
Findings of the Association for Computational Linguistics: ACL 2023, pages 9301–9314
July 9-14, 2023 ©2023 Association for Computational Linguistics

Sentence Ordering with a Coherence Verifier

Sainan Jia1, Wei Song1*, Jiefu Gong2, Shijin Wang2, and Ting Liu3

1Information Engineering College, Capital Normal University, Beijing, China
2State Key Laboratory of Cognitive Intelligence, iFLYTEK Research, Hefei, China

3Harbin Institute of Technology, Harbin, China
jiasainan0929@gmail.com, wsong@cnu.edu.cn

{jfgong, sjwang3}@iflytek.com, tliu@ir.hit.edu.cn

Abstract

This paper presents a novel sentence order-
ing method by plugging a coherence verifier
(COVER) into pair-wise ranking-based and se-
quence generation-based methods. It does not
change the model parameters of the baseline,
and only verifies the coherence of candidate
(partial) orders produced by the baseline and
reranks them in beam search. We also propose
a coherence model as COVER with a novel
graph formulation and a novel data construc-
tion strategy for contrastive pre-training inde-
pendently of the sentence ordering task. Experi-
mental results on four benchmarks demonstrate
the effectiveness of our method with topolog-
ical sorting-based and pointer network-based
methods as the baselines. Detailed analyses
illustrate how COVER improves the baselines
and confirm the importance of its graph formu-
lation and training strategy. Our code is avail-
able at https://github.com/SN-Jia/
SO_with_CoVer.

1 Introduction

Coherence is essential for effective communication.
The correct order of sentences is a necessary at-
tribute of text coherence. Sentence ordering aims
to organize a set of possibly unordered sentences
into a coherent text. It is closely associated with
coherence modeling. On one hand, it has been used
as an objective for learning coherence models. On
the other hand, it can be viewed as a follow-up
module of coherence evaluation, e.g., for improv-
ing texts with low coherence scores. So sentence
ordering has highly practical value in downstream
tasks for evaluating and improving the quality of
human writing (Amorim et al., 2018; Mim et al.,
2019) or machine-generated content (Reiter and
Dale, 1997; Fan et al., 2019; Hu et al., 2020; Guan
et al., 2021).

*Corresponding author, supported by the National Natural
Science Foundation of China (No. 61876113)

Recent sentence ordering studies can be classi-
fied into 2 categories: pair-wise ranking-based and
sequence generation-based methods.

Pair-wise ranking-based methods first model the
relative order of each sentence pair and then inte-
grate all the predicted relative orders with some
ranking methods to get the final order (Chen et al.,
2016; Prabhumoye et al., 2020; Ghosal et al., 2021;
Zhu et al., 2021). For example, B-TSort (Prabhu-
moye et al., 2020) uses BERT for pair-wise clas-
sification, builds a constraint graph to integrate
pair-wise predictions, and adopts the topological
sorting algorithm for sentence ranking.

Sequence generation-based methods are mainly
based on the pointer networks (Vinyals et al., 2015).
An encoder encodes all unordered sentences in
various ways to capture the paragraph-level con-
textual information (Cui et al., 2018; Yin et al.,
2019; Wang and Wan, 2019; Yin et al., 2021; Lai
et al., 2021), then a decoder iteratively selects the
next one from the set of unordered sentences condi-
tioned on the states of the encoder and the already
ordered sentence sequence.

However, both categories of methods have a
shortcoming in that the coherence of ordered sen-
tences is not directly optimized but is approximated
by optimizing auxiliary tasks, e.g., pair-wise order-
ing and ranking algorithms, or optimizing a series
of conditional decisions, e.g., iterative sentence se-
lection by a pointer network. These sub-optimal
objects have a misalignment with the purpose of
finding an order with maximal global coherence.

In this paper, we propose a simple sentence or-
dering method by introducing a Coherence Verifier
(COVER). It can be plugged into the ranking-based
and sequence generation-based models. Figure 1
shows an example of how COVER works together
with a sequence generation baseline. COVER only
intervenes in the generation process. At each in-
ference step, we let the baseline provide top can-
didates as the next sentence (e.g., s4 and s3) and

9301

https://github.com/SN-Jia/SO_with_CoVer
https://github.com/SN-Jia/SO_with_CoVer

𝑠!

𝑠"

𝑠#

𝑠$

𝑠%

Unordered
sentences

Set
Encoder Generator

𝑠! 𝑠"
Ordered
sentences

𝑠$

𝑠#

0.35

0.33

𝑠! 𝑠" 𝑠#

Top candidates

𝑠! 𝑠" 𝑠$

Coherence
Verifier
(CoVer)

0.75

0.87

+

+

Conditional score

Continue decoding

1.1

1.2 ✅

Incorporating coherence
scores for re-ranking

Conditional score

Figure 1: An example of how COVER works together with a sequence generation model. The model’s encoder can
encode a set of sentences in various ways and its decoder iteratively generates sentence order based on (accumulated)
conditional scores. COVER is used as a coherence verifier to measure the coherence of a candidate order. It can be
pre-trained and flexibly plugged into the decoding process through beam search.

use COVER to verify the coherence of the sentence
sequence candidates (e.g., s1, s2, s4 and s1, s2, s3)
and re-rank the candidates for future generations.
As a result, our method combines local conditional
evidence and global coherence.

COVER is trained to measure coherence inde-
pendently of the sentence ordering task. This is
reasonable and important since the input of a coher-
ence model is an ordered sentence sequence rather
than a set of unordered sentences, and the model
can be pre-trained with multi-domain datasets. We
propose a novel coherence model, with a new
graph formulation to model sentence pair orders,
sequence order, and paragraph-to-sentence rela-
tions, and a novel gradual permutation-based data
construction strategy for effective contrastive pre-
training from pairs of sentence orders with different
coherence degrees.

We evaluate the effectiveness of COVER by
letting it work with a topological sorting-based
baseline B-TSort (Prabhumoye et al., 2020) and a
pointer network-based sequence generation base-
line BERSON (Cui et al., 2020). Experimental
results on four benchmarks demonstrate that our
method improves both baselines and especially, ob-
tains a large gain for the topological sorting-based
baseline. It also outperforms other recent methods.

