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Abstract

Due to the crucial role pretrained language
models play in modern NLP, several bench-
marks have been proposed to evaluate their
performance. In spite of these efforts, no pub-
lic benchmark of diverse nature currently ex-
ists for evaluating Arabic NLU. This makes it
challenging to measure progress for both Ara-
bic and multilingual language models. This
challenge is compounded by the fact that any
benchmark targeting Arabic needs to take into
account the fact that Arabic is not a single lan-
guage but rather a collection of languages and
language varieties. In this work, we introduce
a publicly available benchmark for Arabic lan-
guage understanding evaluation dubbed ORCA.
It is carefully constructed to cover diverse Ara-
bic varieties and a wide range of challenging
Arabic understanding tasks exploiting 60 differ-
ent datasets (across seven NLU task clusters).
To measure current progress in Arabic NLU,
we use ORCA to offer a comprehensive com-
parison between 18 multilingual and Arabic
language models. We also provide a public
leaderboard with a unified single-number eval-
uation metric (ORCA score) to facilitate future
research.1

1 Introduction

Pretrained language models (PLMs) (Devlin et al.,
2019; Liu et al., 2019b; Lan et al., 2019; Zhang
et al., 2019; Sanh et al., 2019; Radford et al.,
2019; Dai et al., 2019; Clark et al., 2020; Lewis
et al., 2020a; Zaheer et al., 2020; Brown et al.,
2020; Beltagy et al., 2020; Zhang et al., 2020a;
Conneau et al., 2020a; Kitaev et al., 2020; Zhang
et al., 2020b; He et al., 2021; Le et al., 2021;
Raffel et al., 2022; Chung et al., 2022; Chowd-
hery et al., 2022) have become a core compo-
nent of the natural language understanding (NLU)

1https://orca.dlnlp.ai/.
⋆All authors contributed equally.

Figure 1: ORCA task clusters and datasets taxonomy.
The task clusters are SC: Sentence Classification. SP:
Structured Predictions. TC: Topic Classification. STS:
Semantic Textual Similarity. NLI: Natural Language
Inference. QA: Question-Answering. WSD: Word
sense disambiguation. The value in parentheses is the
number of datasets in each task cluster.

pipeline, making it all the more important to eval-
uate their performance under standardized con-
ditions. For this reason, several English-based
benchmarks such as GLUE (Wang et al., 2018),
SuperGLUE (Wang et al., 2019), SyntaxGym (Gau-
thier et al., 2020), Evaluation Harness (Gao
et al., 2021), GEM (Gehrmann et al., 2021), NL-
Augmenter (Dhole et al., 2021), Dynabench (Kiela
et al., 2021), MMLU (Hendrycks et al., 2021),
NATURAL INSTRUCTIONS (Mishra et al., 2022),
BIG-bench (Srivastava et al., 2022), and mul-
tilingual benchmarks such as XTREME (Hu
et al., 2020), XGLUE (Liang et al., 2020), and
MASAKHANE (Nekoto et al., 2020) have been
introduced. Benchmarks for a few other languages
also followed, including FLUE (Le et al., 2020) for
French, CLUE (Xu et al., 2020) for Chinese, In-
doNLU (Wilie et al., 2020) for Indonesian, KorNLI
and KorSTS (Ham et al., 2020) for Korean, and
JGLUE(Kurihara et al., 2022). This leaves behind
the majority of the world’s languages, and relies
on multilingual benchmarks which often have lim-
ited coverage of dialects and naturally-occurring
(rather than machine translated) text. This moti-
vates us to introduce a benchmark for Arabic. One
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other reason that lends importance to our work is
that Arabic is a rich collection of languages with
both standard and dialectal varieties and more than
400M native speaker population.

To the best of our knowledge, there have only
been two attempts to provide Arabic NLU eval-
uation benchmarks. These are ARLUE (Abdul-
Mageed et al., 2021) and ALUE (Seelawi et al.,
2021). Although useful, both of these have ma-
jor limitations: ALUE has modest coverage (only
eight datasets covering only three task clusters)
and ARLUE involves datasets that are not publicly
available. Our goal is to rectify these limitations by
introducing ORCA, which expands task coverage
using fully public datasets, while also offering an
accessible benchmark with a public leaderboard
and processing tools as well as wide geographical
and linguistic coverage. ORCA exploits 60 differ-
ent datasets, making it by far the most extensive
benchmark for Arabic NLU and among the most
extensive for any language. We present detailed
analyses of the data comprising ORCA and evalu-
ate a wide range of available pretrained language
models (PLMs) on it, thus offering strong baselines
for future comparisons.

In summary, we offer the following contribu-
tions: (1) We introduce ORCA, an extensive and
diverse benchmark for Arabic NLU. ORCA is a col-
lection of 60 datasets arranged into seven task clus-
ters, namely: sentence classification, text classifica-
tion, structured prediction, semantic similarity, nat-
ural language inference (NLI), question-answering
(QA), and word sense disambiguation (WSD). (2)
We provide a comprehensive comparison of the
performance of publicly available Arabic PLMs on
ORCA using a unified ORCA score. (3) To facili-
tate future work, we design a public leaderboard for
scoring PLMs on ORCA. Our leaderboard is inter-
active and offers rich meta-data about the various
datasets involved as well as the language models
we evaluate. (4) We distribute ORCA with a new
modular toolkit for pretraining and transfer learn-
ing for NLU. The toolkit is built around standard
tools including PyTorch (Paszke et al., 2019) and
HuggingFace datasets hub (Lhoest et al., 2021).

