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Abstract
Large language models are known to produce
output which sounds fluent and convincing, but
is also often wrong, e.g. “unfaithful" with re-
spect to a rationale as retrieved from a knowl-
edge base. In this paper, we show that task-
based systems which exhibit certain advanced
linguistic dialog behaviors, such as lexical
alignment (repeating what the user said), are
in fact preferred and trusted more, whereas
other phenomena, such as pronouns and ellipsis
are dis-preferred. We use open-domain ques-
tion answering systems as our test-bed for task
based dialog generation and compare several
open- and closed-book models. Our results
highlight the danger of systems that appear to
be trustworthy by parroting user input while
providing an unfaithful response.

1 Introduction

With the advent of large language models (LLM),
Question Answering Systems have become open-
domain and conversational, meaning that they are
able to generate fluent and informative responses to
questions about nearly any topic and over several
turns (Adlakha et al., 2022). However, these sys-
tems are also known to produce factually incorrect
statements, commonly referred to as hallucinations
(Rashkin et al., 2021b; Dziri et al., 2022b). These
two properties taken together require the system as
well as the user to ensure that they mutually under-
stand each other – a process also known as conver-
sational grounding (Clark and Brennan, 1991).

Empirical studies of dialogue have shown that
people use different kinds of context-dependent lin-
guistic behavior to indicate grounding, including
use of fragments, ellipsis and pronominal refer-
ence (Fernandez and Ginzburg, 2002; Eshghi and
Healey, 2016). Other studies show that lexical
alignment in a response, i.e. repeating and adopt-
ing the interlocutor’s lexical items (Pickering and
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Figure 1: Responses with different forms of conversa-
tional linguistic phenomena and token grounding: Blue
indicates tokens from the question are repeated in the
response (lexically aligned). Bold corresponds to con-
tent tokens in the response grounded in the knowledge
source; red tokens are hallucinations, i.e., not faithful
to the dialogue and rationale. The last two columns
indicate user preference and faithfulness, respectively.

Garrod, 2004; Branigan et al., 2010), can play a
similar role, see examples in Figure 1.

There is initial evidence in related fields that
generating grounding phenomena will lead the user
to trust the system more, such as conversational
assistants for educational (Linnemann and Jucks,
2018) and medical applications (Bickmore et al.,
2021) as well as in the field of HRI (Bossens and
Evers, 2022). At the same time, we argue that
systems that exhibit more grounding behavior are
not necessarily more faithful to the dialogue and
input rationale, which can lead to unjustified trust.

In order to explore these hypotheses, we first
analyze conversational grounding phenomena via
automatic annotation of linguistic properties for
open-domain QA. We consider responses generated
by different GPT-3 variants (Brown et al., 2020),
and state-of-the-art Retrieve-and-Generate models
on the TopiOCQA development set (Adlakha et al.,
2022). We evaluate the performance of models
via several automatic surface-level, and semantic-
based metrics against multiple references and a
chosen rationale from a gold Wikipedia passage.

947



Models Length (µ) Structure (%) Align Pron (%)
Frag Short Long P R F1

DPR+FiD 9.1 64.6 33.4 2.0 6.1 8.7 6.2 23.1
DPR+GPT-3 24.4 13.9 56.7 29.4 14.8 37.0 19.5 10.4

GPT-3 20.1 12.5 55.8 31.7 18.3 38.0 22.9 12.1
Human 11.2 57.0 36.2 6.8 6.6 10.8 7.2 18.7

Table 1: Linguistic phenomena of responses for different models on the development set of TopiOCQA.

Given current limitations of automatic metrics, we
annotate a subset of responses according to their
plausibility, groundedness to the input source and
faithfulness to the dialogue and input source at the
same time. We also elicited a human preference
task among the responses of each model. Finally,
we conduct a series of human evaluation experi-
ments where we provide responses to questions
controlling for each of the linguistic phenomena
under examination, and ask users to choose the one
they perceive as more trustworthy. Our findings are
summarised as follows:

• GPT-3 variants are generally more verbose
and more lexically aligned to the question.
In contrast, the human-authored responses in
TopiOCQA are more elliptical and contain
more pronominals. Unsurprisingly, the fine-
tuned model emulates this behavior.

