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Abstract

While a large body of literature suggests that
large language models (LLMs) acquire rich lin-
guistic representations, little is known about
whether they adapt to linguistic biases in a
human-like way. The present study probes
this question by asking whether LLMs display
human-like referential biases using stimuli and
procedures from real psycholinguistic experi-
ments. Recent psycholinguistic studies suggest
that humans adapt their referential biases with
recent exposure to referential patterns; closely
replicating three relevant psycholinguistic ex-
periments from Johnson and Arnold (2022) in
an in-context learning (ICL) framework, we
found that InstructGPT adapts its pronominal
interpretations in response to the frequency
of referential patterns in the local discourse,
though in a limited fashion: adaptation was
only observed relative to syntactic but not se-
mantic biases. By contrast, FLAN-UL2 fails to
generate meaningful patterns. Our results pro-
vide further evidence that contemporary LLMs
discourse representations are sensitive to syn-
tactic patterns in the local context but less so
to semantic patterns. Our data and code are
available at https://github.com/zkx06111/
llm_priming.

1 Introduction

While neural network models, and particularly pre-
trained large language models have shown excel-
lent performance at particular language processing
tasks, many questions remain about the extent to
which models optimized for such performance en-
code, as a side effect, human-like linguistic knowl-
edge and cognitive biases. We know that they do to
some extent; existing work has shown, for example,
that neural models encode aspects of human-like
long-distance number agreement (Gulordava et al.,
2018), incremental syntactic state (Futrell et al.,

∗∗Equal contribution by alphabetical order. Correspon-
dence to qcz@u.northwestern.edu

2019), and syntactic generalization more broadly
(Hu et al., 2020). In this paper, we examine whether
FLAN-UL2 (Tay et al., 2023) and InstructGPT
(Ouyang et al., 2022), two representative LLMs,
display adaptation in pronoun interpretation when
exposed to consistent referential patterns in the lo-
cal discourse context.

Compared with syntactic or lexical knowledge,
representing referential knowledge is possibly
more complex; we know from psycholinguistic
studies that human referential interpretation inte-
grates multiple levels of linguistic structure. Hu-
mans do not interpret ambiguous pronouns at ran-
dom but are guided by both syntactic and semantic
information. It is well-established that absent other
cues humans prefer a syntactic subject in choos-
ing the antecedent of the ambiguous pronoun, i.e.,
subject bias (Ariel, 1990; Brennan, 1995). In ex-
ample (1), she is more likely to be interpreted as
the subject Ada than the non-subject Eva ¶, even
though both referents are possible antecedents for
the pronoun.

(1) Ada1 talked with Eva2. She1...

People are also sensitive to the semantic struc-
ture of the sentence when choosing an antecedent
for an ambiguous pronoun, in addition to syntac-
tic information. In a transfer event that depicts a
transfer-of-possession from one entity (the source)
to another (the goal), they prefer the goal refer-
ent (Ada in (2), Eva in (3)) over the source refer-
ent (Eva in (2), Ada in (3)) to be the antecedent
(Arnold, 2001, 1998), i.e., goal bias:

(2) Goal-source (gs) verb:
Ada1 received a letter from Eva2. She1...

(3) Source-goal (sg) verb:
Ada1 sent a letter to Eva2. She2...

¶Indices of pronouns in examples indicate the preferred
referent.
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In sum, people exhibit sensitivity to both syn-
tax (subject bias) and semantics (goal bias) during
pronoun interpretation. Importantly, these levels of
linguistic structure are frequently entwined since
both can influence referential interpretation. At
times these influences may push in different direc-
tions: for instance, Ada in [3] is both the syntactic
subject and the semantic source.

Building on a long tradition investigating prefer-
ences in pronoun interpretation, recent psycholin-
guistic studies have probed into the deeper question
of the origin of these biases. One hypothesis is that
referential biases come from linguistic experience:
when a bias occurs very frequently, people will
tend to adapt this more frequent referential pattern,
both in the immediate exposure as well as more
large-scale past experience (Arnold, 1998, 2001).
Recent evidence has provided support to this idea
by demonstrating that recent exposure to certain
referential patterns did change people’s referen-
tial biases. In a series of psycholinguistic studies,
Johnson and Arnold (2022) show that after reading
numerous stories that consistently show a partic-
ular referential bias, e.g., always referring to the
non-subject or source referent, people did have a
stronger preference for these primed referents.