The rest of the paper is organized as follows:
In Section 2, we provide an overview of related
work. Section 3 introduces ORCA, our Arabic
NLU benchmark. In Section 4, we describe mul-
tilingual and Arabic pretrained language models
we evaluate on ORCA, providing results of our

evaluation in Section 5. Section 6 is an analysis of
model computational cost as measured on ORCA.
We conclude in Section 7.

2 Related Work

Most recent benchmarks propose a representative
set of standard NLU tasks for evaluation. These
can be categorized into English-centric, multilin-
gual, Arabic-specific, and X-specific (X being a
language other than English or Arabic such as Chi-
nese, Korean, or French). We briefly describe each
of these categories next. We also provide a compar-
ison of benchmarks in the literature in terms of task
clusters covered and number of datasets in Table 1.

2.1 English-Centric Benchmarks

GLUE. The General Language Understanding
Evaluation (GLUE) benchmark (Wang et al., 2018)
is one of the early English benchmarks. It is a
collection of nine publicly available datasets from
different genres. GLUE is arranged into three
task clusters: sentence classification, similarity and
paraphrase, and NLI.
SuperGLUE. Wang et al. (2019) propose Super-
GLUE, a benchmark styled after GLUE with a new
set of more challenging tasks. SuperGLUE is built
around eight tasks and arranged into four task clus-
ters: QA, NLI, WSD, and coreference resolution.
The benchmark is accompanied by a leaderboard
with a single-number performance metric (i.e., the
SuperGLUE score).

2.2 Multilingual Benchmarks

bAbI. Early attempts to create multilingual bench-
marks are limited in their language coverage. An
example is bAbI (Weston et al., 2015), which cov-
ers only English and Hindi. It consists of a set of 20
tasks for testing text reasoning and understanding
using different question-answering and coreference
resolution strategies.
XGLUE. XGLUE is a cross-lingual benchmark
proposed by Liang et al. (2020) to evaluate the per-
formance of PLMs. It provides 11 tasks in both
NLU and NLG scenarios that cover 19 languages.
The XGLUE tasks are arranged into four under-
standing tasks (structured predictions, text clas-
sifications, QA, NLI, semantic search), and two
generation tasks (question and title generation).
XTREME. The Cross-lingual TRansfer Evalua-
tion of Multilingual Encoders (XTREME) (Hu
et al., 2020) is a benchmark for evaluating the
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Task Cluster

English-Centric X-Specific Multilingual Arabic

Bench. GLUE SGLUE FLUE IndoNLU CLUE JGLUE KorNLU bAbI XGLUE XTREM ALUE ARLUE ORCA

Lang. En En Fr Id Zh Jp Ko En, Hi 19 40 Ar Ar Ar

Sentence Classification ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Structured Prediction ✓ ✓ ✓ ✓ ✓ ✓ ✓

STS and Paraphrase ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Text Classification ✓ ✓ ✓ ✓ ✓

Natural Language Inference ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Word Sense Disambiguation ✓ ✓ ✓

Coreference Resolution ✓ ✓ ✓ ✓

Question-Answering ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

# Datasets 11 10 7 12 9 6 4 20 11 9 9 42 60

# Task Clusters Covered 5 5 5 5 6 3 2 2 3 4 3 4 7

Table 1: Comparison of NLU benchmarks proposed in the literature across the different covered task clusters. STS:
Semantic Textual Similarity. GLUE: (Wang et al., 2018). SGLUE: SuperGLUE (Wang et al., 2019). XGLUE:
(Liang et al., 2020). FULE: (Le et al., 2020). FULE: (Le et al., 2020). IndoNLU: (Wilie et al., 2020). CLUE: (Xu
et al., 2020). KorNLI: KorNLI and korSTS (Ham et al., 2020). bAbI: (Weston et al., 2015). XTREM: (Hu et al.,
2020). ALUE: (Seelawi et al., 2021). ARLUE: (Abdul-Mageed et al., 2021). ORCA: Our proposed Arabic NLU
benchmark.

cross-lingual generalization capabilities of multilin-
gual models. It covers 40 languages and includes
nine datasets across four task clusters: classifica-
tion (i.e., NLI and paraphrase), structured predic-
tion (i.e., POS and NER), question answering, and
sentence retrieval. Ruder et al. (2021) extend
XTREME to XTREME-R (for XTREME Revis-
ited). This new benchmark has an improved set
of ten NLU tasks (including language-agnostic re-
trieval tasks). XTREME-R covers 50 languages.
Authors also provide a multilingual diagnostic suite
and evaluation capabilities through an interactive
public leaderboard.
Big-bench. The Beyond the Imitation Game
Benchmark or shortly BIG-bench (Srivastava et al.,
2022) is a collaborative2 NLP benchmark aimed
to explore and evaluate the capabilities of large
language models. It currently consists of 204 ad-
vanced NLP tasks, from diverse topics such as
common-sense reasoning, linguistics, childhood
development, math, biology, physics, social bias,
and software development.3