• GPT-3 variants are less faithful according to
expert human annotations and the majority of
automatic metrics.

• Surprisingly, users prefer open-book GPT-3
over the fine-tuned model although half of the
time the preferred responses were unfaithful.

• Users trusted responses with high lexical
alignment significantly more, whereas the ef-
fect was the opposite for elliptical responses,
and answers containing pronominals.

2 Conversational Grounding Analysis

2.1 Dataset and Models

Dataset We use the development set of Topi-
OCQA comprising 205 information-seeking dia-
logues (2514 turns)1.
Models We test a variety of models under two
different settings. In the closed-book setting mod-
els have no access to domain-specific information
other than what is stored in their own parameters;

1A manual analysis of the dataset revealed that the linguis-
tic phenomena under scrutiny are almost exclusively present.

in the open-book setting models can leverage a set
of relevant documents provided by the retriever.

For the open-book setting we used a fine-tuned
Dense Passage Retriever (DPR; Karpukhin et al.,
2020) as the retriever and experimented with two
different readers: Fusion in Decoder (FiD; Izacard
and Grave, 2021) fine-tuned on TopiOCQA, and
GPT-3 (Brown et al., 2020)2, where we concatenate
passages returned from DPR with the dialogue con-
text and use them as conversational prompt. For
closed-book similar to Adlakha et al. (2022) we
also use GPT-3, where the dialogue context is con-
catenated into a conversational prompt.

Notably, we could have also tuned GPT-3 ei-
ther via prompt engineering or fine-tuning3 so that
it resembles the distribution of the target dataset.
We decided against this for two reasons: firstly,
the amount of engineering required would go be-
yond the focused scope of this work; second using
vanilla GPT-3 variants is as close as possible to
an ecologically valid scenario. For example, it is
similar to how an end-user would be exposed to
an LLM via a search engine, or a chat interface
without any direct control of its prompt.

2.2 Dialogue Phenomena
We automatically annotate the following linguistic
properties of responses:
Lexical Alignment is approximated based on uni-
gram overlap between the response and correspond-
ing question, i.e. the system repeating the same
words as the user. This typically serves the purpose
of implicitly confirming what was understood in
task-based dialog. We compute the precision (P),
recall (R) and F1. Figure 1 shows a response that
lexically aligns to the question.
Syntactic Form We define three categories accord-
ing to the syntactic structure, based on the con-
stituency tree4:

• short responses comprise a single sentence
2We used davinci-003 in all our experiments.
3Fine-tuning GPT-3 would entail several rounds of hyper-

parameter tuning increasing the cost of the experiments.
4We used Stanza (Qi et al., 2020).
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F1 ↑ EM ↑ BLEU ↑ ROUGE ↑ BERT ↑ K-F1 ↑K-F1++ ↑ Critic ↓ Q2

Models F1 ↑ NLI ↑
DPR+FiD 55.3 33.0 44.74 56.3 0.79 21.3 19.0 55.9 32.8 35.9

DPR+GPT-3 37.4 5.9 20.02 39.0 0.81 28.4 22.6 63.2 26.5 29.8
GPT-3 33.9 6.8 12.71 36.4 0.80 20.2 15.7 59.2 19.9 24.3

Human 70.1 40.2 58.63 70.8 0.83 33.0 29.3 20.7 59.9 63.6

Table 2: Model performance using automatic metrics on the development set of TopiOCQA.

with the tree’s root being either a simple
declarative clause (S), or a declarative sen-
tence with subject-aux inversion (SINV); see
the first two responses in Figure 1.

• fragments comprise an elliptic sentence, with
its syntactic root not identified as either S or
SINV; see last response in Figure 1.