Given this line of psycholinguistic research, the
current study investigates the extent to which LLMs
adapt and vary referential biases in pronoun inter-
pretation through exposure to referential patterns
in the local context. To do so we replicated actual
psycholinguistic experiments from Johnson and
Arnold (2022) in LLMs using an ICL framework
and asked whether the responses of LLMs display
adaptation from exposure to referential patterns
like human experimental participants. Comparing
syntactically-motivated to semantically-motivated
exposure conditions will allow us to first exam-
ine whether LLMs display human-like subject bias
and goal bias and further understand the extent to
which LLMs make use of local frequency changes
in discourse representations in these categories.

In-context learning refers to LLMs’ ability to
learn from demonstrations written in natural lan-
guage prompts. Compared to previous work that
has largely examined the encoding of such dis-
course knowledge using zero-shot inference (Upad-
hye et al., 2020), ICL is particularly suitable for
experimental simulation since it replicates the natu-
ralistic context in which later responses draw upon
exposure to previous examples.

Foreshadowing our results, we find that Instruct-
GPT can adapt and thus vary its syntactic bias from
exposure to referential patterns in the local context,
but the same is not true for semantic bias. Given
that InstructGPT still exhibits a goal bias in spite
of local discourse priming, we argue this suggests
LLMs only encode partial semantic knowledge in
referential processing. To sum up, our contribu-
tions can be summarized as follows:

1) We extended a discourse understanding eval-
uation to state-of-the-art LLMs from a new
perspective, asking whether LLM’s referential
bias can be modified by exposure to particular
referential patterns, like how humans adapt
referential bias from experience.

2) To the best of our knowledge, we are the first
study that replicates actual psycholinguistic
experiments using the ICL framework and
compares LLMs’ behaviors with real human
participants.

3) We present results in this context showing fur-
ther evidence that InstructGPT can acquire
abstract syntactic knowledge in referential in-
terpretation to some extent, but not semantic
knowledge.

2 Related Work

A growing body of literature has suggested that
LLMs encode rich representations of linguistic
structure at various levels, including aspects of syn-
tax, semantics, and reference encoded throughout
their representations (Tenney et al., 2019). One
of the most well-documented lines of this work
demonstrates that these models can acquire diverse
elements of syntactic knowledge (Gulordava et al.,
2018; Futrell et al., 2019; Hu et al., 2020).

This capacity for encoding linguistic understand-
ing extends to priming effects with psycholinguistic
analogies to humans. At the syntactic level, Sin-
clair et al. (2022) explored structural priming in
various autoregressive LLMs and found priming
effects despite a clear dependence on semantic in-
formation. At the semantic level, using English
lexical stimuli in BERT (Devlin et al., 2019), Misra
et al. (2020) found that BERT does display evi-
dence of sensitivity to semantic priming, though
this is localized to more unconstrained contexts and
only certain semantic relations.

In analyses of LLMs’ linguistic understanding
modeled on psycholinguistic experiments, however,
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the question of discourse knowledge remains rel-
atively under-explored. Recent existing work has
presented partially conflicting accounts in this area,
in particular with regard to how LLMs may or may
not exhibit human-like biases in pronoun interpreta-
tion. For example, Davis and van Schijndel (2020)
compared LSTM LMs and Transformer LMs be-
haviors and internal representations in dealing with
implicit causality verbs, finding that surprisingly
(contrary to humans) implicit causality only influ-
ences Transformer LMs’ behavior for reference,
but influences neither model for syntactic attach-
ment. Sorodoc et al. (2020) also compared LSTM
LMs and Transformer LMs in coreference resolu-
tion corpora, finding that although LMs are much
better at grammar, they also captured referential
aspects to some extent.