2.3 Arabic-Specific Benchmarks

ALUE. To the best of our knowledge, two bench-
marks for Arabic currently exist, ALUE (Seelawi
et al., 2021) and ARLUE (Abdul-Mageed et al.,
2021). ALUE is focused on NLU and comes with

2Contributed by 444 authors across 132 institutions.
3We exclude the Big-Bench benchmark from Table 1 be-

cause it has a very large number of tasks that we cannot fit
into the table. It also involves task clusters that are unrelated
to the ORCA benchmark.

eight datasets arranged into three task clusters:
sentence classification, NLI, and similarity and
paraphrase. The sentence classification cluster
involves five datasets for offensive and hate speech
detection, irony prediction, sentiment analysis, and
dialect identification. The NLI cluster involves
two datasets, both for NLI aiming at predicting
whether a premise sentence contradicts, entails, or
is neutral toward a hypothesis sentence. ALUE
has one dataset for semantic similarity comprising
a collection of questions pair labelled with "1"
(semantically similar) or "0" otherwise. The task is
to predict these similarity scores. While datasets in
ALUE are publicly available and the benchmark
is accompanied by a leaderboard, its size and
diversity (geographical and linguistic) are modest.
ARLUE. (Abdul-Mageed et al., 2021) also
targets Arabic NLU tasks and is composed of 42
datasets arranged into four task clusters: sentence
classification, text classification, structured predic-
tion, and QA. Many of the datasets in ARLUE,
however, are not publicly available which presents
a barrier to widespread adoption. Nor is ARLUE
accompanied by a leaderboard. ORCA ameliorates
these challenges.

2.4 X-Specific Benchmarks

Other X-specific benchmarks include CLUE. (Xu
et al., 2020), FLUE. (Le et al., 2020), In-
doNLU. (Wilie et al., 2020), JGLUE. (Kurihara
et al., 2022), and KorNLI and KorSTS. (Ham
et al., 2020). We review these benchmarks in Ap-
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pendix B.

3 ORCA Benchmark

We present ORCA, a benchmark for Arabic NLU
that is challenging and diverse. ORCA involves
60 datasets arranged into 29 tasks and seven task
clusters. In the following, we will first introduce
our design principles for developing ORCA then
introduce the different task clusters covered.

Cluster Task Level #Data Train Dev Test

SC

SA Sent 19 50K 5K 5K
SM Sent 11 50K 5K 5K
Dia-b Sent 2 50K 5K 5K
Dia-r Sent 3 38.5K 4.5K 5K
Dia-c Sent 4 50K 5K 5K
CL Sent 1 3.2K 0.9K 0.4K
MG Sent 1 50K 5K 5K

SP
NER Word 2 5.2K 1.1K 1.2K
POS Word 2 5.2K 1.1K 1.2K

TC Topic Doc 5 47.5K 5K 5K

QA QA Parag 4 101.6K 517 7.4K

STS
STS-reg Sent 1 0.8K 0.2K 0.2K

STS-cls Sent 1 9.6K 1.2K 1.2K

NLI
XNLI Sent 1 4.5K 0.5K 2.5K
FC Doc 2 5K 1K 1K

WSD WSD Word 1 21K 5K 5K
Total 60 487.1K 46.0K 55.1K

Table 2: The different task clusters, tasks, and data splits
in ORCA. SC: Sentence Classification. SP: Structured Pre-
diction. TC: Topic Classification. STS: Textual Semantic
Similarity. NLI: Natural Language Inference. QA: Question-
Answering. SM: Social Meaning. For abbreviations of task
names, refer to Section 3.2.

3.1 Design Principles
Our goal is to offer a challenging and diverse NLU
benchmark that allows evaluation of language mod-
els and measurement of progress on Arabic NLU.
To this end, we develop ORCA with a number of
design principles in mind. We explain these here.
Large number of public tasks. We strive to in-
clude as many tasks as possible so long as data
for these tasks are public. This makes it possible
for researchers to train and evaluate on these tasks
without having to pay for private data. ORCA in-
volves 60 different datasets that are all publicly
available.
Challenging benchmark. We design ORCA to
require knowledge at various linguistic levels, mak-
ing it challenging. This includes knowledge at the
level of tokens in context as well as at the levels of
complete sentences, inter-sentence relations, whole
paragraphs, and entire documents.