• long-form responses are multi-sentence an-
swers, which are rarely occurring. This is
probably due to the conversational nature of
TopiOCQA where complex questions are bro-
ken down into simpler ones across a dialogue.

Pronominals We identify the existence (or not) of
a pronoun in a sentence in subject, or direct object
position according to its dependency tree, e.g., “It"
in the second response of Figure 1.

Table 1 summarizes the statistics of linguistic
phenomena found in models and human responses.
Note that GPT-3 variants produce more verbose,
sentential and lexically aligned responses with the
questions (see Recall column). In contrast, the fine-
tuned model (DPR+FiD) generates shorter frag-
mented responses with more pronominals. This is
expected as it follows the distribution of human re-
sponses, unlike the GPT-3 variants that have a very
limited conditioning on the target distribution via
the dialogue context getting encoded in the prompt.

3 Study of Faithfulness

Faithfulness Definition We extend the definition
by Adlakha et al. (2022) to consider faithfulness
both wrt the dialogue and rationale:

Given a dialogue history H = (u1, ..., un−1) and
knowledge K = (k1, ..., kj) at turn n, we say that
utterance un is faithful with respect to K and H iff
∃Γn such that Γn |= un∧E(H, un) ̸= ∅, where |=
denotes semantic consequence, Γn is a non-empty
subset of K and E is the explicature of un in con-
text H as defined in (Rashkin et al., 2021a).

3.1 Automatic Evaluation

We first employ a wide range of automatic met-
rics to assess model performance grouped accord-
ing to their similarity to a gold (human) reference
(reference-based), or their faithfulness to the pro-
vided knowledge K (reference-less).
Reference-based metrics Following Adlakha et al.
(2022) and Dziri et al. (2022a), we report F1 score,
Exact Match (EM), BLEU (Papineni et al., 2002)
and ROUGE (Lin, 2004). These measure the
overlap-based similarity between the generated re-
sponse and the gold answer5.
Reference-less token-level metrics Similar to
Dziri et al. (2022a) and Shuster et al. (2021), we
report BERTScore (BERT) (Zhang et al., 2019),
and Knowledge-F1 (K-F1). Notably, the latter cal-
culates the unigram overlap between the response
and a knowledge snippet K, providing a verbatim
measure of grounding to the input source.

We propose K-F1++, a variant of K-F1, that cap-
tures only the novel information in the generated
response and discounts any lexical alignment to the
question: it calculates the unigram overlap between
the response and K, after subtracting any tokens
appearing in the question from the response.
Reference-less entailment metrics We report
Critic (Dziri et al., 2022a), a dialogue-trained classi-
fier determining if a response follows from a given
snippet K, and Q2 (Honovich et al., 2021), which
measures faithfulness via question answering.

3.2 Human evaluation studies

Similar to Glaese et al. (2022), Bai et al. (2022)
and Thoppilan et al. (2022), we conducted a hu-
man evaluation to assess the faithfulness of given
responses, followed by a human evaluation study
to collect human preferences when presented with
two possible responses to an existing conversation.
Faithfulness Judgment task Annotators are re-
quired to judge the plausibility of a response given
the dialogue, the relevance of the gold passage to
answer the question, and the faithfulness of the re-

5Note that results for Human don’t go up to 100% as each
output is compared with 3 additional human annotations.
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sponse given the dialogue and the gold passage.
In more detail, we consider the response to be
grounded when it (or a paraphrase of it) is found in
the document. We consider a response to be faith-
ful if, in addition to being grounded, it answers
the question and follows from the dialogue. For
example, given i) a conversation about European
countries, ii) a document about European capitals,
iii) a query “What is the capital of Spain?”, and iv)
the response “Castellano”, if “Castellano” is in the
document, the response is grounded. However, it is
not faithful with respect to the dialogue as it does
not correctly answer the question. Two annotators6

completed the annotation for each model on 500
instances from TopiOCQA.
Preference task Annotators are provided with a
question, the previous dialogue and the gold pas-
sage that contains the answer, and are required to
select their preferred response given two options.
These are between a baseline model (DPR+FiD)
and a model variant; they can also select both or
none. We take a sample of 250 faithful and unfaith-
ful instances from the previous task.

