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Abstract

Previous studies show that intermediate su-
pervision signals benefit various Natural Lan-
guage Processing tasks. However, it is not clear
whether there exist intermediate signals that
benefit Neural Machine Translation (NMT).
Borrowing techniques from Statistical Machine
Translation, we propose intermediate signals
which are intermediate sequences from the
"source-like" structure to the "target-like" struc-
ture. Such intermediate sequences introduce an
inductive bias that reflects a domain-agnostic
principle of translation, which reduces spurious
correlations that are harmful to out-of-domain
generalisation. Furthermore, we introduce a
full-permutation multi-task learning to allevi-
ate the spurious causal relations from intermedi-
ate sequences to the target, which results from
exposure bias. The Minimum Bayes Risk de-
coding algorithm is used to pick the best can-
didate translation from all permutations to fur-
ther improve the performance. Experiments
show that the introduced intermediate signals
can effectively improve the domain robustness
of NMT and reduces the amount of halluci-
nations on out-of-domain translation. Further
analysis shows that our methods are especially
promising in low-resource scenarios.

1 Introduction

A spectrum of studies recently arose in Natural
Language Processing (NLP), which incorporates
intermediate supervision signals into the model
by simply converting the intermediate signals into
textual sequences and prepending or appending
these sequences to the output sequence. It bene-
fits tasks such as math word problems (Wei et al.,
2022), commonsense reasoning (Liu et al., 2022),
programs execution (Nye et al., 2022), summarisa-
tion (Narayan et al., 2021), etc. This trend further
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There she is.That she is.That is she.

lex ali tgt

Das ist sie.

src

Figure 1: An illustration of the transformation from a
source sentence to the target translation and its analogy
with vision. src: source; tgt: target; lex: word-by-word
translation; ali: reorders lex monotonically based on
word alignments.

triggered the collection of a new dataset with inter-
mediate results (Lewkowycz et al., 2022) and cor-
responding theoretical analysis (Wies et al., 2022).
Intermediate supervision signals show consistent
benefits to these various sequence generation tasks
and Neural Machine Translation (NMT) is a basic
and typical sequence generation task in the NLP
community. However, it remains an open ques-
tion whether and how intermediate signals can be
defined and leveraged for NMT.

Meanwhile, previous studies (Koehn and
Knowles, 2017; Müller et al., 2020) found that
NMT suffers from poor domain robustness, i.e. the
generalisation ability to unseen domains. Such an
ability not only has theoretical meaning, but also
has practical value since: 1) the target domain(s)
may be unknown when a system is built; 2) some
language pairs may only have training data for lim-
ited domains. Since the recent study (Wei et al.,
2022) in intermediate supervision signals showed
a benefit of such signals on out-of-domain general-
isation, we expect intermediate signals may benefit
domain robustness in NMT.

Different from math problem-solving tasks, ma-
chine translation tasks do not have explicit inter-
mediate results to serve as the intermediate sig-
nals. A recent work (Voita et al., 2021b) found that
NMT acquires the three core SMT competencies,
target-side language modelling, lexical translation
and reordering in order during the course of the
training. Inspired by this work, we borrow tech-
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niques in SMT to produce intermediate sequences
as the intermediate signals for NMT. Specifically,
we first obtain the word alignments for the paral-
lel corpus and use it to produce the word-for-word
translations (lex) and the aligned word-for-word
translations (ali) to resemble the lexical translation
and reordering competencies in SMT. As shown
in Figure 1, the intermediate sequences resemble
structurally approaching the target from the source
progressively, which shares a similar spirit of how
humans do translation or reasoning about transla-
tion step by step, thus named Progressive Transla-
tion.

Our intuition is that these intermediate sequences
inject an inductive bias about a domain-agnostic
principle of the transformation between two lan-
guages, i.e. word-for-word mapping, then reorder-
ing, and finally refinement. Such a bias limits the
learning flexibility of the model but prevents the
model from building up some spurious correla-
tions (Arjovsky et al., 2019) which harm out-of-
domain performance.

However, previous works have shown that
NMT is prone to overly relying on the target
history (Wang and Sennrich, 2020; Voita et al.,
2021a), which is partially correlated with exposure
bias (Ranzato et al., 2016) (a mismatch between
training and inference), especially under domain-
shift. Simply prepending these introduced inter-
mediate sequences to the target would introduce
spurious causal relationships from the intermediate
sequences to the target. As a result, these inter-
mediate sequences would potentially mislead the
model about the prediction of the target, due to
erroneous intermediate sequences during inference.
To alleviate this spurious causal relationship, we
introduce the full-permutation multi-task learning
framework, where the target and intermediate se-
quences are fully permuted. The Minimum Bayes
Risk (Goel and Byrne, 2000) decoding algorithm
is used to select a consensus translation from all
permutations to further improve the performance.