We conduct a series of in-depth analyses show-
ing that our method can correct a large ratio of sen-
tence pair classification errors made by B-TSort
and improve ordering accuracy at the early de-
coding stage for BERSON, which alleviates the
gap between training and inference, and reduces
error propagation. These effects come from the
key designs of our coherence model. Moreover,
the COVER pre-trained with larger cross-domain
datasets obtains better performance than the mod-

els trained with domain-specific datasets. The re-
sults verify the importance of pre-training the in-
dependent coherence model and also indicate that
sentence ordering and coherence modeling can co-
operate and interact well.

2 Background

2.1 Coherence Modeling
The main coherence modeling methods can be clas-
sified into the following categories.
Entity grid-based Methods measure local coher-
ence by tracking the transitions of the grammatical
roles of entities between sentences (Barzilay and
Lapata, 2008; Lin et al., 2011). Tien Nguyen and
Joty (2017) proposed the first neural entity model
based on convolutional neural networks (CNNs).
Jeon and Strube (2022) proposed to compute co-
herence by constraining the input to noun phrases
and proper names since they explicitly lead to the
notion of focus in sentences.
Graph-based Methods are another framework for
modeling local coherence. Guinaudeau and Strube
(2013) described relations between sentences and
entities with graphs and measured local coherence
by computing the average out-degree of graphs.
Mesgar et al. (2021) adopted graph convolutional
networks (GCNs) for encoding entity graphs to
model local coherence.
Data-driven Methods focus on learning domain-
independent neural models of discourse coher-
ence (Li and Jurafsky, 2017; Farag and Yan-
nakoudakis, 2019). The key is to define proper
learning objects, including discriminative models
to distinguish coherent from incoherent discourse,
generative models to produce coherent texts (Li
and Jurafsky, 2017), and multi-task learning with
auxiliary tasks (Farag and Yannakoudakis, 2019).

9302

2.2 Sentence Ordering
Sentence ordering task takes possibly out-of-order
sentences s = s1, s2, ..., sn as input, and aims to
find the best order o∗ = o1, o2, ..., on to make the
sentence sequence so1 , so2 , ..., son with maximal
global coherence.

Recent sentence ordering methods are mainly
based on neural networks and can be classified into
the following two categories.

2.2.1 Pair-wise Ranking based Methods
The main procedure of this category of methods is:

Step 1: Learn a pair-wise classifier to de-
termine the relative order of each sentence
pair. The classifier can be trained based on
BERT (Prabhumoye et al., 2020; Zhu et al.,
2021) or GCNs (Ghosal et al., 2021).

Step 2: Integrate the relative orders to build
relations between sentences. A common way
is to build a constraint graph based on the
relative orders.

Step 3: Rank the sentences based on the graph
with a ranking algorithm like topological sort-
ing (Prabhumoye et al., 2020; Ghosal et al.,
2021), or using a neural network to score
sentences (Zhu et al., 2021), or modeling it
as the asymmetric traveling salesman prob-
lem (Keswani and Jhamtani, 2021).

2.2.2 Sequence Generation based Methods
Sequence generation-based models mainly depend
on the pointer networks (Vinyals et al., 2015). The
encoder maps a set of sentences into a fixed-length
vector representation in various ways (Cui et al.,
2018; Yin et al., 2019, 2021; Lai et al., 2021; Basu
Roy Chowdhury et al., 2021; Cui et al., 2020). The
decoder iteratively generates the sentence sequence
based on the attention scores over input sentences.

Formally, the decoders focus on modeling an
autoregressive factorization of the joint coherence
probability of a predicted order ô,

p(ô|s) =
n∏

i=1

p(ôi|ô<i, s)︸ ︷︷ ︸
conditional probability

∝
n∏

i=1

aUi(ôi|ô<i, s)︸ ︷︷ ︸
attention score

(1)

where ô<i is the sequence of already ordered sen-
tences, Ui is the set of unselected sentences at step

i, ôi is the i-th sentence in ô and aUi(si|ô<i, s) is
the attention score for a candidate sentence si ∈ Ui.

Beam search can be used for enlarging the search
space and ranking partially generated hypotheses
during decoding. But the ranking in beam search
is still based on conditional evidence (Equation 1).

3 The Proposed Framework

3.1 The Motivation
The existing sentence ordering methods make the
best decisions based on conditional evidence or lo-
cal constraints, but do not directly optimize global
coherence. This is natural because the model can-
not see the complete global information before gen-
erating the final ordering.

When people do the same task, we also start
from incomplete information. However, once we
have a partial or final ordering, we often revisit
the already-ordered sentences to verify whether the
current text is coherent or needs to be revised. The
verification step is intuitive and important since we
can see more complete information.

Motivated by the above observations, we pro-
pose a simple sentence ordering framework by in-
corporating an independent coherence verifier. We
call it COVER. COVER reads an ordered sentence
sequence and gives a coherence score. We expect
COVER can verify the predicted results of a base-
line model and rerank the candidates to get a more
coherent one.

We will introduce the details of COVER in §4.
In this section, we focus on demonstrating that
COVER can be flexibly incorporated with sequence
generation-based (§3.2) and topological sorting-
based (§3.3) models through beam search.

3.2 COVER for Sequence Generation-based
Models

As Figure 1 shows, COVER can be easily incorpo-
rated into a pointer network-based baseline model.
It only intervenes in the decoding process. At each
decoding step, we compute the score of a candidate
sentence si as

g(si) = αaUi(si|ô<i, s)︸ ︷︷ ︸
attention score

+ COVER(ô<i, si)︸ ︷︷ ︸
coherence verifier

(2)

where aUi(si|ô<i, s) is the attention score. We put
si at the end of ô<i and COVER(ô<i, si) returns a
coherence score for the resulted sentence sequence.

COVER can be incorporated through beam
search and g(si) in Equation 2 becomes g(ô<i, si).

9303

A beam B = {ô<i} stores the top k preceding or-
ders where k is the beam size and each candidate
si ∈ Ui is combined with the items in B. We score
each combination (ô<i, si) based on g(ô<i, si) and
store the top k combinations in B.

3.3 COVER for Pair-wise Ranking-based
Methods

For a pair-wise model, COVER does not affect the
pair-wise classifier and only affects the ranking part
as long as the model can provide multiple ordering
candidates. In this paper, we focus on improving
topological sorting-based methods.

The topological sorting algorithm reads a con-
straint graph G = (V, E), where an edge from
vi ∈ V to vj ∈ V indicates the sentence si is
predicted to be preceding sj in the document. At
each time, the node without any incoming edges
would be selected. Then the algorithm removes this
node and its associated edges from G and repeats
the above process until all nodes are processed.