3.3 Results
Table 2 summarizes the automatic metrics. Base-
line DPR+FiD outperforms the GPT-3 variants in
all reference-based metrics. This is somewhat
expected since the former is fine-tuned on the
TopiOCQA dataset, whereas GPT-3 –despite being
a much larger model– is evaluated in a zero-shot
fashion. Surprisingly, DPR+GPT-3 outperforms
the baseline in most reference-less metrics.

Interestingly, the absolute difference between K-
F1 and K-F1++ with respect to the baseline (2.3%)
is significantly smaller than that of the GPT-3 vari-
ants (5.8%, and 4.5%, respectively). This is prob-
ably due to the latter being more lexically aligned
to the user question than the baseline (see Table 1),
hence there are more overlapping tokens removed
when computing K-F1++. Nevertheless, the GPT-3
variants maintain superior knowledge-grounding
scores even based on the stricter K-F1++.

Table 3 paints a different story to the reference-
less metrics: although all responses are regarded
mostly plausible continuations to the dialogue,
the GPT-3 variants (with the closed-book scoring
worst) produce outputs that are less grounded and
more unfaithful compared to DPR+FiD. We ob-

6The annotators comprise a hired annotator and one of the
co-authors. Quality was ensured via multiple rounds of pilot
annotations, until all disagreements were resolved.

Models Plaus. Ground. Faith.
DPR+FiD 97.2 62.4 57.8

DPR+GPT-3 100.0 46.2 39.6
GPT-3 91.6 22.6 22.0

Human 99.8 98.6 93.0

Table 3: Faithfulness Judgement Task carried out by 2
expert annotators on a sample of 500 instances.

Model Preferences
All (#) Faith. (#) Unfaith. (#)

DPR+FiD 33% (417) 85% (354) 15% (63)
None 12% (153) - -

DPR+GPT-3 70% (883)† 52% (459) 48% (424)
DPR+FiD 43% (539) 84% (451) 16%(88)

None 13% (173) - -
GPT-3 45% (559) 33%(186) 66% (373)

DPR+FiD 46% (578) 95% (547) 5% (31)
None 9% (109) - -

Human 74% (931)† 94% (879) 6% (52)

Table 4: Pair-wise Preference task results on a sample of
250 examples with 5 annotations. Baseline (DPR+FiD)
is compared with GPT-3 variants, and human responses.
Users can select both models or none. Total number
of annotations per model is in parentheses. Last two
columns denote a breakdown of selected responses that
were faithful, or unfaithful. † indicates stat. sig. against
the baseline using χ2 goodness of fit (p < .05).

served often the inclusion of extra information that
could potentially be true but still not faithful to
the input source. We leave fact checking of such
extrinsic hallucinations to future work.

The most striking result according to the Pref-
erence task (Table 4) is that annotators preferred
unfaithful responses over faithful ones, or rejected
both options, even though they had access to the
gold passage. DPR+GPT-3 overall was preferred
70% of times, with almost half preferences be-
ing towards unfaithful responses (48%). Similarly,
GPT-3 was preferred 45% of the time with 66% of
preferences being unfaithful. Again this supports
our hypothesis that high lexical alignment has a
great influence on users’ choices, often bypassing
the need to judge the accuracy of the response.
Appendix A contains additional results on com-
puting majority agreement per item among the 5
annotators for the Preference Task and a qualitative
analysis of provided feedback.