We first test our proposed framework on
IWSLT’14 German→English and find that the
proposed intermediate sequence can improve the
domain robustness of NMT. The permutation
multi-task learning is important for the interme-
diate sequence which is prone to erroneous dur-
ing inference. To examine the generality of
our methods, we conduct experiments on an-
other two domain-robustness datasets in NMT,

OPUS German→English and a low resource
German→Romansh scenario. Our methods show
consistent out-of-domain improvement over these
two datasets.

Moreover, previous works (Müller et al., 2020;
Wang and Sennrich, 2020) found that hallucinated
translations are more pronounced in out-of-domain
setting. Such translations are fluent but completely
unrelated to the input, and they may cause more
serious problems in practical use due to their mis-
leading nature. Therefore, we manually evaluate
the proportion of hallucinations. Results show that
our methods substantially reduce the amount of hal-
lucinations in out-of-domain translation. Finally,
since the corpus size in the main experiments is
relatively small, we investigate the effectiveness of
our methods when scaling up the corpus sizes. Re-
sults show that our methods are especially effective
under the low-resource scenarios.

2 Related Work

Intermediate Supervision Signals. Some exist-
ing works in the broader NLP community try to
incorporate intermediate sequences into the model.
We take two typical examples of them to better
distinguish our work from other works. Narayan
et al. (2021) uses an entity chain as the intermediate
sequence for summarisation. Wei et al. (2022) pro-
duces intermediate sequences resembling the delib-
eration process of humans. Similar to Narayan et al.
(2021), Progressive Translation (PT) augments data
for the whole training set and the intermediate se-
quences are not limited to literally understandable
sequences. Similar to Wei et al. (2022), sequences
augmented by PT resemble approaching the output
from the input.
Data Augmentation of Domain Robustness in
NMT. Existing works in data augmentation try
to improve the domain robustness of NMT by in-
troducing more diverse synthetic training exam-
ples (Ng et al., 2020) or auxiliary tasks where
the target history is less informative (Sánchez-
Cartagena et al., 2021) named MTL-DA frame-
work. The main difference between our PT frame-
work and the MTL-DA framework is that the MTL-
DA framework treats each target-side sequence
as an independent task conditioned on the source,
whereas PT also encourages the model to learn
the transformational relations between any pair of
target-side sequences, which may help the model
to generalise better across domains.
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Multi-task Learning:
<123> is a control token indicating the order of three sequences. 1: lex; 2: ali; 3: tgt, then <123> is for the task where
the target is in order of lex, ali and tgt. <lex>, <ali>, <tgt> is the special tokens prepended to lex, ali, tgt separately.

Source: Das ist sie.
Target: There she is.

Old training pair: New training pairs:
Target: <lex> That is she.  <ali> That she is. <tgt> There she is.
Target: <tgt> There she is. <ali> That she is. <lex> That is she.

Source: <123> Das ist sie. 
Source: <321> Das ist sie.

six (3!) permutations in total

. . .

Data Augmentation:

Das ist sie.src
①. word-for-word translation

②. reorder based on word alignments
That is she.

That she is.

That is she .

There she is .
That she is.

illustration of generating ali

lex

ali

lex

tgt
ali

Figure 2: An illustration of the proposed intermediate sequences and multi-task learning framework. src: source.

Statistical Machine Translation in NMT. The
intermediate sequences of PT are produced using
the word alignments and reordering components in
Statistical Machine Translation (SMT). There are
works on improving NMT with SMT features and
techniques (He et al., 2016; Chen et al., 2016; Du
and Way, 2017; Zhao et al., 2018). However, these
works either modify the architecture of the neural
network or require more than one model to pro-
duce the translation (e.g. a rule-based pre-ordering
model and a NMT model etc.). To the best of our
knowledge, we are the first to incorporate features
from SMT into NMT by converting the features
into textual sequences and prepending these to the
target without requiring extra models or modifying
the neural architecture.

3 Approach

3.1 Intermediate Sequences

The traditional SMT decomposes the translation
task into distinct components where some features
could potentially be the intermediate supervision
signals. More recently, Voita et al. (2021b) found
that NMT acquires the three core SMT compe-
tencies, i.e. target-side language modelling, lexi-
cal translation and reordering, in order during the
course of training. Inspired by this work, we pro-
duce word-for-word translations and aligned word-
for-word translations as the intermediate sequences
to resemble the lexical translation and reordering
components separately using the word alignments
component in SMT.