This existing work replicates sets of individ-
ual stimuli from psycholinguistic experiments in
isolation; by contrast, our work takes a more
behaviorally-oriented approach by replicating the
stimuli, procedure, and even experimental design
of a full set of human psycholinguistic studies. We
do this to ask a further question: beyond exhibit-
ing baseline human-like referential biases in pro-
noun interpretation, do LLMs display adaptation
to the frequency of referential patterns in the lo-
cal context like humans? This question is impor-
tant because adapting to a referential bias over the
course of an experiment requires a sustained rep-
resentation of the frequency of the pattern, which
involves a higher-level understanding of the dis-
course structure. Humans have shown abilities of
this kind of adaptation at multiple linguistic levels.
For instance, exposure to syntactic structures con-
secutively affects humans’ choice of structures in
both the short term and long term via priming ef-
fects (e.g., Branigan et al. 2005; Chang et al. 2000).
Exposure to phonological patterns can also guide
humans’ segmentation patterns (e.g., Saffran et al.
1996a,b). At the semantic and pragmatic levels,
humans can also adapt as listeners to speakers’ vari-
able choices of uncertainty expressions (Schuster
and Degen, 2020).

3 Methods

In this work, we aim to replicate three experiments
from Johnson and Arnold (2022), transferring their
designs, procedures, and stimuli as faithfully as
possible to the LLM context using in-context learn-
ing.

3.1 Source Experiments

We first briefly summarize the experimental setup
employed by Johnson and Arnold (2022). In each
experimental setting, participants heard a series
of two-sentence stories in which the first sentence
contained two characters with gender-marked first
names (Matt or Will for men, Liz or Ana for
women). For each story, participants answered
a content question to check comprehension, and
then a reference question to check pronominal in-
terpretation. In order to lower the ceiling and keep
participants from falling into a pattern of simply
answering "yes," reference questions were equally
split between default and non-default phrasings
(e.g. between the subject/non-subject interpreta-
tions in Experiment 1a and 2a and between the
source/goal interpretations in Experiment 2b). Fig-
ure 1 illustrates sample stimuli and the procedure
of the three experiments conducted.

In each experiment participants were first shown
a series of stories with exposure reference ques-
tions to establish a referential pattern; in these, the
characters had different genders so pronoun inter-
pretation was unambiguous. After the exposure
phase (20 stories in Experiment 1, 12 stories in
Experiment 2), further stories with unambiguous
exposure questions were intermixed with 12 sto-
ries accompanied by critical reference questions;
in these stories, the characters had the same gen-
der, so pronoun interpretation was ambiguous and
required reliance on discourse cues.

Across experiments, there were two key condi-
tions that were manipulated for exposures. Under
a subject exposure condition, the unambiguous in-
tended referents of all exposure questions are sub-
jects of the preceding clauses; in the corresponding
non-subject exposure condition, they are the ob-
jects of the preceding clauses. Similarly, under a
goal exposure condition the unambiguous intended
referents of all exposure questions are goal refer-
ents while in a source exposure condition they are
source referents.

Aiming to transfer these experiments as faith-
fully as possible to the LLM context, we used this
experimental paradigm to evaluate the LLM by pro-
viding the model with the full text of each story
prompt and content/reference question, then gen-
erated tokens in response which we interpreted as
answers.

For clarity, we use the same experiment numbers
and identifiers as in Johnson and Arnold (2022).
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Experiment 1:
Story: Will went running with Ana. She needed some 
water.
Content question: What did they do?
Reference question: Did Will need water?

joint-action story without clear semantic bias, 
subject vs. non-subject exposure

Experiment 2a:
Story: Will and Liz were watching TV. Will took the 
remote from Liz, and then she went to get a beer.
Content question: What were Will and Liz doing?
Reference question: Did Will go to get a beer?

transfer event with semantic goal bias, subject vs. 
non-subject exposure

Experiment 2b:
Story: Will and Ana were going ice skating. Will 
brought the skates to Ana, and then she put them on.
Content question: What did Will bring to Ana?
Reference question: Did Ana put her skates on?

transfer event with semantic goal bias, goal vs. 
source exposure

Experiment 1:
Story: Matt is having dinner with Will. He wanted 
some chicken.
Content question: What did they do?
Reference question: Did Will want some chicken?