4 Study of Trust

So far we have established that lexically aligned
responses coming from GPT-3 variants are not nec-
essarily faithful. The surface form seems to nega-
tively affect users’ preferences, obviating their need
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Linguistic phenomena Trust
High Lexical Alignment 58%†

None 10%
Low Lexical Alignment 32%

Pronouns 31%
None 19%

No Pronouns 49%†
Short answer 66%†

None 7%
Fragment 26%

Table 5: Human Evaluation experiment on Trust for
various linguistic phenomena. High/Low lexical align-
ment threshold is set to 0.5, based on recall. † denotes
pair-wise stat. sig. using χ2 goodness of fit (p < .05).

to check the supporting source, and creating a risk
of placing trust to an imperfect system. With this
experiment, we investigate a more general trend
between linguistic phenomena and user trust.
Human Evaluation Experiment Annotators are
presented with the dialogue only, and are asked to
choose the response they trusted more from two
possible responses, or none. Going beyond just lex-
ical alignment, we selected 15 pairs of responses7,
for every linguistic phenomenon in Section 2.2.
We modified responses to ensure each specific phe-
nomenon was the only difference between them.
We collected 20 preferences for each response pair.
Results Table 5 shows that annotators trusted re-
sponses with high lexical alignment significantly
more than those with low lexical alignment. In-
terestingly, they trusted significantly more short
answers than fragments, and preferred responses
that did not present pronouns. This is in contrast to
literature (Eshghi and Healey, 2016), which primar-
ily focused on human-to-human interactions; this
could be down to people talking to a system (vs. a
human), seeking stronger forms of evidence such
as lexical alignment. Notably, the combination of
the preferred presence and absence of phenomena
aligns well with their calculated occurrences in the
GPT-3 variants’ responses (Table 1).

5 Conclusions

We investigated the performance of different mod-
els on the task of OCQA, measuring faithfulness
and lexical phenomena. Automatic metrics high-
lighted how GPT-3 variants are less faithful than
DPR+FiD, as confirmed by annotators in the faith-
fulness judgment task. We conducted a study on

7Note that we select only faithful responses, explicitly
informing participants.

conversational grounding phenomena and a prefer-
ence task, whose significant results demonstrated
an effect of surface form in human preferences to-
wards the more conversational GPT-3, even when
unfaithful. Another experiment confirmed trust as
being effected by high lexical alignment.

Limitations

This work is constrained by the number of ground-
ing phenomena analyzed, which is limited by the
dataset domain and their straightforward automatic
computation. We only focused on lexical align-
ment, the use of ellipsis (fragments) and pronouns,
disregarding other phenomena such as repairs (e.g.
asking for confirmation or clarification) (Purver
et al., 2003), among others.

With respect to the linguistic phenomena, we
simplified the calculation of the lexical alignment
by regarding only the last two turns of a conversa-
tion (the user question and the system response). In
this manner, we omitted the dynamic convergence
over several turns (Mills and Healey, 2008). It
should be noted though that this was decided based
on manual observation of examples, the majority
of which exhibited lexical alignment in the last two
turns only. This could be a limitation of the OCQA
domain, and/or a bias of the TopiOCQA dataset.

Another limitation is that the form of crowd-
sourcing experiments we performed are mostly di-
agnostic of certain conditions on a given dataset,
and does not reflect more organic real-use cases.
An ideal setup would be to collect whole dialogues
in the form of an extrinsic evaluation, which would
be more costly to perform.

Ethics Statement

Dual Use Our results highlight a possible mis-
use scenario, where verbally fluent but factually
incorrect text generated by models, such as GPT-3,
is more convincing to users than text by models
which are more faithful to the input rationale. This
blind trust could be exploited to convince users of
e.g. fake news, for example by generating more
lexically aligned text.

Human data The methodology of this paper
heavily relies on human data collection using
crowd-sourcing. Workers were allowed to com-
plete a maximum of 40 HiTs across annotations.
They were payed 0.29$ per HiT for the preference
task, while 0.20$ per HiT for the study on trust.
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Annotators come from Australia, Canada, New Ze-
land, United Kingdom and United States. A total
of 38 annotators were involved in the study of trust,
and 115 were involved in the Preference task. Data
collected using AMT are fully anonymized per the
providers specifications.