As shown in Figure 2 Data Augmentation part,
for each source-target parallel sequence in the train-
ing corpus, we augment their target sequences with
two extra intermediate sequences, lex and ali. The
two intermediate sequences are prepended to the
target to form an augmented target.

lex: The source sequence is word-for-word trans-
lated based on a bilingual lexicon obtained from
the parallel training corpus. Tokens that are not in
the lexicon are copied into lex.

ali: lex is reordered so that the word alignments
from the target to lex is monotonic. The word align-
ments used here are target-to-source alignments
because it is equivalent to the target-to-lex align-
ments since lex is word-for-word mapped from the
source. The words in the target which is assigned
to "NULL" are omitted during reordering.

lex, ali and target (tgt) are prefixed with a special
token separately for extracting the corresponding
sequence from the predicted output. The one-to-
many (both source-to-target and target-to-source)
word alignments are obtained with mgiza++ (Gao
and Vogel, 2008; Och and Ney, 2003)1, a SMT
word alignments tool, on the in-domain training
corpus, following the default parameter provided
in train-model.perl by Moses (Koehn et al., 2007)2.
The one-to-one word alignments are built by com-
puting the intersection between the one-to-many
word alignments in both directions. The bilingual
lexicon is obtained by associating each source word

1https://github.com/moses-smt/mgiza
2https://github.com/moses-smt/mosesdecoder/

blob/master/scripts/training/train-model.perl
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src

ali tgt

lex

src

ali tgt

lex

Figure 3: Causal graphs for the source and three target-
side sequences. Solid arrow denotes casual dependence
and dashed arrow represents the statistical correlation
between two variables. Left: relations if we simply
prepend lex and ali to the target. Right: relations after
full-permutation multi-task learning.

to the target word it is most frequently aligned
within the one-to-one word alignments.

The learning of word alignments and transfor-
mations of lex and ali are at the word level. The
BPE (Sennrich et al., 2016) word segmentation
is trained on src-tgt parallel data as normal and
applied to both source-target parallel sequences
and intermediate sequences (the target-language
vocabulary is applied to split the words in the inter-
mediate sequences).

We expect that the introduced intermediate
sequences would benefit the domain robustness
of NMT. Because the proposed intermediate se-
quences serve as a supervision signal to provide
the model with an explicit path for learning the
transformational relations from source to target.
Such signals inject an inductive bias about one
kind of domain-agnostic principle of the transfor-
mation between two languages, i.e. word-for-word
mapping, then reordering, finally refinement. This
injected bias limits the learning flexibility of the
neural model but prevents the model from building
up some spurious correlations which harm out-of-
domain performance.

3.2 Spurious Causality Relationship

To introduce these intermediate sequences as in-
termediate supervision signals to the model, we
prepend them to the output sequence in training.
However, simply prepending these produced inter-
mediate sequences to the target would potentially
introduce spurious causality relationships from pre-
sequence to post-sequence. For example, prepend-
ing lex, ali to the target would introduce the causal
relationships of lex → ali → tgt. These are spurious
causality relationships because the model is highly
unlikely to get the gold-standard pre-sequences (lex
or ali) as in the training during inference, especially
under the domain-shift where the performance is

relatively poor. Therefore, the model should learn
that source (input) is the only reliable informa-
tion for any target-side sequences. Note that such
spurious causality relationship in principle results
from a mismatch between training and inference of
the standard training-inference paradigm of NMT,
which is termed exposure bias by the community.

Intuitively, if the model could predict the target-
side sequences in any order, then the causality re-
lationship between target-side sequences should
be reduced. Therefore, we propose to fully per-
mute the target-side sequences, i.e. intermediate
sequences (lex or ali) and the target sequence (tgt).
Figrue 2 illustrates the training data after permuta-
tion when we prepend both lex and ali to the target.
The source is prefixed with a control token for each
permutation, i.e. 1: lex; 2: ali; 3: tgt, then <123>
is the control token for the permutation where the
target is in the order of lex, ali and tgt.

As shown in Figure 3, with the permutation, we
create counterfactual data which disentangles the
causal relations of lex → ali → tgt and enhances the
causal relations from source to each of these three
sequences. Therefore, the full-permutation multi-
task training better balances the model’s reliance
on the source and target history, at least on pre-
sequence(s).

3.3 Minimum Bayes Risk Decoding

From our preliminary experiments, we found that
various test sets prefer different generation orders
of the permutation. For example, order lex-ali-tgt
performs best on some test sets whereas tgt-ali-lex
performs best on some other test sets. Therefore,
we suspect that the translation quality would be
further improved if we could dynamically select
the best candidate translations from all permuta-
tions. Inspired by (Eikema and Aziz, 2021), we use
Minimum Bayes Risk (MBR) decoding to select a
consensus translation from all permutations.