We can see that the ordering process is also a gen-
eration process. As a result, we slightly modify the
generation process and describe it in Algorithm 1.

Algorithm 1: COVER for Topological Sort-
ing through Beam Search

Input: Directed graph G = (V, E), beam size k,
steps t to look ahead, start returns the start
node in a graph based on the topological
sorting algorithm, top_k returns the top k
ranked items in a list

Output: beam B = [o1, o2, ..., ok] , each oi is an
ordered list

1 B ← [∅], iter = 0
2 while iter < |V | do
3 b← []
4 for o ∈ B do
5 c← o
6 for j = 0; j < t; j ++ do
7 next = start(G\set(c))
8 c.append(next)
9 b.append(o+ next)

10 end
11 end
12 COVER scores items in b
13 B = top_k(b)
14 iter = iter + 1
15 end
16 return B

We introduce a beam B to store the top k partial
orderings (line 1). A key operation is letting the
topological sorting algorithm look ahead t steps to
have more and longer partial ordering candidates
and store them in a temporary list b (line 3 to line
11). COVER scores the partial ordering candidates

𝑠"𝑠# 𝑠$ 𝑠% 𝑠&

𝑝𝑎𝑟𝑎	𝑛𝑜𝑑𝑒

Skip edges

Para-to-sentence edges

Sequential edges

Figure 2: A tournament digraph to encode the order and
topic of sentences in a paragraph. Each sentence has a
node and the paragraph as a whole has a node.

in b and the top k ones are stored in the beam B for
future generation (line 12 to line 13).

In this way, COVER plays a role in the whole
generation process and corrects the errors made
by the pair-wise classifier in time by measuring
coherence, which is ignored by topological sorting.

4 COVER: The Coherence Model

We propose a new graph-based coherence model
as COVER. Specially, we propose a new graph
formulation and model it with GNNs for coherence
evaluation (§4.1). We also propose a new data
construction strategy for contrastive pre-training of
the coherence model (§4.2).

4.1 Graph Formulation and Modeling
Given ordered sentences in a paragraph d, we con-
struct a graph Gd = (V, E ,R). V is a set of nodes,
E is a set of directed edges connecting nodes and R
is the set of edge types. Figure 2 shows an example
of the graph for a paragraph with 5 sentences. The
graph is a tournament digraph, in which every pair
of distinct nodes is connected by a directed edge.

We consider two types of nodes V = {vd} ∪ Vs:

• Sentence nodes Vs: Each sentence si with an
ordered index i has a node vi ∈ Vs.

• Paragraph node vd: The paragraph has a
node to represent the general topic of the para-
graph.

We also consider three types of directed edges
and the edge types are R = {rd, rs, rk}:

• Paragraph-to-sentence edges: We build a di-
rected labeled edge (vd, rd, vi) from the para-
graph node (para-node) to each sentence node,
where rd indicates the edge type.

• Sequential edges: We build a directed labeled
edge (vi, rs, vi+1) with a type rs between sen-
tence si and si+1.

9304

• Skip edges: We build a directed labeled edge
(vi, rk, vj) with a type rk between sentence si
and sj , if j > i+ 1.

Sequential edges are the most natural choice for
describing local coherence (Mesgar et al., 2021).
We further use densely connected skip edges to
describe long-distance ordering information so that
every sentence sj can directly receive information
from all preceding sentences in the same paragraph
rather than only receiving summarized information
from sj−1. The formulation is rarely explored in
previous coherence modeling work.
Node Representations We map the nodes to dense
vectors. Specifically, we use DeBERTa (He et al.,
2021) to get the representation of each sentence
node. Each sentence is fed to DeBERTa indepen-
dently and the hidden state of the [CLS] token is
used as the node representation. For the paragraph
node, we let DeBERTa read the entire paragraph to
get the representation of the para-node. So the po-
sitional embeddings naturally encode the ordering
information.
Graph Modeling Following previous work (Mes-
gar et al., 2021; Ghosal et al., 2021), we
use Relational Graph Convolutional Networks
(RGCN) (Schlichtkrull et al., 2018) to further en-
code the relations between nodes, which is a natural
choice for the modeling of edges between nodes.

The RGCN model can accumulate relational evi-
dence from the neighborhood around a given node
vi in multiple inference steps, i.e.,

h
(l+1)
i = σ(

∑

r∈R

∑

j∈N r
i

W
(l)
r h

(l)
j

|N r
i |

+W
(l)
0 h

(l)
i) (3)

where h
(l)
i represents the hidden state of node vi

in the l-th layer of the neural network. We use the
representation of node vi from DeBERTa as h(0)i .
r ∈ R is one of the edge types and N r

i represents
the set of nodes connected to vi through edge type
r. Wr is the parameter matrix for r and W0 is
the parameter matrix for the self-connection edge,
which is an extra type in addition to R. σ(·) is
set as ReLU(·). RGCN stacks L layers and we set
L = 2, the same as (Ghosal et al., 2021).
Coherence Evaluation After getting the final rep-
resentations of all nodes, we get the representation
of the graph G via hG =

∑
v∈V hv and map it to a

coherence score Coh(G), i.e.,

Coh(G) = sigmod(FFN(hG)) (4)

𝑠"𝑠# 𝑠$ 𝑠% 𝑠&

𝑠%𝑠# 𝑠$ 𝑠" 𝑠&

𝑠%𝑠# 𝑠& 𝑠" 𝑠$

𝑁x

permutation

permutation

Coherence
degree

𝑂)

𝑂#

𝑂"

𝑂) ≻ 𝑂#
𝑂) ≻ 𝑂"
𝑂# ≻ 𝑂"

sampling
Training
data

𝑂) ≻ 𝑂# ≻ 𝑂"
all pairs

Figure 3: An example for constructing training instances
with the gradual permutation strategy.

where FFN is a single-layer feed-forward neural
network.

4.2 Model Training
Training Objective We train our model based on a
pair-wise ranking manner. Given a text d+ with a
higher coherence degree than a text d−, we use the
following loss function for updating model param-
eters, L = max(0, τ − Coh(Gd+) + Coh(Gd−)),
where Gd+ and Gd− are corresponding graphs for
d+ and d−, and τ = 0.1 is the margin.
Training Instance Construction The model can
be trained using documents with manually anno-
tated coherence degrees. However, the data scale is
very limited. Another common way is distinguish-
ing a coherent document from its permutations,
where a coherent document and one of its random
sentence permutations form a training instance. We
call this way random permutation.