Coherent task clusters and tasks. Rather than
listing each group of datasets representing a given
task together, we group the various tasks into task
clusters. This makes it easy for us to present the
various downstream tasks. It also makes it possi-
ble to derive meaningful insights during evaluation.
For example, one can compare performance at a
lower-level task cluster such as structured predic-
tion to that of performance at a higher-level cluster
such as natural language inference. Within the
clusters themselves, we also maintain coherent sub-
groupings. For example, since sentiment analysis
has been one of the most popular tasks in Arabic
NLP, we assign it its own sub-cluster within the
sentence classification cluster. Similarly, we keep
tasks such as hate speech and emotion detection
that exploit social media data into a single social
meaning cluster.
Wide linguistic variability and geographical cov-
erage. We strive to include tasks in various Ara-
bic varieties. This involves Modern Standard Ara-
bic (MSA) and dialectal Arabic (DA). We include
datasets collected from wide regions within the
Arab world. This not only pertains our DA datasets,
many of which come from various Arab coun-
tries, but also our MSA datasets as these are ex-
tracted from several news outlets from across the
Arab world. This also ensures variability in top-
ics within these datasets. To illustrate linguistic
diversity within ORCA, we run an in-house binary
MSA-dialect classifier on all ORCA data splits (i.e.,
Train, Dev, and Test).4 For a deeper understanding
of ORCA data, we also calculate several measures
including the average, median, mode, and type-
token ratio (TTR) of the sentences in each task.
Table 3 shows the MSA vs. DA data distribution
and the statistical description of ORCA datasets.

In addition, we acquire a country-level dialect
distribution analysis over the data using AraT5
model (Nagoudi et al., 2022) fine-tuned on the
ORCA dialect country-level dataset (DIA-C). We
run this country-level classifier only on the dialectal
portion of ORCA (i.e., datasets of tweets predicted
as dialectal with our in-house MSA-dialect clas-
sifier). Figure F.1 shows that ORCA datasets are
truly diverse from a geographical perspective.5

Accessible evaluation. To facilitate evaluation in

4As our classifier is trained using ORCADA, we exclude
the ORCA dialect component from this analysis.

5Again, the country-level classifier is also trained us-
ing ORCADIA, so we exclude the dialect tasks from this analy-
sis.
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(a) Models ranked by our ORCA score. (b) Detailed scores for a given model across all tasks.
Figure 2: ORCA main leaderboard.

a reasonable time frame in a GPU-friendly setting,
we cap data sizes across our Train, Dev, and Test
splits to 50k, 5k, 5k samples respectively. This
allows us to avoid larger data sizes in tasks such
as Age and Gender that have 1.3m, 160k, 160k
samples for the Train, Dev, and Test splits each and
both the sentiment and dialect country-level tasks
that have 190k, 6.5k, 44.2k and 711.9k, 31.5k, 52.1k
for the Train, Dev, and Test data (respectively).
Table 2, shows a summary of the data splits across
tasks and task clusters in ORCA.
Simple evaluation metric. We adopt a simple
evaluation approach in the form of an ORCA score.
The ORCA score is simply a macro-average of the
different scores across all tasks and task clusters,
where each task is weighted equally.
Modularity. We design ORCA to allow users to
score models on the whole benchmark but also on
individual task clusters. In both cases, the leader-
board returns results averaged across the datasets
within either the whole benchmark or the individual
tasks (sub-leaderboards). This allows us to invite
submissions of dedicated models that take as its
target subsets of ORCA datasets. Figure 2 shows
ORCA’s main screen with models sorted by ORCA
score. We provide more screenshots illustrating
ORCA’s modularity in Appendix D.
Public leaderboard. We allow scoring models
against ORCA through an intuitive, easy-to-use
leaderboard. To facilitate adoption, we also pro-
vide a Google Colab notebook with instructions for
finetunining any model on ORCA tasks.
Faithful evaluation. For each submission, we re-
quire users to provide meta-data such as the num-
ber of parameters, amount of pretraining data, and

number of finetuning epochs. This facilitates com-
parisons across the different models. We make this
meta-data available via our interactive leaderboard.
Proper credit for individual dataset authors.
One issue with evaluation benchmarks is that once
a benchmark is created there is a concern of not
giving credit to original datasets. To overcome
this limitation, we distribute a simple text file with
bibliographic entries for all papers describing the
60 datasets in ORCA and strongly encourage all
future use to cite them.

3.2 Tasks and Task Clusters

As explained, we arrange ORCA into 7 task clus-
ters. These are (1) sentence classification, (2) struc-
tured prediction (3) semantic textual similarity and
paraphrase, (4) text classification, (5) natural lan-
guage inference, (6) word sense disambiguation,
and (7) question answering.
Sentence Classification. This cluster involves the
following sentence-level classification tasks: (1)
Sentiment Analysis: 19 publicly available senti-
ment datasets have been used to construct this
task. We merge 17 datasets benchmarked by Abdul-
Mageed et al. (2021) with two new datasets: Ara-
bizi sentiment analysis dataset (Fourati et al., 2020)
and AraCust (Almuqren and Cristea, 2021), a
Saudi Telecom tweets corpus for sentiment anal-
ysis. (2) Social Meaning: Refers to eight so-
cial meaning datasets covering prediction of hate
speech and offensive language (Mubarak et al.,
2020), dangerous speech (Alshehri et al., 2020),
sarcasm (Farha and Magdy, 2020), adult con-
tent Mubarak et al. (2021), irony (Ghanem et al.,
2019), emotion, age and gender (Mohammad et al.,

5
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Task cluster with more likely dialectal data

Cluster Task Avg-char Avg-word Median Mode TTR MSA DIA
abusive 43.71 12.45 11 8 27.69 29.55 70.45
adult 86.15 15.44 14 3 18.65 65.8 34.2
age⋆ 60.73 11.82 15 19 42.44 41.52 58.48
claim 48.23 8.16 8 7 37.96 99.78 0.22