MBR aims to find a translation that maximises
expected utility (or minimises expected risk) over
the posterior distribution. In practice, the posterior
distribution is approximated by drawing a pool of
samples S = (s1, ..., sn) of size n from the model:

y⋆ = argmax
si∈S

1

n

n∑

sj=1

u (si, sj) (1)

where u is the utility function to compute the simi-
larity between two sequences. In our experiment,
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the samples S are translations from all permuta-
tions.

Following Eikema and Aziz (2021), we use
BEER (Stanojević and Sima’an, 2014) as the util-
ity function, and the released toolkit3 for MBR
decoding.

4 Experiments

4.1 Dataset

We work on three datasets involving two language
pairs, which were used in previous works on the
domain robustness in NMT (Sánchez-Cartagena
et al., 2021; Ng et al., 2020).

IWSLT’14 DE→EN IWSLT’14 (Cettolo et al.,
2014) German→English (DE→EN) is a commonly
used small-scale dataset in NMT, which consists
of 180 000 sentence pairs in the TED talk domain.
Following Sánchez-Cartagena et al. (2021), the val-
idation and in-domain (ID) testing sets are tst2013
and tst2014 separately; and out-of-domain (OOD)
test sets consist of IT, law and medical domains
from OPUS (Lison and Tiedemann, 2016) collected
by Müller et al. (2020)4.

OPUS DE→EN & Allegra DE→RM are two
benchmarks of domain-robustness NMT released
by Müller et al. (2020). OPUS comprises five do-
mains: medical, IT, law, koran and subtitles. Fol-
lowing Ng et al. (2020), we use medical as ID for
training (which consists of 600 000 parallel sen-
tences) and validation and the rest of four domains
as OOD test sets. Allegra (Scherrer and Cartoni,
2012) German→Romansh (DE→RM) has 100 000
sentence pairs in law domain. The test OOD do-
main is blogs, using data from Convivenza.

We tokenise and truecase all datasets with Moses
and use shared BPE with 10 000 (on IWSLT’14)
and 32 000 (on OPUS and Allegra) for word seg-
mentation (Sennrich et al., 2016).

4.2 Models and Evaluation

All experiments are done with the Nematus
toolkit (Sennrich et al., 2017) based on the Trans-
former architecture (Vaswani et al., 2017)5. The
baseline is trained on the training corpus without
using intermediate sequences. We follow Wang
and Sennrich (2020) to set hyperparameters (see

3https://github.com/Roxot/mbr-nmt
4https://github.com/ZurichNLP/

domain-robustness
5https://github.com/chaojun-wang/

progressive-translation

Appendix) on three datasets. For our framework,
we scale up the token batch size proportional to the
length of the target for a fair comparison, e.g. if the
target-side sequence is three times longer than the
original target, we scale up the batch size to three
times as well.6. The performance of the original
order (lex)-(ali)-tgt is used for validation and test-
ing. We conduct early-stopping if the validation
performance underperforms the best one over 10
times of validation in both the translation quality
(BLEU) and the cross entropy loss.

We also compare to two recently proposed meth-
ods of domain robustness in NMT. SSMBA (Ng
et al., 2020) generates synthetic training data by
moving randomly on a data manifold with a pair
of corruption and reconstruction functions. Re-
verse+Mono+Replace (Sánchez-Cartagena et al.,
2021) (RMP) introduces three auxiliary tasks
where the target history is less informative.

We report cased, detokenised BLEU (Papineni
et al., 2002) with SacreBLEU (Post, 2018)7. Each
experiment is independently run for three times,
and we report the average and standard deviation
to account for optimiser instability.

4.3 Results

We test our proposal mainly on IWSLT’14
DE→EN. Table 1 summarises the results. 1⃝ is
the baseline system which is trained on parallel
corpus only without any data augmentation. The
average OOD is computed by averaging results
across all OOD test sets.
Single lex benefits OOD whereas ali does not.
Firstly, we simply prepend the produced interme-
diate sequence(s) (any one of them and both of
them in the order of lex-ali) to the target sequence.
Results show that single lex ( 2⃝) significantly im-
proves the OOD performance by 2.2 BLEU, at
the cost of 0.9 BLEU decrease in in-domain per-
formance. However, the introduction of ali dete-
riorates the performance on both in-domain (ID)
and OOD test sets ( 3⃝ and 4⃝). We argue that
this comes from the reason that the learning of
generating ali is more difficult than generating lex
(ali needs an extra reordering step and also the pro-
duced ali is noisy due to the word alignment errors).
As a result, ali is more erroneous than lex during
inference. Therefore, the generation quality of the

6Scaling up the token batch size only brings negligible
improvement on the baseline.