Experiment 2:
Story: Will and Matt were watching a movie. Will took 
the popcorn from Matt, and then he drank some soda.
Content question: What did Will take from Matt?
Reference question: Did Matt drink some soda?

Intermixed Same as exposures above.

Figure 1: Illustrated Experimental Procedure. Closely following the setup with human participants in Johnson and
Arnold (2022), LLMs were primed via exposure to story/question pairs with unambiguous referents, and tested for
their responses on ambiguous target pairs.

Note that we did not replicate experiments 1b and
1c, which investigated whether people are still sen-
sitive to referential patterns using different types of
referential expressions (e.g., third-person names
and first- and second-person pronouns). While
these experiments provided insights into the linguis-
tic structure at which people generalize referential
biases, they were less relevant to the objective of
this study and thus were not included.

Experiment 1a In this experiment, all story
prompts contain "joint-action" verbs using "with"
in the form "X did something with Y." Since these
verbs lack a clear semantic bias (e.g., Arnold et al.
2018), this context allows us to evaluate LLMs’
sensitivity to syntax-based biases in discourse by
asking whether exposure to only subject-bias or
object-bias examples will influence following an-
swers on the ambiguous critical items. If LLMs are
sensitive to syntax-based referential patterns, we
expect more subject responses under the subject ex-
posure condition and more non-subject responses
under the non-subject exposure condition.

Experiment 2a Experiment 2a forms a bridge
between adaptation to syntactic and semantic con-
straints. Are LLMs able to track patterns in both
categories, for instance learning an exposure bias
in one category while ignoring variation in the

other? In this experiment, all story prompts con-
tain source/goal verbs like "give" and "receive," but
these are distributed equally throughout exposures.
The manipulation remains the same as Experiment
1a, in which LLMs are exposed to consistent and
unambiguous subject interpretations in the subject
exposure condition and non-subject interpretations
in the non-subject exposure condition.

Experiment 2b This experiment focuses solely
on source/goal biases, in which all story prompts
contain source/goal words, but the unambiguous
exposure items are manipulated to contain only
source references in the source exposure condition
and only goal references in the goal exposure con-
dition.

3.2 In-context Learning

We propose that since these experiments rely on
short-term learning effects of exposure in an ex-
perimental context, they can only be effectively
simulated with LLMs by using in-context learn-
ing recursively. Specifically, for each question, the
model is provided access to all previous items in an-
swering a new question, including its own previous
responses. This is intended to mirror the process
of human experimental participants making judg-
ments in the light of recent exposure to input and
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Figure 2: The ICL Simulation Framework. Black text is provided to the models as prompts, red text is generated by
the model. With the last step’s output appended to previous prompts, we ask LLMs the next question.

their own past responses.
We manually checked the correctness of LLM

responses to content questions intended to check
comprehension, and as in the human experimenta-
tion context removed answers for which the LLMs
provided incorrect answers. The answers to critical
target questions were recorded for further statistical
analysis. Our ICL procedure is shown in Figure 2.

3.3 Models and Experimental Settings

We used text-davinci-003 from the OpenAI API
and open-sourced FLAN-UL2 as the LLMs of inter-
est. Though these models are of course not exhaus-
tive of the current landscape of LLMs, they provide
some diversity since they differ in both structure
(decoder-only vs. encoder-decoder) and parameter
count (175B vs. 20B). To introduce more random-
ness into the experiment and allow enough sample
sizes for statistical comparisons across conditions,
we made slight modifications to the temperature
hyperparameter on each run. Specifically, we as-
signed each run a random and unique temperature
value between 0.2 to 1.0.

We also attempted to simulate ‘participants’ us-
ing a natural language prompt to approach different
speaker identities following a similar methodol-
ogy to Aher et al. (2022). We developed prompts
with slots for titles, names, and country of origin
to establish different character backgrounds sim-
ulating native English speakers from the United

States, Britain, and Australia, following the partici-
pants’ demographics in Johnson and Arnold (2022).
However, these prompts did not induce greater di-
versity in responses than temperature modification,
so only results using temperature modification are
presented below. We present a further analysis for
both methodologies in Appendix B.