SC

dangerous 38.27 8.17 8 7 35.69 10.16 89.84
dialect-B 89.92 17.17 10 4 37.84 60.27 39.73
dialect-C 82.66 15.39 17 22 37.62 27.44 72.56
dialect-R 80.40 15.66 8 8 36.32 12.57 87.43
emotion-cls 73.58 14.60 16 10 14.25 25.72 74.28
emotion-reg 63.57 12.60 14 9 14.25 60.3 39.70
gender⋆ 60.73 11.82 9 4 42.44 40.9 59.10
hate† 99.20 19.76 16 9 24.97 25.79 74.21
offensive† 99.20 19.76 16 9 24.97 25.79 74.21
irony 106.67 19.70 18 17 31.15 45.32 54.68
machine G 218.11 39.92 33 31 14.44 99.44 0.56
sarcasm 88.80 15.69 16 18 28.29 71.49 28.51
sentiment 127.27 22.9 16 10 79.31 64.06 35.94

Avg 86.31 16.53 14.41 11.47 32.25 47.41 52.59

Task clusters with more likely MSA data

TC topic 2.7k 474.78 286 152 5.2 99.71 0.29
QA arlue-qa 101.6 517 7.4 4 50 100 0.0

One input avg 1.4k 495.89 146.7 78 27.6 99.86 0.15

NLI
ans-st 50.53/45.35 8.48/7.70 44780 44749 36.46/38.70 99.85 0.15
baly-st 7.2k/147.65 1.3k/25.40 25/807 8.12/5.24 21/251 100 0.0
xlni 90.12/44.15 16.23/7.97 15/7 9/7 13.74/28.76 99.16 0.84

STSP sts-reg 78.72/96.44 14.19/17.26 14/13 12/8 60.07/58.13 98.86 1.14
sts-cls 80.38/77.25 14.25/13.13 11/10 7/7 10.03/10.33 99.31 0.69

Two inputs avg 1.5k/82.17 270.63/14.29 171/12.4 8.62/6.65 28.26/77.38 99.44 0.56

Table 3: Descriptive statistics of ORCA across the different data splits. ⋆ and †: Same data with multiple labels. SC: Sentence
Classification. TC: Topic Classification. STS: Textual Semantic Similarity. NLI: Natural Language Inference. QA: Question-
Answering. For the NLI and STPS tasks we compute the statistics in both inputs (e.g., sentence 1 and sentence 2 in ASTS task).
We don’t include the word-level datasets in this table (i.e., SP tasks.)

2018; Abdul-Mageed et al., 2020b). (3) Dialect
Identification: Six datasets are used for dialect
classification. These are ArSarcasmDia (Farha
and Magdy, 2020), the Arabic Online Commen-
tary (AOC) dataset (Zaidan and Callison-Burch,
2014), NADI-2020 (Abdul-Mageed et al., 2020a),
MADAR (Bouamor et al., 2019), QADI (Abdelali
et al., 2020), and Habibi (El-Haj, 2020). The di-
alect identification task involves three dialect clas-
sification levels. These are the binary-level (i.e.,
MSA vs. DA), region-level (four regions), and
country-level (21 countries). (4) Claim Predic-
tion: we use ANS-claim (Khouja, 2020), which
is a factuality prediction of claims corpus created
using the credibility of the editors as a proxy for
veracity (true/false). (5) Machine Generation: for
machine generated text detection (i.e, machine vs.
human), we use the machine manipulated version
of AraNews dataset (Nagoudi et al., 2020). To cre-
ate this dataset, a list of words are selected (based

on their POS tags) and substituted by a chosen
word from the k-most similar words in an Arabic
word embedding model.
Structured Prediction. This task cluster in-
cludes two tasks: (1) Arabic NER: we consider
two publicly available Arabic NER datasets, AN-
ERcorp (Benajiba and Rosso, 2007) and AQ-
MAR (Schneider et al., 2012). (2) Arabic POS Tag-
ging: we use two POS Tagging datasets, the multi-
dialect Arabic POS dataset Darwish et al. (2018)
and the Arabic POS tagging part of XGLUE (Liang
et al., 2020).
Text Classification. In this task cluster, we explore
topic classification employing three document-
level classification datasets: Khaleej (Abbas et al.,
2011), Arabic News Text (ANT) (Chouigui et al.,
2017), and OSAC (Saad and Ashour, 2010).
Semantic Textual Similarity. This cluster aims
to measure the semantic relationship between a
pair of sentences. For this, we use the (1) STS re-
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gression: data from Ar-SemEval-2017 (Cer et al.,
2017) (which is a set of Arabic sentence pairs each
labeled with a numerical score from the interval
[0..1] indicating the degree of semantic similarity).
We also use (2) STS classification where a pair of
questions is assumed to be semantically similar
if they have the same exact meaning and answer.
We use the semantic question similarity in Arabic
dataset (Q2Q) proposed by Seelawi et al. (2019)
where each pair is tagged with “1" (question has
the same meaning and answer) or “0" (not similar).
Natural Language Inference. This cluster covers
the following two tasks: (1) Arabic NLI: we use the
Arabic part of the cross-lingual natural language
inference (XNLI) corpus (Conneau et al., 2018).
The goal is determining whether a text (hypothesis)
is false (contradiction), undetermined (neutral), or
true (entailment), given a another text (premise).
(2) Fact-checking: in order to build a fact-checking
benchmark component, we use Unified-FC (Baly
et al., 2018) and ANS (Khouja, 2020). Both of
these datasets target stance and factuality prediction
of claims from news and social media. The two
datasets are manually created by annotating the
stance between a claim-document pair with labels
from the set {agree, disagree, discuss, unrelated}.
Word Sense Disambiguation. We use the Ara-
bic WSD benchmark (El-Razzaz et al., 2021), a
context-gloss pair dataset extracted from an MSA
dictionary. It consists of 15k senses for 5k unique
words with an average of three senses for each
word.
Question Answering. We concatenate four Ara-
bic and multilingual QA datasets. These are
ARCD (Mozannar et al., 2019), MLQA (Lewis
et al., 2020b), TyDi QA (Artetxe et al., 2020), and
XQuAD (Artetxe et al., 2020).