We propose a gradual permutation strategy
by gradually corrupting a coherence document
through pair-wise sentence permutation. Figure 3
illustrates an example of gradual permutation. A
pair-wise permutation operation is to randomly se-
lect a pair of sentences that are not selected before
in the current order and exchange them to get a new
order. We assume the new order is less coherent
than the previous one. By repeating this process,
we can get a sequence of order samples o1, o2, ...
with descending coherence degrees. Finally, we
sample pairs of orders in the final sequence to form
pair-wise training instances according to their rela-
tive coherence degrees. For one document, gradual
permutation can be done multiple times.

Compared with random permutation, gradual
permutation pays more attention to evaluating rela-
tive coherence between imperfect orders with dif-
ferent coherence degrees, instead of only distin-
guishing a perfect order from imperfect ones.

9305

Dataset→ NIPS AAN SIND ROCStory

Model Acc τ PMR Acc τ PMR Acc τ PMR Acc τ PMR

HAN - 66.71 14.06 - 69.03 31.29 - 50.21 15.01 - 73.22 39.62
DARN - 74.62 24.13 - 77.48 39.18 - 56.52 15.48 - 76.02 38.02
SEK-Graph 58.25 76.49 - 65.06 78.60 - 17.17 53.16 - - - -
Con-Graph - 80.29 32.84 - 82.36 49.81 - 58.56 19.07 - 81.22 49.52
STaCK 63.60 81.66 37.31 71.60 85.56 54.01 54.20 61.94 20.79 76.70 85.34 55.96

B-TSORT 61.07 79.91 32.63 65.05 79.39 47.29 45.43 47.34 13.16 65.02 72.58 39.14
+ COVERdom 69.55 84.39 46.42 74.06 86.00 61.43 55.95 61.22 28.55 81.63 86.06 68.44
+ COVER 70.77 85.92 48.54 74.15 86.06 62.04 54.85 60.06 27.00 81.04 85.57 67.33

BERSON 69.08 82.32 38.73 77.73 85.04 58.56 59.74 65.53 31.89 83.51 88.35 69.17
+ COVERdom 72.42 84.59 46.42 78.11 85.26 59.14 60.07 65.92 32.50 84.76 89.22 71.82
+ COVER 74.86 86.10 50.93 78.13 85.21 59.17 60.31 66.01 32.96 84.80 89.16 72.27

Table 1: The general comparison results against two baselines and other recent methods on four datasets.

Pre-Training The training of the coherence model
can be independent of the sentence ordering task.
As a result, COVER can be pre-trained with domain-
independent resources and be maintained as a veri-
fier for sentence ordering in specific domains.

5 Experiment

5.1 Experimental Settings
Datasets We conduct experiments on four widely
used benchmarks. NIPS and AAN contains ab-
stracts from NIPS and ACL anthology network
papers (Logeswaran et al., 2018). SIND is orig-
inally used for visual storytelling (Huang et al.,
2016), where natural language descriptions are pro-
vided for five images of each story. ROCStory is
a dataset of short stories, each of which has five
sentences (Mostafazadeh et al., 2016). We follow
the original papers to split each dataset into train-
ing, validation, and test sets. Detailed statistics are
shown in Table 2.

Dataset Length statistics Data split
mean max train valid test

NIPS 6 14 2427 408 377
AAN 5 20 8568 962 2626
SIND 5 5 40155 4990 5055
ROCStory 5 5 78529 9816 9816

Table 2: Statistics of datasets used in our experiments.

Evaluation Metrics We adopt the following three
commonly used metrics for evaluation.

Perfect Match Ratio (PMR): PMR measures
the percentage of documents for which the entire
sequence is correctly predicted (Chen et al., 2016).

Kendall’s τ : It measures the difference between
the predicted order and the gold order of sentences
based on the number of inversions (Lapata, 2003).

Accuracy (ACC): It measures the percentage of
sentences, whose absolute positions are correctly
predicted (Logeswaran et al., 2018).
Baselines and Settings We use B-TSort (Prab-
humoye et al., 2020)* and BERSON (Cui et al.,
2020)† as our main baselines. We choose them
because they are recent representative pair-wise
ranking-based and pointer network-based methods,
with top performance and almost reproducible re-
sults with publicly released codes. We use opti-
mized parameters provided by the original papers
and re-run the source codes in our machine. We
run these baselines for three times with different
random seeds and use the baseline models with the
best performance in our experiments.

Our method lets COVER work together with B-
TSort and BRESON, utilizing and adjusting their
predictions with beam search. The same as the
setting of BERSON, we set the beam size as 16 for
both baselines. The looking ahead steps t in Algo-
rithm 1 is 2. The hyper-parameter α in Equation 2
is 0.1, which is chosen from {0.01, 0.1, 0.5, 1}
based on the validation performance.

We use the AdamW optimizer for training the
coherence model. The learning rate for the param-
eters of DeBERTa, which is used for getting node
representations, is 1e-6 and the learning rate for the
parameters of the RGCN model is 1e-4.

We pre-train COVER using the combination of
the training sets of the four benchmarks with an
A100 GPU for 40 hours and train a domain-specific
COVERdom for each dataset using the correspond-
ing training set. For one document, we sample two
sentence permutations as negative instances.

*https://github.com/shrimai/Topological-Sort-for-
Sentence-Ordering/

†https://github.com/hwxcby/BERSON

9306

5.2 General Results on Sentence Ordering

Table 1 shows the performance of our method, two
main baselines, and other recent methods.

First of all, we can see that both COVER and
COVERdom improve the two baselines on all bench-
marks. The pre-trained COVER outperforms the
domain-specific COVERdom in most cases, indi-
cating pre-training the coherence model is feasible
and useful. We can maintain a single coherence
model instead of domain-specific ones and even
have a boost in overall performance.

Based on the beam search algorithm for topologi-
cal sorting, COVER obtain 11.1%, 9.6%, and 18.1%
average absolute improvements in Acc, Kendall’s
τ , and PMR compared with B-TSort.

Based on adding coherence verification in the
beam search-based decoding, COVER achieves
2.0%, 1.3%, and 4.2% average absolute improve-
ments in Acc, Kendall’s τ , and PMR compared
with BERSON. The improvements are smaller but
still significant. Especially, our method has signifi-
cant performance improvement in PMR.

