf Close Var

B T B T B T

Grad norm −.39 −.02 .52 .05 .46 .06
Min dist −.53 .25 .72 −.39 .64 .16

Table 5: Correlations (Pearson-r) between local curva-
ture statistics in the representation space and cartogra-
phy attributes. We report average gradient norms (grad
norm) of the hidden representation with respect to the
input embeddings and average distance to the nearest
instance (min dist). Columns correspond to the cartogra-
phy attributes: conf – confidence, close – closeness, and
var – confidence variance. We report the results for the
BASE model (B) and the model regularized by TYING
(T). Results reported are averages over all datasets.

tween saliency methods, we propose researchers in-
clude a linear correlation metric such as Pearson-r,
which is robust to small importance perturbations.
Taking a step further, we applied two regulariza-
tion techniques, TYING and CONICITY, originally
aimed at increasing faithfulness of attention expla-
nations, with the hypothesis that the issue under-
pinning disagreements and unfaithfulness is the
same – representation entanglement in the hidden
space. We showed that regularization consistently
and significantly improves agreement scores across
all models and datasets with a minimal penalty for
classification performance. Having demonstrated
that it is possible to improve upon the low agree-
ment scores, we attempted to offer intuition on
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which instance categories saliency methods agree
the least and show that surprisingly, easy-to-learn
instances are hard to agree on. Lastly, we offered
insights into how the representation space morphs
when regularization is applied and linked these find-
ings with dataset cartography categories, paving
the way for further work on understanding what
properties of neural models affect interpretability.

Limitations

Our work has a number of important limitations
that affect the conclusions we can draw from it.
First and foremost, evaluating the faithfulness of
model interpretations is problematic as we do not
have ground truth annotations for token impor-
tances. Thus, when applying the agreement-as-
evaluation paradigm, we implicitly assume that
most saliency methods are close to the truth – an
assumption that we cannot verify. However, every
method of evaluating faithfulness has its own down-
sides. Token and representation erasure runs the
risk of drawing conclusions from corrupted inputs
that fall off the data manifold. We argue that while
agreement-as-evaluation is far from an ideal way of
evaluating faithfulness, it still increases credibility
when used along with other techniques.

Secondly, our work is limited both with respect
to the datasets and models considered. Specifically,
we only evaluate one Transformer-based model
from the masked language modeling family, and it
is entirely possible that the findings do not gen-
eralize to models pre-trained on different tasks.
Also, we only consider single sequence classifi-
cation datasets – mainly due to the fact that the
issues with the faithfulness of attention were most
prevalent in those setups, which we assumed would
be the same for agreement due to the same hypoth-
esized underlying issue. We believe that tasks that
require retention of token-level information in hid-
den states, such as sequence labeling and machine
translation, would exhibit higher agreement overall,
even without intervention through regularization.
We leave this analysis for future work.
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Base Conicity Tying

D
B

E
R

T

SUBJ .94 .89 .94
SST .85 .85 .85

TREC .94 .89 .91
IMDB .90 .89 .89

JW
A

SUBJ .93 .90 .91
SST .82 .79 .81

TREC .91 .87 .89
IMDB .90 .87 .88

Table 6: F1 scores on validation sets across datasets
for DBERT and JWA. We average the results over 5
runs with different seeds. The scores pertain to the
same experiments as in Table 3, where we report test F1

scores.

A Reproducibility

A.1 Experimental Results

A.1.1 Setup

For both JWA and DBERT, we use the same pre-
processing pipeline on all four datasets. First, we
filter out instances with fewer than three tokens to
achieve stable agreement evaluation.4 Next, we
lowercase the tokens, remove non-alphanumeric
tokens, and truncate the sequence to 200 tokens if
the sequence length exceeds this threshold. We set
the maximum vocabulary size to 20k for models
which do not leverage subword vocabularies.

A.1.2 Validation set performance

We report the validation set performance in Table 6.

A.1.3 Computing infrastructure

We conducted our experiments on 2× AMD Ryzen
Threadripper 3970X 32-Core Processors and 2×
NVIDIA GeForce RTX 3090 GPUs with 24GB of
RAM. We used PyTorch version 1.9.0 and CUDA
11.4.

A.1.4 Average runtime

Table 9 shows the average experiment runtime for
each model across the datasets we used.

A.1.5 Number of parameters

The JWA and DBERT models that we used contained
1, 714, 951 and 66, 954, 241 trainable parameters,
respectively.

4If a sequence consists of only two tokens, rank-correlation
with Kendall-τ will either result in a perfect match, or com-
pletely different observations as swapping the two ranks leads
to an inverse ranking.