4 Language Models

In this section, we list multilingual PLMs that in-
clude Arabic in its coverage only by name, for
space but provide a description of each of them in
Appendix A.
Multilingual LMs. These are mBERT (Devlin
et al., 2019) , XLM-R (Conneau et al., 2020b),
GigaBERT (Lan et al., 2020), and mT5 (Xue et al.,
2021).
Arabic LMs. These are AraBERT (Antoun et al.,
2020), ArabicBERT (Safaya et al., 2020), Arabic-
ALBERT (Safaya, 2020), QARiB Chowdhury et al.
(2020), ARBERT & MARBERT (Abdul-Mageed

et al., 2021), CamelBERT (Inoue et al., 2021),
JABER and SABER (Ghaddar et al., 2021), and
AraT5 (Nagoudi et al., 2022).
Table A.1 (Appendix A) shows a comparison be-
tween the multilingual as well as the Arabic PLMs
in terms of (1) training data size, (2) vocabulary
size, (3) language varieties, and (4) model configu-
ration and architecture.

5 Model Evaluation on ORCA

This section shows experimental settings and per-
formance of 18 multilingual and Arabic language
models on ORCA downstream tasks.6

Baselines. For comparison, we finetune the multi-
lingual language models mBERT and XLM-RBase
on all training data of ORCA benchmark.
Evaluation. For all models and baselines, across
all tasks, we identify the best model on the respec-
tive development data split (Dev) and blind-test
on the testing split (Test). We methodically evalu-
ate each task cluster, ultimately reporting a single
ORCA score following Wang et al. (2018); Abdul-
Mageed et al. (2021). ORCA score is simply the
macro-average of the different scores across all
tasks and task clusters, where each task is weighted
equally. We compute the ORCA score for all 18
language models.
Results. We present results of all language models
and the baselines on each task cluster of ORCA in-
dependently using the relevant metric, for both
Dev (see Table C.1 in Appendix C) and Test
(see Table 4). As Table 4 shows, ARBERTv2
(M3) achieves the highest ORCA score across
all the tasks and also for MSA tasks only7 (with
ORCA score=74.04 and Avg. MSA score=75.13),
followed by CamelBERTmsa (M11) in both cases
with 73.35 and 73.64, respectively. Regarding
the dialect tasks, we note that MARBERTv2 (M4)
achieves the best dialect ORCA score (Avg. DA
score=74.62) followed by QARIB (M9) with
74.47. We also note that AraELECTRA (M8)
achieves the best results in six individual tasks out
of 26, followed by MARBERTv2 (M4) which ex-
cels in five individual tasks.
Analysis. As our experiments imply, ORCA allow
us to derive unique insights. Example insights that

6We exclude JABER and SABER (Ghaddar et al., 2021)
from the evaluation as these are not supported by the Trans-
formers library.

7We consider a task an MSA task if it has more than 98%
of samples predicted as MSA using the MSA vs. DA classifier
(see Table 3).
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Cluster Task B1 B2 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16

SC

abusive† 72.68 71.31 76.53 78.36 75.99 78.03 75.92 78.06 76.22 76.87 79.66 75.49 76.98 73.57 74.43 77.34 72.28 67.68

adult† 89.52 88.49 89.7 90.76 89.67 90.97 88.97 89.9 89.65 90.18 90.89 90.33 90.09 90.76 88.68 89.35 89.74 88.88

age† 42.68 44.14 44.76 47.11 45.57 46.24 44.10 44.33 42.02 47.26 46.35 45.89 45.97 45.29 43.29 43.83 45.23 43.61

claim⋆ 65.72 66.66 70.25 67.91 67.38 67.83 69.74 69.34 70.35 71.53 69.2 68.96 70.32 65.66 63.06 68.81 66.29 65.88

dangerous† 64.94 66.31 67.32 66.2 64.96 67.11 64.72 62.6 67.13 65.66 66.25 64.03 65.31 66.92 61.97 62.83 64.56 63.41

dialect-B† 84.29 84.78 86.48 86.78 86.92 86.91 86.64 87.01 87.76 87.21 87.85 86.79 87.40 86.64 84.58 86.57 86.13 85.94