We also conduct comparisons with other recent
methods, including hierarchical attention network
(HAN) (Wang and Wan, 2019), deep attentive
ranking network (DARN) (Kumar et al., 2020),
constraint graph (ConGraph) (Zhu et al., 2021),
knowledge-enhanced GNN (SEK-Graph) (Yin
et al., 2021) and STaCK (Ghosal et al., 2021). Our
method based on either B-TSort or BERSON out-
performs all these methods.

5.3 Effect of COVER for B-TSort

Our method gets large improvements for B-TSort.
We hope to analyze the improvements more deeply
and conduct investigations on the NIPS dataset.

We start by analyzing the predictions made by B-
TSort’s pair-wise classifier. Specifically, we group
sentence pairs according to the distance between
two sentences. We investigate the error ratio for
different distance d, where

error ratio =
#incorrect pair-wise prediction
#all pairs within distance d

,

and analyze the confidence of the pair-wise classi-
fier, using its prediction probability as a confidence
measure.

Figure 4 illustrates the error ratio and averaged
prediction confidence for different values of d. B-
TSort’s classifier is more confident and accurate
for determining the relative order of sentence pairs

1 2 3-4 5-6 7+
Sentence distance

0

5

10

15

20

25

30

35

Er
ro

r r
at

io = 26.9%

= 21.7%

= 23.0%

= 50.0%

= 62.5%
B-TSort
+CoVer

65

70

75

80

85

90

95

100

105

Pr
ed

ict
io

n
co

nf
id

en
ce

prediction confidence

Figure 4: The error ratio of predicted pair-wise relative
orders w/ and w/o COVER for B-TSort and the average
prediction confidence of B-TSort’s pair-wise classifier.

with larger distances but is less confident and strug-
gles in handling the relative order of nearby sen-
tences. This is reasonable since nearby sentences
share similar topics in content so it is hard to de-
termine the relative order without a larger context.
The topological sorting algorithm does not con-
sider content information and cannot deal with low-
confidence predictions as well.

Figure 4 also shows the error ratio of B-TSort
plus COVER. Our method reduces 21% to 27%
errors for sentence pairs with distance d ≤ 4 and
reduces more than 50% errors for long-distance
sentence pairs. This indicates that based on Algo-
rithm 1, COVER overcomes the limitations of the
original topological sorting algorithm and gradu-
ally improves the predictions.

5.4 Effect of COVER for BERSON

We infer that one of the reasons that COVER im-
proves BERSON is alleviating the gap between the
training and inference. We conduct a controlled
experiment to verify this assumption.

During inference, we experiment with different
input orders to the decoder of BERSON: 1) perfect:
the input order is the right-shift of the gold order,
which is the same as the training phase; 2) pre-
dicted: the input order is according to the predicted
order, which is the normal way for inference. In
either case, we evaluate the outputs of the decoder.

Method Input Order Acc τ PMR

BERSON Perfect 79.84 83.47 57.55
BERSON Predicted 72.51 80.31 49.58
+ COVER Predicted 75.53 81.62 53.83

Table 3: Average performance with perfect and pre-
dicted order as the input of BERSON’s decoder.

9307

Method Acc τ PMR

B-TSORT+Mesgar et al. (2021) 63.19 73.91 34.51
B-TSORT+COVER 70.20 79.40 51.23
- Skip edges 69.19 78.87 49.46
- Para node 58.90 71.23 29.94

BERSON+Mesgar et al. (2021) 72.60 80.41 50.23
BERSON+COVER 74.53 81.62 53.83
- Skip edges 73.17 80.91 51.02
- Para node 72.39 80.11 49.58

Table 4: Ablation study of the graph formulation.

Table 3 shows the average performance over four
datasets. BERSON with perfect input orders sets
an upper bound. In contrast, in the normal way
for inference, BERSON’s performance drops a lot
because there are likely errors during order gen-
eration and the imperfect preceding order would
affect the future generation as well. With the help
of COVER, BERSON can get a performance closer
to that with perfect input order.

A natural assumption about the effect is that
COVER improves the predictions in the early de-
coding stage so that future generation is based on a
closer-to-perfect preceding order.

5.5 Ablation Study of COVER

We further investigate the effectiveness of key de-
signs of COVER, mainly from two aspects: the
graph formulation and the training strategy.
Graph Formulation We focus on analyzing the
importance of the skip edges and the paragraph
node, which mainly encode ordering information.

Table 4 shows the results. For B-TSort, remov-
ing skip edges leads to a small performance de-
crease, while removing the paragraph node leads to
a large decrease. The reason may be that the topo-
logical sorting algorithm depends on the predicted
pair-wise relative orders but does not consider any
content information. So encoding the content of a
paragraph is more important. For BERSON, the
paragraph node and the skip edges are both impor-
tant. The skip edges explicitly connect preceding
sentences and the candidate sentence, which may
help deal with imperfect partial orders.

A state-of-the-art coherence model Mesgar et al.
(2021) is also used as the verifier. It improves B-
TSort and BERSON, but has a certain gap with
COVER, indicating the advantage of coherence ver-
ification and the designs of COVER.
Training Strategies We compare the random per-
mutation and gradual permutation strategies. Ta-

B-SORT Acc τ PMR

Random permutation 69.19 78.23 49.76
Gradual permutation 70.20 79.40 51.23

BERSON Acc τ PMR

Random permutation 73.75 81.15 51.77
Gradual permutation 74.53 81.62 53.83

Table 5: Average performance with two strategies.

Error Ratio

position BERSON Random Gradual

1 7.69 5.57 3.98
2 28.38 21.22 17.51
3 40.69 32.18 26.60
4-5 43.22 40.69 36.07
6-7 40.76 39.67 40.49
8+ 40.71 39.29 42.86

Table 6: Error ratio for sentences at different positions
with random and gradual permutation strategies.

ble 5 shows the average performance over four
datasets. Gradual permutation consistently gets
better performance than random permutation.

We further analyze the error ratio for sentences
at different positions in the gold orders on the NIPS
dataset. Table 6 shows that using either strategy,
our method can obviously reduce the error ratio
for almost all positions. Random permutation out-
performs BERSON at all positions, while gradual
permutation has the lowest error ratio for sentences
at the front and middle of the documents. This
is because, with the training instances constructed
by gradual permutation, the model can better com-
pare relative coherence between imperfect orders
so it can correct more errors in preceding sentences,
making the decoding more robust. But gradual
permutation has a slightly worse error ratio at the
end of the documents. The reason may be that
the training instances containing perfect orders are
less, affecting the judgment for sentences at the end.
In the future, we will investigate better sampling
strategies that can keep a trade-off between random
permutation and gradual permutation.