JWA DBERT

SUBJ 3.4 11.2
SST 2.7 8.9
TREC 1.2 3.7
IMDB 6.1 107.5

Table 7: Experiment duration in minutes for both mod-
els across datasets. We report the average runtime over
5 different runs.

JWA DBERT

C T C T

SUBJ 1. 1. 5. 1.
SST 1. 0.5 0.1 0.5
TREC 1. 1. 0.1 0.3
IMDB 0.3 1. 1. 1.

Table 8: Selected hyperparameter values for CONICITY
(C) and TYING (T).

A.2 Hyperparameter search
We used the following parameter grids for JWA:
[10−1, 10−2, 10−3, 10−4, 10−5, 10−6] for learning
rate, and [50, 100, 150, 200] for the hidden state
dimension. We yield best average results on valida-
tion sets across all datasets when the learning rate
is set to 10−3 and the hidden size is set to 150. For
DBERT, we find that the most robust initial learning
rate on the four datasets is 2 × 10−5, among the
options we explored [5 × 10−4, 10−4, 10−5, 2 ×
10−5, 5 × 10−5, 10−6]. Additionally, we clip the
gradients for both models such that the gradient
norm ≤ 1. We use the Adam (Kingma and Ba,
2015) optimizer for JWA and AdamW (Loshchilov
and Hutter, 2017) for DBERT. We run both models
for 5 epochs and repeat the experiments 5 times
with different seeds: [1, 2, 3, 4, 5].

For regularization methods, we conducted a grid
search with parameter grid [0.1, 0.3, 0.5, 1, 5, 10]
for CONICITY and [0.1, 0.3, 0.5, 1, 5, 10, 20] for
TYING. We select the models with the strongest
regularization scale, which is within 3 F1 points
from the unregularized model. Table 8 shows the
selected values for each model across all datasets.

JWA DBERT

SUBJ 3.4 11.2
SST 2.7 8.9
TREC 1.2 3.7
IMDB 6.1 107.5

Table 9: Experiment duration in minutes for both mod-
els across datasets. We report the average runtime over
5 different runs.
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Train Validation Test Total

SUBJ 7, 000 1, 000 2, 000 10, 000
SST 6, 819 868 1, 810 9, 497
TREC 1, 987 159 486 2, 632
IMDB 17, 212 4, 304 4, 363 25, 879

Table 10: Number of instances in each split and the total
number of instances in each dataset after we excluded
too short examples (see section 3.1).

A.3 Dataset statistics
We report the number of instances per split for each
dataset in Table 10. We note that all of the datasets
we used contain predominantly texts in English.

B Additional Experiments

We show the full version of local curvature statis-
tics in Table 11 (without averaging over datasets).
In Figures 3 to 10 we plot correlation scores (kτ
and pr) with standard deviation on the test splits.
We include the results for all datasets across train-
ing epochs for regularized models (CONICITY, TY-
ING) when compared to their unregularized, BASE

variants.
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Figure 3: JWA – SUBJ
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Figure 4: JWA – SST
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Figure 5: JWA – TREC
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Figure 6: JWA – IMDB
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Confidence Ambiguity Variability

B T B T B T

G
ra

d
no

rm SUBJ −.37.00 −.06.00 .48.00 .05.02 .45.00 .00.83
SST −.40.00 .02.34 .58.00 .08.00 .42.00 −.23.00

TREC −.32.00 .05.32 .39.00 −.12.01 .38.00 .18.00
IMDB −.46.00 −.11.00 .61.00 .17.00 .60.00 .30.00

M
in

di
st SUBJ −.59.00 .01.70 .79.00 −.10.00 .74.00 .06.00

SST −.45.00 .30.00 .70.00 −.44.00 .49.00 .30.00
TREC −.55.00 .17.00 .70.00 −.26.00 .68.00 .25.00
IMDB −.53.00 .50.00 .70.00 −.74.00 .64.00 .04.00

Table 11: Correlations between local curvature statistics in the representation space and cartography attributes for
each dataset. We use average gradient norms (grad norm) of the hidden representation with respect to the input
embeddings and average distance to the nearest instance (min dist). The columns correspond to the cartography
attributes. We report the results for the unregularized model (B) and the regularized one to which we applied tying
(T). The values in the subscript denote the standard deviation.
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Figure 7: DBERT – SUBJ
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Figure 8: DBERT – SST
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Figure 9: DBERT – TREC
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Figure 10: DBERT – IMDB
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