dialect-R† 63.12 63.51 67.71 66.08 65.21 66.32 64.63 67.5 64.46 66.34 66.71 65.59 65.05 68.55 63.36 69.22 63.98 62.87

dialect-C† 25.52 30.34 35.26 35.83 35.69 36.06 31.49 36.33 27.00 36.50 34.36 33.90 35.18 30.83 27.05 33.96 32.99 28.25

emotion-cls† 56.79 60.05 63.6 68.85 64.81 70.82 60.6 64.89 60.98 66.70 68.03 65.25 63.85 64.8 59.66 61.92 62.2 55.22

emotion-reg⋆ 37.96 52.37 65.37 73.96 67.73 74.27 62.02 67.64 61.51 70.31 71.91 66.73 65.75 64.34 48.46 66.57 62.77 45.72

gender† 61.78 64.16 64.38 66.65 63.18 67.64 62.41 64.37 64.24 65.65 66.64 66.38 65.19 64.25 63.37 63.97 64.35 63.50

hate† 72.19 67.88 82.41 81.33 82.26 83.54 82.21 82.39 81.79 85.30 83.88 81.99 79.68 83.38 74.1 82.25 79.77 74.26

irony† 82.31 83.13 83.53 83.27 83.83 83.09 83.63 84.51 81.56 84.62 85.16 84.01 83.07 81.91 79.68 80.91 83.03 79.05

offensive† 84.62 87.18 89.28 91.84 89.55 92.23 87.5 90.73 89.4 91.89 91.17 90.05 89.32 90.44 86.52 88.76 87.52 85.26

machine G.⋆ 81.4 84.61 88.35 85.14 87.94 86.69 87.45 89.82 90.66 87.96 86.35 86.73 88.62 83.17 83.35 87.43 86.28 83.91

sarcasm† 69.32 68.42 73.11 74.74 74.16 76.19 73.46 74.06 74.81 76.83 75.82 74.17 75.18 72.57 69.94 72.02 73.11 71.92

sentiment† 78.99 77.21 77.78 79.08 78.60 80.83 78.45 80.50 79.56 80.86 80.33 79.51 79.75 77.8 76.76 78.68 78.46 76.46

SP
ner-anerc.⋆ 85.92 86.76 90.27 86.59 90.83 87.86 90.68 90.85 90.17 90.03 87.5 89.27 90.71 83.61 82.94 89.52 88.77 86.54

ner-aqmar⋆ 75.95 76.16 80.72 74.57 81.70 74.22 77.34 79.2 73.43 77.66 73.72 76.84 78.54 73.77 70.71 74.97 79.5 73.15

pos-dia† 92.04 92.78 92.92 94.14 93.92 93.38 91.65 93.79 94.70 93.554 94.70 93.95 94.37 93.95 92.05 92.05 93.24 92.57

pos-xglue⋆ 57.68 69.37 51.39 55.02 52.55 55.45 34.65 37.84 41.28 26.61 41.36 27.70 32.89 10.37 17.04 62.58 63.89 42.40

NLI
ans-st⋆ 84.49 81.00 91.77 73.82 91.02 80.57 87.59 93.23 92.33 90.17 50.2 82.49 89.21 46.01 71.81 85.31 82.86 80.02

baly-st⋆ 34.48 38.27 45.63 29.07 49.34 36.52 51.19 46.63 41.32 37.12 31.58 48.94 49.67 30.58 48.85 49.21 49.22 47.19

xlni⋆ 61.88 65.06 67.22 60.50 68.17 62.22 64.69 67.93 70.20 66.67 55.67 63.82 66.02 54.29 61.18 66.53 62.15 61.62

STS
sts-r⋆ ‡ 63.91 62.24 73.00 63.48 71.90 66.12 71.27 75.4 76.01 70.50 41.15 70.61 74.42 71.23 70.13 73.68 73.56 66.75

sts-c⋆ 62.34 63.35 85.95 74.43 96.73 63.47 96.81 64.11 64.24 63.52 84.11 63.28 97.10 59.57 96.41 85.87 96.69 62.91

TC topic⋆ 92.55 93.53 94.17 93.53 93.96 93.9 94.31 94.58 94.11 94.02 93.32 93.72 94.38 93.18 93.41 94.05 93.86 93.27

QA arlue-qa⋆ 56.39 56.51 57.65 49.35 61.5 57.9 56.79 61.56 60.70 57.65 45.27 53.98 57.46 30.91 52.11 58.71 55.94 53.89

WSD ar-wsd⋆ 69.82 52.90 33.29 72.94 71.01 33.28 51.72 76.68 73.54 72.92 70.13 74.12 75.86 65.18 75.68 74.31 69.76 47.19

Avg. DIA† 69.39 69.98 72.98 74.07 72.95 74.62 71.76 73.40 74.47 71.97 74.47 73.18 73.06 72.79 69.70 72.25 71.65 69.10

Avg. MSA⋆ 66.75 67.77 73.91 65.76 75.13 67.17 71.16 72.48 70.65 70.37 64.39 69.09 73.64 59.42 66.80 74.20 72.15 47.19