Connecting the above observations, COVER sig-
nificantly improves the accuracy at the front of
documents and can gradually improve the partial
orderings. These factors can reasonably explain the
effects of COVER for B-TSort and BERSON.

5.6 Predicting the First and Last Sentences
The first and last sentences are important to docu-
ments. Following previous studies, we report the

9308

Method NIPS AAN SIND ROCStory

First Sentence

B-TSORT 91.51 89.68 74.28 88.30
+ COVER 94.43 92.74 80.24 94.50

BERSON 92.31 93.18 85.44 96.34
+ COVER 96.02 93.54 85.64 97.13

Last Sentence

B-TSORT 79.05 78.59 52.58 72.10
+ COVER 79.84 82.07 61.17 83.38

BERSON 80.37 81.54 66.25 85.85
+ COVER 79.58 81.54 66.41 84.90

Table 7: Accuracy of predicting the first and last sen-
tences on four benchmarks.

performance of our model against two baselines
in correctly predicting these two sentences on four
benchmarks.

As displayed in Table 7, our method obtains
significant improvements in predicting the first sen-
tences across four benchmarks for both B-TSort
and BERSON. However, it performs better than
B-TSort but slightly worse than BERSON in pre-
dicting the last sentences. This observation is con-
sistent with the analysis in §5.5.

5.7 Performance on Short and Long
Documents

We conduct experiments on NIPS and AAN
datasets to analyze the effects of COVER for short
and long texts. The documents in the test set are
divided into short ones (with less than 8 sentences)
and long ones (with 8 or more sentences). There
are 298 short and 79 long documents in NIPS, and
2358 short and 268 long documents in AAN.

Table 8 shows the results. For two baselines, our
method has great improvements in both short and
long documents.

5.8 Performance on Coherence Rating
We also evaluate our model for the summary co-
herence rating (SCR) task. We use the dataset
proposed by Barzilay and Lapata (2008), which
contains English summaries produced by human
experts and an extractive summarization system.
Each instance in the dataset is a pair of two sum-
maries with different ratings of the same text.

We compare our model with EntGraph (Guin-
audeau and Strube, 2013), Neural Ent-
Grid (Tien Nguyen and Joty, 2017) and Mesgar
et al. (2021). Table 9 shows that our model
performs very close to the best performance

Dataset NIPS AAN

Method τ PMR τ PMR

Short Text

B-TSORT 81.77 40.27 81.32 52.13
+ COVER 87.20 56.71 87.47 67.46

BERSON 83.39 46.31 86.27 63.12
+ COVER 86.47 56.71 86.45 63.67

Long Text

B-TSORT 72.86 3.80 62.49 4.85
+ COVER 81.08 17.72 73.76 14.55

BERSON 78.29 10.13 74.26 18.66
+ COVER 84.72 29.11 74.31 19.78

Table 8: Results on short and long texts in the NIPS and
AAN datasets.

Model Acc

EntGraph 80.0
Neural EntGrid 86.3
Mesgar et al. (2021) 87.5

COVER 87.4

Table 9: Results for summary coherence rating in
DUC2003 dataset.

system, indicating that our method is effective for
multiple coherence evaluation tasks.

6 Conclusion

This paper has presented a novel sentence order-
ing method by incorporating a coherence verifier
(COVER). We show that COVER works well with
pair-wise ranking-based and sequence generation-
based baselines. Our framework combines local
evidence from the baselines and larger context co-
herence from COVER and can gradually improve
partial orderings. The coherence verifier is inde-
pendent of the sentence ordering task but can be
optimized for sentence ordering (e.g., via gradual
permutation), and can be pre-trained with multi-
domain datasets, obtaining superior performance
compared with domain-specific models. So it is
effective and easy to maintain and transfer.

Sentence ordering is often used as a training
task for coherence modeling. This paper, however,
suggests that coherence models can also support
sentence ordering methods to correct incoherent
texts. Coherence models are able to identify sen-
tences that are not well-connected. Sentence or-
dering models can then be used to reorder these
sentences to improves the coherence of the text
with the assistance of the coherence models.

9309

Limitations

While the proposed method performs well on four
benchmarks, we discuss some of its limitations.

On one hand, as discussed in §5.5, our method
is not accurate enough to predict sentences at the
end of the documents. There may be some better
strategies to construct training samples so that the
model can better take into account each part of the
documents and make more accurate predictions.

On the other hand, our model is not pre-trained
with more diverse domains and larger scale data.
Our datasets are limited to two types, i.e., paper
abstracts and short stories, both of which have com-
paratively obvious order characteristics. In addi-
tion, we do not use some larger scale datasets, such
as NSF abstracts and arXiv abstracts, because of
computation and time constraints. With more di-
verse and larger data, the performance of our model
should be further improved.

References
Evelin Amorim, Marcia Cançado, and Adriano Veloso.

2018. Automated essay scoring in the presence of bi-
ased ratings. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 229–237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Regina Barzilay and Mirella Lapata. 2008. Modeling
local coherence: An entity-based approach. Compu-
tational Linguistics, 34(1):1–34.

Somnath Basu Roy Chowdhury, Faeze Brahman, and
Snigdha Chaturvedi. 2021. Is everything in order? a
simple way to order sentences. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 10769–10779, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Xinchi Chen, Xipeng Qiu, and Xuanjing Huang. 2016.
Neural sentence ordering. ArXiv, abs/1607.06952.

Baiyun Cui, Yingming Li, Ming Chen, and Zhongfei
Zhang. 2018. Deep attentive sentence ordering net-
work. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 4340–4349, Brussels, Belgium. Association
for Computational Linguistics.

Baiyun Cui, Yingming Li, and Zhongfei Zhang. 2020.
BERT-enhanced relational sentence ordering net-
work. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 6310–6320, Online. Association for
Computational Linguistics.

Angela Fan, Mike Lewis, and Yann Dauphin. 2019.
Strategies for structuring story generation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2650–
2660, Florence, Italy. Association for Computational
Linguistics.

Youmna Farag and Helen Yannakoudakis. 2019. Multi-
task learning for coherence modeling. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 629–639. Asso-
ciation for Computational Linguistics (ACL).