In the end, we simulated 24 ‘participants’ each
in Experiment 1a and Experiment 2a, and 60 ‘par-
ticipants’ in Experiment 2b. We included more
in Experiment 2b because this experiment has a
lower response variability and thus needs more
data points for the statistical analysis.

3.4 Measures

Following the analytic approach of Johnson and
Arnold (2022), we used a regression-based ap-
proach to analyze whether the responses of LM
are consistent with the subject or gogoalal bias of
the context for each experiment. We can then com-
pare our findings with theirs by asking whether
the effect of the main predictors is the same. In
all experiments, predictors included exposure type
(unambiguous exposures to subject/non-subject or
goal/source), reference question type (whether the
reference question is asked about the subject/non-
subject or goal/source), and the interaction ef-
fect between them. Experiment 2 included verb
type, as well as its two-way and three-way interac-
tion effects with the other two predictors as addi-
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Figure 3: Subject responses of LLM (left) and human participants (right) in Experiment 1a, showing the
percentage of subject responses for each type of reference question (Subj Q: subject reference question; Obj Q:
object reference question), grouped by exposure type (subject exposure: light blue; object exposure: dark blue).

tional predictors. Given our small dataset, the re-
sults were analyzed using Bayesian mixed-effects
Bernoulli logistic regression models in the R pack-
age brms (Bürkner, 2017) instead of a frequentist
model. We report a Bayesian equivalent p-value
(p_MAP) computed with the R package bayestestR
(Makowski et al., 2019) to offer a straightforward
interpretation of the results. Details of models are
provided in Appendix 1.

4 Results

4.1 FLAN-UL2

We found that FLAN-UL2 was not capable of gen-
erating meaningful output for analysis under this
design. First, FLAN-UL2 showed a much higher
false rate in answering content questions versus
InstructGPT: while InstructGPT replied 100% cor-
rectly to these questions, FLAN-UL2 replied to
only 57% correctly. Second, for the ambiguous
target items, FLAN-UL2 answered ‘yes’ 100% of
the time, indicating an extremely strong bias to-
wards simply answering ‘yes’ and producing no
meaningful variation. By contrast, InstructGPT an-
swered ‘yes’ to target questions 68% of the time,
suggesting some amount of ‘yes’ bias but to a much
weaker degree. From these findings we concluded
that FLAN-UL2 did not produce sufficiently clean
outputs for analysis; therefore, in the following sec-
tions, we will focus on results from InstructGPT.

4.2 Experiment 1a

Experiment 1a asks whether LLMs are sensitive
to the frequency of referential patterns when sub-
ject referents are preferred. Figure 3 compares the
subject responses of our results with Johnson and
Arnold (2022)’s results. In both LLM and human
data, we saw fewer subject responses in object ex-
posure than in subject exposure. This is confirmed
by the main effect of exposure type (p_MAP < .001)
revealed in the statistical analyses. There was also
a main effect of response question type (p_MAP
= .009). As seen from the figure, there were more
subject responses in the subject than object ref-
erence questions in both human and LLM data.
This is because InstructGPT did answer ‘yes’ more
frequently in general, which led to more subject
interpretations when the question asked about the
subject (where answering ‘yes’ indicates a subject
interpretation), and fewer subject interpretations
when the question was asked about the non-subject
(where answering ‘yes’ indicates a non-subject in-
terpretation).

However, we did not find any interaction ef-
fect between exposure type and reference question
type. While Johnson and Arnold (2022) found that
exposure type has a significant effect for subject-
referent questions but only a marginal effect for
the nonsubject-referent questions, the exposure ef-
fect was significant for both question types in our
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Figure 4: Subject responses of LLM (left) and human participants (right) in Experiment 2a. The proportion of
subject responses is plotted against question type faceting by verb type, comparing goal-subject verbs (gs) like
"receive," where the subject is the goal referent) to subject-goal verbs (sg) like "send," where the subject is the
source referent.

results. InstructGPT is sensitive to exposure type
even for nonsubject-referent questions, as reflected
in Figure 3: there were no subject responses when
non-subject reference questions were asked under
the non-subject exposure condition. This suggests
that LLM may even be more sensitive to the ex-
posure effect than humans. Overall, Experiment 1
shows that LLM can indeed learn from recent ex-
posure to syntactically-oriented referential patterns,
in a relatively more non-subject-biased way.