7Signature: BLEU|#:1|c:mixed|e:no|tok:13a|s:exp|v:2.1.0
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ID Augmentation In-Domain IT Law Medical average OOD

1 Transformer 32.1±0.38 14.7±0.21 10.1±0.38 17.0±0.25 13.9±0.19

2 lex+tgt 31.2±0.50 16.6±0.26 11.1±0.23 20.7±0.66 16.1±0.30

3 ali+tgt 25.8±3.57 14.4±2.54 4.5±6.00 17.9±1.32 12.2±3.25

4 lex+ali+tgt 25.5±7.82 9.4±1.14 3.1±2.31 11.3±6.70 7.9±1.71

5 2 + permu 30.1±1.55 15.5±0.50 7.2±5.48 19.0±1.08 13.9±2.18

6 3 + permu 30.6±0.30 16.9±1.00 10.8±0.40 19.9±0.60 15.9±0.53

7 4 + permu 29.9±0.32 18.2±0.89 10.8±0.10 20.7±0.40 16.6±0.37

8 7 + MBR 30.5±0.21 17.7±0.72 11.8±0.1 21.6±0.49 17.0±0.35

Table 1: Average BLEU (↑) and standard deviation of ablation results on in-domain and out-of-domain test sets on
IWSLT’14 DE→EN. permu: permutation.

target deteriorates due to its causal dependency on
ali.
ali benefits OOD with the support of permuta-
tion multi-task learning. We try to alleviate the
problem by introducing the permutation multi-task
learning on top of 2⃝∼ 4⃝. Results show that the
permutation successfully alleviates the deteriora-
tion of introducing ali, bringing positive results for
both ID and OOD ( 3⃝→ 6⃝, 4⃝→ 7⃝). With the per-
mutation, a single ali intermediate sequence ( 6⃝)
can improve OOD over the baseline by 2 BLEU
and the combination of lex and ali ( 7⃝) bring fur-
ther improvement on OOD over single lex ( 2⃝) or
single ali ( 6⃝) by 0.5 and 0.7 BLEU respectively.
The permutation shows a negative effect on sin-
gle lex ( 2⃝→ 5⃝). Because the lex is very easy to
learn, few error would occur when predicting lex.
Therefore, permutation is not effective and even
has negative effects as it makes the neural model
hard to focus on learning the task of lex-tgt, leading
to inferior performance.
MBR decoding brings further improvement. For
the lex, ali, tgt with permutation, there are six per-
mutations in total. We dynamically select a consen-
sus translation over each input data by performing
MBR decoding over translation from all permuta-
tions. Results show MBR ( 7⃝→ 8⃝) could further
improve the OOD and ID performances by 0.4 and
0.6 BLEU respectively, and outperforms baseline
OOD by 3.1 BLEU at the cost of 1.6 BLEU de-
crease in ID.
Results on other datasets and comparison with
existing methods. As 8⃝ achieves the highest OOD
performance and 2⃝ achieves relatively high OOD
and ID performance with simpler techniques, we
name 8⃝ as PTfull and 2⃝ as PTsimple and eval-
uate these two methods on another two domain-
robustness datasets (OPUS DE→EN and Allegra
DE→RM). Table 2 lists the results.

Baselines (Transformer) in cited works (RMP
and SSMBA) are trained under inappropriate hy-
perparameters, e.g. on IWSLT’14, the cited works
uses default hyperparameters for the WMT dataset
(more than 10 times larger than IWSLT’14). To
enable better comparison by other researchers, we
train the Transformer with the appropriate hyper-
parameters provided by Wang and Sennrich (2020)
to build strong baselines, which outperform those
in the cited works. We re-implement the other two
DA methods based on our baseline for comparison.

Results show that both PTsimple and PTfull per-
form most effectively on IWSLT’14 OOD, surpass-
ing the existing methods by 0.7-2.3 BLEU. On
the other two new datasets, PTsimple and PTfull

show consistent OOD improvement, outperform-
ing our baseline (Transformer) by 1.1-1.6 BLEU
and 1.1-1.2 BLEU on OPUS and DE→RM dataset
respectively. The ID performance of PTsimple and
PTfull on these two datasets is less affected than on
IWSLT’14, at the cost of 0.3-0.4 BLUE decrease
on OPUS and even no decrease on the Allegra
DE→RM.

PTfull significantly outperforms PTsimple OOD
on OPUS DE→EN and they show negligible ID
differences. For Allegra DE→RM, PTsimple and
PTfull shows similar OOD and ID performance.

5 Analysis

BLEU score indicates that the proposed methods
can improve domain robustness. In this section,
we investigate the reduction of hallucinations and
performance on larger datasets of our methods.