Deepanway Ghosal, Navonil Majumder, Rada Mihal-
cea, and Soujanya Poria. 2021. STaCK: Sentence
ordering with temporal commonsense knowledge.
In Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing, pages
8676–8686, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Jian Guan, Xiaoxi Mao, Changjie Fan, Zitao Liu, Wen-
biao Ding, and Minlie Huang. 2021. Long text gener-
ation by modeling sentence-level and discourse-level
coherence. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 6379–6393, Online. Association for Computa-
tional Linguistics.

Camille Guinaudeau and Michael Strube. 2013. Graph-
based local coherence modeling. In Proceedings
of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 93–103, Sofia, Bulgaria. Association for Com-
putational Linguistics.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-enhanced
bert with disentangled attention. In International
Conference on Learning Representations.

Junjie Hu, Yu Cheng, Zhe Gan, Jingjing Liu, Jianfeng
Gao, and Graham Neubig. 2020. What makes a good
story? designing composite rewards for visual sto-
rytelling. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(05):7969–7976.

Ting-Hao Kenneth Huang, Francis Ferraro, Nasrin
Mostafazadeh, Ishan Misra, Aishwarya Agrawal,
Jacob Devlin, Ross Girshick, Xiaodong He, Push-
meet Kohli, Dhruv Batra, C. Lawrence Zitnick, Devi
Parikh, Lucy Vanderwende, Michel Galley, and Mar-
garet Mitchell. 2016. Visual storytelling. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1233–1239, San Diego, California. Association for
Computational Linguistics.

Sungho Jeon and Michael Strube. 2022. Entity-based
neural local coherence modeling. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),

9310

https://doi.org/10.18653/v1/N18-1021
https://doi.org/10.18653/v1/N18-1021
https://doi.org/10.1162/coli.2008.34.1.1
https://doi.org/10.1162/coli.2008.34.1.1
https://doi.org/10.18653/v1/2021.emnlp-main.841
https://doi.org/10.18653/v1/2021.emnlp-main.841
https://doi.org/10.18653/v1/D18-1465
https://doi.org/10.18653/v1/D18-1465
https://doi.org/10.18653/v1/2020.emnlp-main.511
https://doi.org/10.18653/v1/2020.emnlp-main.511
https://doi.org/10.18653/v1/P19-1254
https://doi.org/10.18653/v1/P19-1060
https://doi.org/10.18653/v1/P19-1060
https://doi.org/10.18653/v1/2021.emnlp-main.683
https://doi.org/10.18653/v1/2021.emnlp-main.683
https://doi.org/10.18653/v1/2021.acl-long.499
https://doi.org/10.18653/v1/2021.acl-long.499
https://doi.org/10.18653/v1/2021.acl-long.499
https://aclanthology.org/P13-1010
https://aclanthology.org/P13-1010
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://doi.org/10.1609/aaai.v34i05.6305
https://doi.org/10.1609/aaai.v34i05.6305
https://doi.org/10.1609/aaai.v34i05.6305
https://doi.org/10.18653/v1/N16-1147
https://doi.org/10.18653/v1/2022.acl-long.537
https://doi.org/10.18653/v1/2022.acl-long.537

pages 7787–7805, Dublin, Ireland. Association for
Computational Linguistics.

Vishal Keswani and Harsh Jhamtani. 2021. Formu-
lating neural sentence ordering as the asymmetric
traveling salesman problem. In Proceedings of the
14th International Conference on Natural Language
Generation, pages 128–139, Aberdeen, Scotland, UK.
Association for Computational Linguistics.

Pawan Kumar, Dhanajit Brahma, Harish Karnick, and
Piyush Rai. 2020. Deep attentive ranking networks
for learning to order sentences. 34(05):8115–8122.

Shaopeng Lai, Ante Wang, Fandong Meng, Jie Zhou,
Yubin Ge, Jiali Zeng, Junfeng Yao, Degen Huang,
and Jinsong Su. 2021. Improving graph-based sen-
tence ordering with iteratively predicted pairwise or-
derings. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 2407–2417, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Mirella Lapata. 2003. Probabilistic text structuring:
Experiments with sentence ordering. In Proceedings
of the 41st Annual Meeting of the Association for
Computational Linguistics, pages 545–552, Sapporo,
Japan. Association for Computational Linguistics.

Jiwei Li and Dan Jurafsky. 2017. Neural net models
of open-domain discourse coherence. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 198–209,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Ziheng Lin, Hwee Tou Ng, and Min-Yen Kan. 2011.
Automatically evaluating text coherence using dis-
course relations. In Proceedings of the 49th Annual
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies - Volume
1, HLT ’11, page 997–1006, USA. Association for
Computational Linguistics.

Lajanugen Logeswaran, Honglak Lee, and Dragomir
Radev. 2018. Sentence ordering and coherence
modeling using recurrent neural networks. In Pro-
ceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence and Thirtieth Innovative Ap-
plications of Artificial Intelligence Conference and
Eighth AAAI Symposium on Educational Advances in
Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18.
AAAI Press.

Mohsen Mesgar, Leonardo F. R. Ribeiro, and Iryna
Gurevych. 2021. A neural graph-based local coher-
ence model. In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, pages 2316–
2321, Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Farjana Sultana Mim, Naoya Inoue, Paul Reisert, Hi-
roki Ouchi, and Kentaro Inui. 2019. Unsupervised
learning of discourse-aware text representation for

essay scoring. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics: Student Research Workshop, pages 378–
385, Florence, Italy. Association for Computational
Linguistics.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A corpus
and cloze evaluation for deeper understanding of
commonsense stories. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 839–849, San Diego,
California. Association for Computational Linguis-
tics.

Shrimai Prabhumoye, Ruslan Salakhutdinov, and
Alan W Black. 2020. Topological sort for sentence
ordering. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2783–2792, Online. Association for Computa-
tional Linguistics.

Ehud Reiter and Robert Dale. 1997. Building applied
natural language generation systems. Natural Lan-
guage Engineering, 3(1):57–87.

Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In The Semantic Web, pages 593–
607, Cham. Springer International Publishing.

Dat Tien Nguyen and Shafiq Joty. 2017. A neural local
coherence model. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1320–1330,
Vancouver, Canada. Association for Computational
Linguistics.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. Advances in neural infor-
mation processing systems, 28.