4.3 Experiment 2a

We ask in Experiment 2a if the sensitivity to sub-
ject reference patterns observed in Experiment 1a
persists independent of semantic variability in the
local context. Figure 4 illustrates the responses of
LLM and human participants by exposure, refer-
ence question, and verb type. The behavior of In-
structGPT is in line with what Johnson and Arnold
(2022) found in human participants for Experiment
2a: as in Experiment 1, statistical analyses revealed
a significant main effect of referent question type
(p_MAP = .034), despite a marginally significant
effect of exposure type (p_MAP = .085). Instruct-
GPT did understand the pronoun as subject ref-
erents more after subject exposure and said ‘yes’
more often such that there were more subject in-
terpretations when the critical question was asked
about the subject. InstructGPT also showed a goal

bias: there was a main effect of verb type (p_MAP
= .001), such that it referred to the subject more
with gs verbs (where the subject is the goal refer-
ent) than sg verbs (where the subject is the source
referent). We observed no interaction effect.

In spite of these similarities, we still observe
differences between LLM and human participants.
Notice in Figure 4 that there is a larger difference
between gs and sg verbs in InstructGPT than in
human participants while keeping other conditions
constant, suggesting that LLMs may have a larger
goal bias than humans.

4.4 Experiment 2b

Experiment 2b examines whether InstructGPT is
still sensitive to exposure to referential patterns that
exhibit consistent preferences for a source or goal
referent. Figure 5 compares the results from In-
structGPT and human participants. Whereas John-
son and Arnold (2022) reported significant main
effects from exposure type, reference question type,
and verb type, as well as a marginal interaction ef-
fect between verb type and exposure, we did not
find any effect from these predictors, but only an
interaction effect between verb type and question
type (p_MAP < .001). We further examined the
effect of question type and exposure type for each
verb type, but no significant effect was found for ei-
ther predictor. These results suggest that exposure
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Figure 5: Goal responses of LLM (left) and human participants (right) in Experiment 2b.

did not necessarily change InstructGPT’s behav-
iors: for goal questions, both the goal and source
exposure conditions led to 100% goal responses.
Reference question type also did not affect Instruct-
GPT’s responses, because it almost always inter-
prets the pronoun as the goal referent under subject
exposure. The lack of any significant effects, and
indeed our observed universal goal interpretations
to goal-focused reference questions, suggest that
InstructGPT displays an extreme goal bias in pro-
noun interpretation.

5 Discussion

The present study examined whether and to what
extent LLMs display adaptation for pronominal in-
terpretation after exposure to referential patterns
by replicating three psycholinguistic experiments.
Exposed to the same stimuli and study design, and
analyzed with the same statistical procedures as
the source experiments, we asked whether LLMs
show human-like behaviors and compared the per-
formance of LLMs-simulated participants with hu-
man participants.

We firstly found a difference between the capac-
ity of contemporary models to replicate human psy-
cholinguistic experimental designs in an ICL frame-
work. While InstructGPT was able to correctly
answer all the presented comprehension-check con-
tent questions, FLAN-UL2 was not. Both mod-
els displayed at least some bias towards answer-
ing ‘yes’ in ambiguous cases, but in the case of

FLAN-UL2 this bias resulted in 100% ‘yes’ an-
swers, rendering meaningful variation impossible
to ascertain. This could be a result of structural dif-
ferences between the models (decoder-only in the
case of InstructGPT, encoder-decoder in the case of
FLAN-UL2), or perhaps more likely a question of
simple model size (175B for InstructGPT vs. 20B
for FLAN-UL2).

Experiments 1a and 2a examined whether LLMs
adapt their syntactic bias from recent exposure to
referential patterns like humans, without and with
the presence of possibly confounding semantic goal
bias. We found that LLM’s referential biases are
indeed sensitive to such exposure in both experi-
ments. In addition, LLM did exhibit a goal bias in
Experiment 2a, in line with previous studies which
argue for LLM’s ability to exhibit human-like se-
mantic bias in pronoun interpretation (e.g., Davis
and van Schijndel 2020).