5.1 Hallucinations
Hallucinations are more pronounced in out-of-
domain translation, and their misleading nature
makes them particularly problematic. Therefore,
many works have been conducted on hallucinations,
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IWSLT’14 OPUS DE→RM

augmentation in-domain average OOD in-domain average OOD in-domain average OOD

Results reported by Sánchez-Cartagena et al. (2021):
Transformer 30.0±0.10 8.3±0.85 - - - -
RMP 31.4±0.30 11.8±0.48 - - - -
Results reported by Ng et al. (2020):
Transformer - - 57.0 10.2 51.5 12.2
SSMBA - - 54.9 10.7 52.0 14.7

Our experiments:
Transformer 32.1±0.38 13.9±0.19 58.8±0.38 11.0±0.22 54.4±0.25 19.2±0.23

SSMBA 31.9±0.15 15.4±0.10 58.4±0.20 12.1±0.21 54.7±0.20 20.4±0.15

RMP 32.2±0.06 14.7±0.17 59.2±0.25 12.6±0.41 55.1±0.21 21.5±0.23

PTsimple 31.2±0.50 16.1±0.30 58.5±0.64 12.1±0.18 54.6±0.12 20.3±0.31

PTfull 30.5±0.21 17.0±0.35 58.4±0.12 12.6±0.10 54.4±0.21 20.4±0.51

Table 2: Average BLEU (↑) and standard deviation on in-domain and out-of-domain test sets for models trained on
IWSLT’14 DE→EN, OPUS DE→EN and Allegra DE→RM. PTsimple: method 2⃝ in Table 1; PTfull: method 8⃝
in Table 1; RMP: Reverse+Mono+Replace

involving detection of hallucinations (Zhou et al.,
2021; Guerreiro et al., 2022; Dale et al., 2022), ex-
ploration of the causes of hallucinations (Raunak
et al., 2021; Yan et al., 2022), and finding solutions
for hallucinations (Miao et al., 2021; Müller and
Sennrich, 2021) etc.

To test our methods for reducing the hallucina-
tions under domain shift, we manually evaluate
the proportion of hallucinations on IWSLT’14 and
OPUS (DE→EN) OOD test sets. We follow the
definition and evaluation by Müller et al. (2020),
considering a translation as a hallucination if it is
(partially) fluent and its content is not related to
the source (inadequate). We report the proportion
of such hallucinations in each system.

The manual evaluation is performed by two stu-
dents who have completed an English-medium uni-
versity program. We collect ∼3000 annotations
for 10 configurations. We ask annotators to evalu-
ate translations according to fluency and adequacy.
For fluency, the annotator classifies a translation as
fluent, partially fluent or not fluent; for adequacy,
as adequate, partially adequate or inadequate. We
report the kappa coefficient (K) (Carletta, 1996)
for inter-annotator and intra-annotator agreement
in Table 3, and assess statistical significance with
Fisher’s exact test (two-tailed).

Table 4 shows the results of human evalua-
tion. All of the DA methods significantly de-
crease the proportion of hallucinations by 2%-6%
on IWSLT’14 and by 9%-11% on OPUS, with the
increase in BLEU. Note that the two metrics do
not correlate perfectly: for example, PTfull has
a higher BLEU than PTsimple but PTsimple has a

inter-annotator intra-annotator

annotation P (A) P (E) K P (A) P (E) K

fluency 0.52 0.31 0.30 0.84 0.39 0.73
adequacy 0.68 0.38 0.48 0.88 0.38 0.81

Table 3: Inter-annotator (N=300) and intra-annotator
agreement (N=150) of manual evaluation.

similar or even lower proportion of hallucinations
than PTfull. This indicates that PTfull improves
translation quality in other aspects.

% hallucinations (BLEU)

Augmentation IWSLT’14 OPUS

Transformer 11% (13.9) 39% (11.0)
RMP 9% (14.7) 30% (12.6)
SSMBA 6% (15.4) 28% (12.1)
PTsimple 5% (16.1) 28% (12.1)
PTfull 7% (17.0) 30% (12.6)

Table 4: Proportion of hallucinations (↓) and BLEU (↑)
on out-of-domain test sets over IWSLT’14 and OPUS
(DE→EN).