Use of TopiOCQA We obtained the dataset
through the public domain and do not intend to
release part, or whole of it separately without the
prior consent of its authors. We assume the authors
have taken precautions against offensive content.
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Baseline vs Agreement
DPR+GPT-3 86.4%

GPT-3 77.6%
Human 90%

Table 6: Majority Agreement per item (5 annota-
tions) for the Preference Task between the Baseline
(DPR+FiD) and models. Each row denotes majority
reached at the corresponding % of the times.

Phenomenon Agreement
Lexical Alignment 80%

Pronouns 53%
Fragment 86%

Table 7: Majority Agreement per item (20 annotations)
for the Study of Trust across the different linguistic
phenomena examined in this work. Each row denotes
majority reached at the corresponding % of the times.

A Additional Human Evaluation Results

Majority Agreement Results
Following Glaese et al. (2022) we computed the
majority agreement for each item, i.e., 5 and 20
annotations per item for the preference and trust
studies, respectively. Tables 6 and 7 summarize
the results. Similar to Glaese et al. (2022) there
are cases when agreement is quite low, which is an
interesting avenue for future work.
Qualitative Analysis of Feedback
Next, we conducted a simple qualitative analy-
sis regarding how often annotators looked at the
grounded document during the Preference Task.
286 out of 2170 feedback responses explicitly re-
fer to the document to justify the preference ex-
pressed. Interestingly, There are in total 558 re-
sponses where GPT-3 variants were preferred over
the baseline, of which only 27 (4%) refer to the
document. In contrast, there are 359 of which 76
refer to the document (21%) when the baseline is
preferred. Overall, feedback suggests that GPT-3
responses were mostly preferred due to other fac-
tors, such as the amount and variety of information,
and conversational style.

B Human Evaluation Instructions and
Interfaces

B.1 Faithfulness Judgment Task
Figures 2 and 3 illustrate the user interface imple-
mented for the plausibility and faithfulness sub-
tasks, respectively.
Task Instructions:
In this task you will evaluate the quality of a system-
generated response to a user query. The system

is trying to help the user learn about a particular
topic by answering their questions. We want to rate
the system response quality based on how well it
represents the sources provided. You will need to
answer four questions. The first question is about
plausibility. Only if the answer is plausible, you
will be asked to answer other questions. Some
ratings will result in other categories being skipped.
The task interface will guide you through the flow.
Note: The system-generated responses may appear
very fluent and well-formed, but contain slight inac-
curacies that are not easy to discern at first glance.
Pay close attention to the text. Read it carefully as
you would when proofreading.

B.2 Preference Task
Figure 4 depicts the interface for the preference task
in the context of the dialogue and gold passage.
Task Instructions:
In this task, you will continue a conversation be-
tween a system and a user by selecting your pre-
ferred answer. For each question you will see two
different answers, and we want you to carefully
decide which one is better. Read the Conversation
carefully and find a reason to select one answer
over the other. If this is not possible due to high
or low quality of both answers, you can check "All
completions are high quality" or "All completions
are low quality" depending on the situation. A doc-
ument to back up the claims made in the answers
is provided.
Optional: in the feedback box, please justify your
choice of best answer. Be specific about which
parts of the question and answers mattered in your
choice, especially when comparing two satisfactory
answers.

B.3 Study of Trust
Figure 5 shows a screenshot of the trust task given
the dialogue only.
Task Instructions:
In this task, you will continue a conversation be-
tween a system and a user by selecting most trust-
worthy response. For each question you will see
two different answers, and we want you to care-
fully decide which one is most trustworthy. If you
cannot decide between the two, you can check "I
can’t decide". Note that all answers provided are
correct.
Optional: if you can’t decide, please write why.
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Figure 2: Interface used to collect faithfulness. The annotator is asked to answer the question about plausibility of
the response first, without looking at the document. The annotation stops at this point if the response is not plausible.

Figure 3: Interface used to collect faithfulness. The annotator has now access to the document and can annotate.
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Figure 4: Interface used to collect the human evaluation for preferences
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Figure 5: Interface used to collect the human evaluation for the study of trust
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