Experiment 2b examined whether LLM can
adapt and vary their semantic bias from exposures.
In this context, in contrast with the previous two
experiments, exposure type did not affect LLM
behavior at all. This raises the question of why
LLM would be sensitive to exposure to only refer-
ential patterns that exhibit consistent syntactic bias
but not semantic bias. An immediate and intuitive
answer would be that LLM is unable to fully repre-
sent semantic knowledge in referential processing.
However, given that LLM did display a human-like
goal bias in pronoun interpretation independent of
exposure, this explanation seems unlikely.
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We suggest that our work provides evidence that
LLM only partially represents the semantic knowl-
edge involved in referential processing for two rea-
sons.

First, adapting referential biases on the basis of
exposure in the local context may require repre-
sentations of higher-level knowledge than merely
exhibiting a bias towards certain referents. While
the latter may only require knowledge of which
features associated with a referent are more fre-
quent or likely in general, adaption requires a sus-
tained awareness of referential pattern frequency as
it changes in the local discourse context. Though
representing knowledge about semantic relations
was observed as early as the analogical reasoning
task in Word2Vec (Mikolov et al., 2013), human-
like extraction of abstract information like a persis-
tent discourse state is more challenging. The model
may only be able to identify thematic roles (source
or goal) of a referent and associate them with pro-
noun interpretation, but not to identify a consistent
pattern of thematic roles across a discourse. If so,
this would explain the strong goal bias we observed
in Experiment 2.

Second, it is possible that LLM has an extremely
strong goal bias that masks the influence of expo-
sures. If so, this suggests that LLM over-represents
the semantic knowledge encoded in pronoun inter-
pretation.

In either case, our results suggest that LLM
do not encode semantic knowledge in a fully
human-like way, even though they do demonstrate
some human-like capacities for semantic under-
standing. Although we believe this gap can be
mitigated via instruction fine-tuning or chain-of-
thought prompting (Wei et al., 2022), these re-
sults still suggest we should consider incorpo-
rating semantically-informed objectives into self-
supervised pre-training to a greater extent.

6 Conclusions and Future Work

By replicating a series of psycholinguistic experi-
ments as closely as possible using in-context learn-
ing, this paper pioneered whether LLMs would
adapt pronominal interpretation behaviors in a
human-like way given exposure to referential pat-
terns in the local discourse context. Our work sug-
gests paths forward for replicating psycholinguistic
experiments in a more faithful way that allows for
comparisons between human and LLMs’ behav-
iors.

Limitations

Several main limitations exist in our study in its
current form. First, our reported results only sim-
ulated experimental participants by manipulating
the temperature hyperparameter. We compared this
approach with natural language prompting for Ex-
periment 1, but that prompting did not increase
"participant" diversity, so it was abandoned. More-
over, approaches for simulating psycholinguistic
experimental "participants" could go far beyond
what was tried here; our prompting method was
relatively limited, and more detailed prompting
could be included in future experimental simula-
tions. Second, making a direct comparison with
actual psycholinguistic experiments might not be
the only method to investigate LLMs’ discourse
capacity. A comprehensive list of discourse prob-
ing tasks might play a similar role despite a differ-
ent way (Koto et al., 2021). Third, this study is
strictly behavioral: limited by both computational
resources and obscure mechanisms of in-context
learning, we do not dive into models’ internal rep-
resentations in our analyses.
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A Statistical Information

For each experiment, we analyzed referent choice
(Subject = 1, Non-subject = 0) using a mixed-
effects Bernoulli regression model from the R pack-
age brms (Bürkner, 2017), with the maximal ran-
dom structure justified by design (Barr et al., 2013).
Predictors are coded in the same way as in Johnson
and Arnold (2022). All models were specified with
a weakly informative prior using the Cauchy dis-
tribution with center 0 and scale 2.5. Models were
fitted using six chains, each with 4,000 iterations
of which the first 1,000 are warmup to calibrate the
sampler, resulting in 18,000 posterior examples.