5.2 Tendency by scaling up the corpus size
Since the size of the training corpus in the previous
experiments ranges from 0.1M to 0.6M (million)
samples, which is a low-resource setting for NMT,
here we investigate the performance of our methods
when scaling up the corpus size. We use subtitles
domain from OPUS as the in-domain training data
(because it has around 20M sentence pairs) and
the rest four domains as the OOD test sets. We
use the first 0.2M, 2M and 20M samples in the
corpus as the training data separately. We follow
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Figure 4: Average BLEU (↑) on in-domain and out-of-domain test sets for models trained on OPUS DE→EN
(subtitles) with various sizes of the training corpus.

the same data preprocessing as for OPUS (medical).
The hyperparameters for training the model are the
same as those for IWSLT’14 when the corpus size
is 0.2M and those for OPUS (medical) when the
corpus size is 2M. For the corpus size of 20M, we
increase the token batch size to 16384 instead of
4096 and keep the rest of the hyperparameters the
same as for the 2M corpus size. Similarly, each
experiment is independently run for three times and
we report the average result.

Results are shown in Figure 4. As expected,
increasing the corpus size (0.2M-20M) improves
both ID and OOD performance for all systems.
When the corpus size is small (0.2M), PTfull (red
line) shows a considerable improvement in OOD
over the baseline (blue line) by 4.3 BLEU and
even slightly benefits ID, surpassing the baseline
by around 0.9 BLEU. However, scaling up the cor-
pus size (0.2M-20M) narrows the gap of OOD im-
provement (4.3-0.9 BLEU) between the baseline
and PTfull, and widens the ID deterioration from
+0.9 to -1.6 BLEU.

In general, PTsimple (green line) follows a sim-
ilar tendency as PTfull, compared to the baseline.
However, PTsimple underperforms the baseline at
the corpus size of 2M. By a close inspection, we
found that the training of PTsimple is relatively un-
stable. The standard deviations of PTsimple for
OOD are 1.38, 2.49 and 0.24 on 0.2M, 2M and
20M corpus size respectively, whereas the standard
deviations of PTfull are 0.47, 0.27 and 0.52 respec-
tively. This indicates that the training of PTsimple

is less stable than PTfull when the corpus size is
0.2M-2M. The better stability of PTfull may come
from its permutation multi-task learning mecha-
nism.

PTsimple always underperforms PTfull on OOD
for any corpus size. PTsimple shows slightly better

ID performance than PTfull when the corpus size
is large (2M-20M) but underperforms PTfull on
ID performance in low resource setting where the
corpus size is 0.2M.

6 Conclusion

Our results show that our introduced intermediate
signals effectively improve the OOD performance
of NMT. Intermediate sequence lex can benefit
OOD by simply prepending it to the target. ali
is more likely to be erroneous during inference
than lex, which results in degenerated target due to
the spurious causal relationship. Our proposed per-
mutation multi-task learning successfully alleviates
the problem and manifests the effectiveness of ali.
Experiments also confirm that the MBR algorithm
can further improve the performance by dynami-
cally selecting a consensus translation from all per-
mutations. The human evaluation shows that the
proposed methods substantially reduce the number
of hallucinations of the out-of-domain translation.
Experiments on the larger corpus sizes indicate
that our methods are especially promising in the
low-resource scenarios.

Our work is the first attempt to complete the puz-
zle of the study of intermediate signals in NMT, and
two new ideas may benefit this study in other areas:
1) thinking intermediate signals from the intermedi-
ate structures between the transformation from the
input to the output; 2) the permutation multi-task
learning, instead of only pre/appending intermedi-
ate sequences to the output sequence. The permu-
tation multi-task learning + MBR decoding frame-
work is also a potential solution for any multi-pass
generation tasks (e.g. speech translation), which
suffer from the error propagation problem. The
problem is alleviated with the permutation which
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disentangles causal relations between intermedi-
ate and final results. Finally, our work provides a
new perspective of data augmentation in NMT, i.e.
augmenting data by introducing extra sequences
instead of directly modifying the source or target.
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7 Limitations

The way we use the intermediate sequences is to
concatenate new sequences and the target sequence
as the new target. As a result, the length of the
target increases linearly with the number of in-
termediate sequences introduced, which increases
the cost of inference. In the meantime, Minimum
Bayes Risk decoding needs to do prediction mul-
tiple times under different control tasks, which
further increases the computational cost. How-
ever, there are potential solutions to compromise
between the computational cost and quality, e.g.
learning a student model by distilling the domain-
robust knowledge from Progressive Translation.

8 Ethics Statement

The datasets used in the experiments are all well-
known machine translation datasets and publicity
available. Data preprocessing does not involve any
external textual resources. Intermediate sequences
generated in our data augmentation method are new
symbolic combinations of the tokens in the target
language. However, the final output of the model
is the tgt sequence which is the same as the target
sequence in the original training set. Therefore,
we would not expect the model trained with our
data augmentation method would produce more
harmful biases. Finally, we declare that any biases
or offensive contexts generated from the model do
not reflect the views or values of the authors.
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Miloš Stanojević and Khalil Sima’an. 2014. Fitting
sentence level translation evaluation with many dense
features. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 202–206, Doha, Qatar. Association
for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Elena Voita, Rico Sennrich, and Ivan Titov. 2021a. An-
alyzing the source and target contributions to predic-
tions in neural machine translation. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1126–1140, Online.
Association for Computational Linguistics.