Tianming Wang and Xiaojun Wan. 2019. Hierar-
chical attention networks for sentence ordering.
33(01):7184–7191.

Yongjing Yin, Shaopeng Lai, Linfeng Song, Chulun
Zhou, Xianpei Han, Junfeng Yao, and Jinsong Su.
2021. An external knowledge enhanced graph-based
neural network for sentence ordering. Journal of
Artificial Intelligence Research, 70:545–566.

Yongjing Yin, Linfeng Song, Jinsong Su, Jiali Zeng,
Chulun Zhou, and Jiebo Luo. 2019. Graph-based
neural sentence ordering. In Proceedings of the
Twenty-Eighth International Joint Conference on Ar-
tificial Intelligence, IJCAI 2019, Macao, China, Au-
gust 10-16, 2019, pages 5387–5393. ijcai.org.

Yutao Zhu, Kun Zhou, Jian-Yun Nie, Shengchao Liu,
and Zhicheng Dou. 2021. Neural sentence ordering
based on constraint graphs. 35(16):14656–14664.

9311

https://aclanthology.org/2021.inlg-1.13
https://aclanthology.org/2021.inlg-1.13
https://aclanthology.org/2021.inlg-1.13
https://doi.org/10.1609/aaai.v34i05.6323
https://doi.org/10.1609/aaai.v34i05.6323
https://doi.org/10.18653/v1/2021.emnlp-main.186
https://doi.org/10.18653/v1/2021.emnlp-main.186
https://doi.org/10.18653/v1/2021.emnlp-main.186
https://doi.org/10.3115/1075096.1075165
https://doi.org/10.3115/1075096.1075165
https://doi.org/10.18653/v1/D17-1019
https://doi.org/10.18653/v1/D17-1019
https://doi.org/10.18653/v1/2021.findings-emnlp.199
https://doi.org/10.18653/v1/2021.findings-emnlp.199
https://doi.org/10.18653/v1/P19-2053
https://doi.org/10.18653/v1/P19-2053
https://doi.org/10.18653/v1/P19-2053
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/2020.acl-main.248
https://doi.org/10.18653/v1/2020.acl-main.248
https://doi.org/10.1017/S1351324997001502
https://doi.org/10.1017/S1351324997001502
https://doi.org/10.18653/v1/P17-1121
https://doi.org/10.18653/v1/P17-1121
https://doi.org/10.1609/aaai.v33i01.33017184
https://doi.org/10.1609/aaai.v33i01.33017184
https://doi.org/10.24963/ijcai.2019/748
https://doi.org/10.24963/ijcai.2019/748
https://doi.org/10.1609/aaai.v32i1.11997
https://doi.org/10.1609/aaai.v32i1.11997

A Detailed Experimental Results

Table 10 lists the detailed error ratio data in Fig-
ure 4 for reference. We also report the detailed
results of four benchmarks about the controlled ex-
periment for analyzing the gap between training
and inference in §5.4 (Table 11) , ablation study of
the graph formulation in §5.5 (Table 12) and the
performance with random and gradual strategies in
§5.5 (Table 13).

Distance 1 2 3-4 5-6 7+

B-TSORT 19.41 13.38 6.95 4.30 3.28

+ COVER 14.18 10.48 5.35 2.15 1.23

Table 10: The detailed error ratio of predicted pair-wise
relative orders w/ and w/o COVER for B-TSort

Dataset→ NIPS AAN SIND ROCStory

Method Order Acc τ PMR Acc τ PMR Acc τ PMR Acc τ PMR

BERSON Perfect 75.32 86.96 44.03 85.52 87.71 68.04 69.54 68.79 42.04 88.99 90.42 76.10

BERSON Predicted 69.08 82.32 38.73 77.73 85.04 58.56 59.74 65.53 31.89 83.51 88.35 69.17
+ COVER 74.86 86.10 50.93 78.13 85.21 59.17 60.31 66.01 32.96 84.80 89.16 72.27

Table 11: The detailed results for Table 3 in §5.4.

Dataset→ NIPS AAN SIND ROCStory

Method Acc τ PMR Acc τ PMR Acc τ PMR Acc τ PMR

B-TSORT + Mesgar et al. (2021) 61.73 80.54 28.38 65.42 80.96 45.10 51.71 56.08 20.99 73.88 78.06 43.57
B-TSORT + COVER 70.77 85.92 48.54 74.15 86.06 62.04 54.85 60.06 27.00 81.04 85.57 67.33
- SkipEdges 68.77 84.51 43.50 71.38 84.56 58.60 54.37 59.29 26.55 80.86 85.23 67.01
- ParaNode 58.03 76.71 25.46 60.80 77.58 39.22 49.02 54.92 15.71 67.74 75.69 39.36

BERSON + Mesgar et al. (2021) 69.11 82.43 40.27 77.83 85.09 58.55 59.81 65.73 32.03 83.65 88.39 70.08
BERSON + COVER 74.86 86.10 50.93 78.13 85.21 59.17 60.31 66.01 32.96 84.80 89.16 72.27
- SkipEdges 70.67 83.61 41.91 77.88 85.13 58.72 60.05 65.91 32.50 84.08 88.97 70.94
- ParaNode 68.87 81.77 38.99 77.79 85.09 58.49 59.73 65.50 31.93 83.18 88.07 68.89

Table 12: The detailed results for Table 4 §5.5.

Dataset→ NIPS AAN SIND ROCStory

B-TSort Acc τ PMR Acc τ PMR Acc τ PMR Acc τ PMR

Random Permutation 69.73 84.46 46.15 73.10 85.15 60.59 54.76 59.53 27.75 79.15 83.78 64.53
Gradual Permutation 70.77 85.92 48.54 74.15 86.06 62.04 54.85 60.06 27.00 81.04 85.57 67.33

BERSON Acc τ PMR Acc τ PMR Acc τ PMR Acc τ PMR

Random Permutation 72.32 84.35 44.30 77.88 85.11 58.79 60.08 65.89 32.56 84.73 89.23 71.43
Gradual Permutation 74.86 86.10 50.93 78.13 85.21 59.17 60.31 66.01 32.96 84.80 89.16 72.27

Table 13: The detailed results for Table 5 in §5.5.

9312

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Limitations

�3 A2. Did you discuss any potential risks of your work?
Limitations

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �7 Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
No response.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
No response.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C �3 Did you run computational experiments?
5

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
5.1

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

9313

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
5.1

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
5.1 and A

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
5.1

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

9314