The model for Experiment 1a included question
type (QtypeC, sum-coded: Subject = 0.5, Non-
subject = -0.5) and exposure type (PC, effects-
coded: Subject-biased = 0.51, Object-biased = -
0.49) as fixed predictors, random intercepts for
participants and items, random slopes of question
type, exposure type and their interaction for items,
and a random slope of question type for the partici-
pant. Exposure type was not included as a random
slope for participants because the condition does
not vary within participants.

brm (Rc ~ QtypeC*PC +
(1+QtypeC*PC|ID)+
(1+QtypeC|Subject),
data=(e1a,Exposure!="None"),
family="bernoulli",
chains=6,
iter=4000,
warmup=1000,
control =

list(adapt_delta = 0.95),
prior=
c(set_prior ("cauchy(0,2.5)")))

The model for Experiment 2a included question
type (QtypeC, sum-coded: Subject = 0.5, Non-
subject = -0.5), exposure type (PC, sum-coded:
Subject-biased = 0.5, Object-biased = -0.5), and
verb type (Vc, sum-coded: gs-verb = 0.5, sg-verb
= -0.5) as fixed predictors, random intercepts for
participants and items, random slopes of question
type, exposure type and their interaction for items,
and a random slope of question type for the par-
ticipant. As in Experiment 1a, exposure type was
not included as a random slope for participants
because the condition does not vary within partic-
ipants. Similarly, verb bias was not included as a
random slope for items here because it does not
vary within items.

brm (Rc ~ QtypeC*PC*Vc +
(1+PC*Qtypec|Item)+
(1+QtypeC*Vc|Subject),
data=e2a,
family="bernoulli", chains=6,
iter=4000, warmup=1000,

control = list(adapt_delta = 0.98),
cores = 6,
prior=
c(set_prior ("cauchy(0,2.5)")))

The model for Experiment 2b included question
type (QtypeC, sum-coded: Goal = 0.5, Source =
-0.5), exposure type (PC, sum-coded: Goal-biased
= 0.5, Source-biased = -0.5), and verb type (Vc,
sum-coded: gs-verb = 0.5, sg-verb = -0.5) as fixed
predictors. The random effect structure was the
same as that of Experiment 2a.

brm (Rc ~ PC*Vc*QtypeC
+(1+PC*QtypeC|Item)
+(1+Vc*QtypeC|Subject),
data=e2b,
family="bernoulli",
chains=6,
iter=4000,
warmup=1000,
control =

list(adapt_delta = 0.999),
cores = 6,
prior=
c(set_prior ("cauchy(0,2.5)")))
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B Temperature vs. Prompt

Our prompt-based simulation of multiple partic-
ipants embedded names, countries, prefixes, and
genders into a carrier sentence: {Prefix + Name} is
a native English speaker living in {Country}. {Gen-
der} is asked in a psycholinguistic experiment to
answer the following questions. For example, Mr.
Smith is a native English speaker living in Eng-
land. He is asked in a psycholinguistic experiment
to answer the following questions.

Specifically, we calculated the variance and ran
the Levene’s test for any significant difference be-
tween humans and InstructGPT in each experiment.
In experiment 1, the human responses’ variance is
0.055, the temperature-based responses’ variance
is 0.024, and the prompt-based responses’ vari-
ance is 0.017. Human responses were significantly
higher than both (Temperature-based: p = .049;
Prompt-based: p = .007). Yet, temperature-based
were not significantly higher than prompt-based.
Due to the limitation of API pricing, we only ran
temperature-based in the following experiments. In
experiment 2a, the human responses’ variance is
0.034 and the temperature-based responses’ vari-
ance is 0.043. Yet, Levene’s test did not reveal any
significant difference. In Experiment 2b, the human
responses’ variance is 0.020 and the temperature-
based responses’ variance is 0.008 (p < .001).

We used different techniques to introduce ran-
domness and include more experimental data in
our experiments. We realized these were not well-
designed prompts to elicit different linguistic back-
grounds. Given the lack of investigation on sim-
ulating multiple participants in psycholinguistics
studies, we recognize this as a future direction of
possible work.
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