Elena Voita, Rico Sennrich, and Ivan Titov. 2021b. Lan-
guage modeling, lexical translation, reordering: The
training process of NMT through the lens of classi-
cal SMT. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 8478–8491, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Chaojun Wang and Rico Sennrich. 2020. On exposure
bias, hallucination and domain shift in neural ma-
chine translation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3544–3552, Online. Association for
Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2022. Chain of thought prompting
elicits reasoning in large language models.

Noam Wies, Yoav Levine, and Amnon Shashua. 2022.
Sub-task decomposition enables learning in sequence
to sequence tasks.

Jianhao Yan, Fandong Meng, and Jie Zhou. 2022. Prob-
ing causes of hallucinations in neural machine trans-
lations.

Yang Zhao, Jiajun Zhang, and Chengqing Zong. 2018.
Exploiting pre-ordering for neural machine transla-
tion. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation

(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Chunting Zhou, Graham Neubig, Jiatao Gu, Mona Diab,
Francisco Guzmán, Luke Zettlemoyer, and Marjan
Ghazvininejad. 2021. Detecting hallucinated content
in conditional neural sequence generation. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 1393–1404, Online.
Association for Computational Linguistics.

9435

https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.3115/v1/D14-1025
https://doi.org/10.3115/v1/D14-1025
https://doi.org/10.3115/v1/D14-1025
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2021.acl-long.91
https://doi.org/10.18653/v1/2021.acl-long.91
https://doi.org/10.18653/v1/2021.acl-long.91
https://doi.org/10.18653/v1/2021.emnlp-main.667
https://doi.org/10.18653/v1/2021.emnlp-main.667
https://doi.org/10.18653/v1/2021.emnlp-main.667
https://doi.org/10.18653/v1/2021.emnlp-main.667
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2020.acl-main.326
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2204.02892
http://arxiv.org/abs/2204.02892
http://arxiv.org/abs/2206.12529
http://arxiv.org/abs/2206.12529
http://arxiv.org/abs/2206.12529
https://aclanthology.org/L18-1143
https://aclanthology.org/L18-1143
https://doi.org/10.18653/v1/2021.findings-acl.120
https://doi.org/10.18653/v1/2021.findings-acl.120


A Appendix

A.1 Discussion of Intermediate Sequences
lex and ali intermediate sequences may come from
certain intermediate topological spaces between the
transformation from the topological spaces of the
source into the target languages. We empirically
confirm that such intermediate sequences might
look strange but are easier for the neural model to
learn and predict, since they are structurally closer
to the source. We use the standard Transformer
model to learn to predict lex, ali and tgt (this is
just the baseline) directly on IWSLT’14 dataset
and report the results on both in-domain and out-
of-domain test sets. Note that the gold-standard se-
quences of lex and ali on the out-of-domain test sets
are produced on the corresponding out-of-domain
training sets.

Table 5 shows that lex is easier to be predicted
than ali, and ali is easier to be predicted than tgt by
the NMT model, over both in-domain and out-of-
domain test sets.

Domain lex ali tgt

ID 94.0±0.20 61.1 ±0.12 32.1±0.38

OOD 72.6±0.60 47.9 ±0.48 13.9±0.19

Table 5: Average BLEU (↑) and standard deviation on
in-domain and out-of-domain test sets on IWSLT’14
DE→EN when the target is lex, ali or tgt separately.
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A.2 Hyperparameters

IWSLT OPUS/Allegra
embedding layer size 512
hidden state size 512
tie encoder decoder embeddings yes
tie decoder embeddings yes
loss function per-token-cross-entropy
label smoothing 0.1
optimizer adam
learning schedule transformer
warmup steps 4000 6000
gradient clipping threshold 1 0
maximum sequence length 100
token batch size 4096
length normalization alpha 0.6 1
encoder depth 6
decoder depth 6
feed forward num hidden 1024 2048
number of attention heads 4 8
embedding dropout 0.3 0.1
residual dropout 0.3 0.1
relu dropout 0.3 0.1
attention weights dropout 0.3 0.1
beam size 4
validation frequency 4000 iterations

Table 6: Configurations of NMT systems over three datasets.
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�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
4.2

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
4.3

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
4.1

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
5.1

�7 D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Instructions are rather simple which could be indicated in section 5.1.

�3 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

�3 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Left blank.

�3 D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Left blank.
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