ORCAscore 68.07 68.88 73.45 69.91 74.04 72.95 71.46 72.94 72.56 71.17 69.43 71.13 73.35 66.10 69.15 73.23 71.90 58.14

Table 4: Performance of Arabic Bert-based models on ORCA Test splits (F1) ‡ Metric for STSP taks is spearman corre-
lation. B1, B2: Two baselines mBERT (Devlin et al., 2019) and XLM-R (Liu et al., 2019a). M1, M2: ARBERT, MAR-

BERT (Abdul-Mageed et al., 2021). M3, M4: ARBERTV2 and MARBERTV2. M5, M6, M7, and M8: AraBERTv1[v2, tw],

and AraElectra (Antoun et al., 2020, 2021). M9: QARiB (Chowdhury et al., 2020) M10, M11, M12, and M13:

CamelBERTmix[msa, da, ca] (Inoue et al., 2021). M14: GigaBERTv4 (Chowdhury et al., 2020). M15: Arabic BERT (Chowdhury
et al., 2020). M16 : Arabic Albert (Lan et al., 2020). Avg. DIA and Avg. MSA: The average of dialect and MSA tasks.
ORCAscore : Average overall Dia and MSA tasks. ⋆MSA tasks. ‡DIA tasks. A task is considered as an MSA if it has more

than 98% samples predicted as MSA using an MSA vs. DIA classifier (see Table 3).

can be derived from Table 4 are: (a) a model such
as M6 (i.e., AraBERTv2) that is pretrained with his-
torical data (AlSafeer newspaper) would excel on
old datasets (e.g., TC, QA, and WSD); while M4
(i.e., MARBERTv2) excels especially on datasets
from social media since it is pretrained with a large
Twitter collection. In addition, since ORCA ar-
ranges the metrics into one dedicated to dialect,
another to MSA, and a third to both (ORCA score),
it is much easier to compare model performance
across the DA-MSA dimensions.

6 Analysis of Model Computational Cost

We also compare the Arabic language models in
terms of computational cost using the average time
needed for convergence (in minutes) and average

number of epochs to convergence as identified on
Dev sets. For this, we finetune all models for a
maximum of 25 epochs on all ORCA tasks. We
report results in terms of average of three runs.
Figure E.2 (Appendix E) shows for each model
the total time needed for convergence (out of 25
epochs), and Figure E.1 (Appendix E) shows av-
erage convergence time and average number of
epochs till convergence. As E.2 (Appendix E)
shows, Arabic Albert is the fastest model (52.26
min) to finetune for 25 epochs, but it achieves the
lowest ORCA score. Excluding Arabic Albert, we
observe a near constant time (between 60.32-63.69
mins) for all other models. Among the top five
models, as Figure E.1 (Appendix E) shows, we
also observe that ARBERTv1 is the fastest (in terms
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of average convergence time and number of epochs
needed to converge) and is followed by QARiB.

7 Conclusion

We presented ORCA, a large and diverse bench-
mark for Arabic natural language understating
tasks composed of 60 datasets that are arranged
in seven task clusters. To facilitate future re-
search and adoption of our benchmark, we offer
a publicly-available interactive leaderboard with a
useful suite of tools and extensive meta-data. In ad-
dition, we provide a comprehensive and methodical
evaluation as well as meaningful comparisons be-
tween 18 multilingual and Arabic language models
on ORCA. We also compare the models in terms
of computing needs. As our results show, ORCA is
challenging and we hope it will help standardize
comparisons and accelerate progress both for Ara-
bic and multilingual NLP.

8 Limitations

We identify the following limitations:

1. Although we strive to include tasks in all Ara-
bic varieties, available downstream datasets
from certain countries such as Mauritania and
Djibouti are almost nonexistent and so are
not covered in ORCA. In addition, there is a
need in the community to create more datasets
for several Arabic dialects. This includes,
for example, dialects such as Iraqi, Sudanese,
and Yemeni. With the introduction of more
datasets for such dialects, ORCA’s coverage
can be further extended. Regardless, as Fig-
ure F.1 (Appendix F) shows, ORCA datasets
are quite diverse from a geographical perspec-
tive.

2. Although ORCA currently covers both dialec-
tal Arabic (DA) and MSA, it does not pay
as much attention to the classical variety of
Arabic (CA) due to historical reasons. That
is, the community did not invest as much ef-
forts creating and releasing datasets involving
CA. However, as more unlabeled datasets be-
come available and with an undergoing pos-
itive change in the culture around data shar-
ing, this is likely to change in the near fu-
ture. Again, this will make it possible to ex-
tend ORCA to better cover CA in the future.

3. Although benchmarks in general are useful
in encouraging standardize evaluations and

meaningful comparisons, and can help mo-
tivate progress within the community, they
also run the risk of contributing to a culture
of leaderboard chasing that is not necessarily
useful. That is, although scientific research
advances due to competition, it also thrives
through partnerships and collaborations that
bring the best from diverse groups. It is in the
context of this collaborative culture that we
hope ORCA will be perceived and used.

9 Ethics Statement and Broad Impact

Encouraging standardized evaluations and con-
tributing to a collaborative research culture.
Similar to some other research communities,
progress in the Arabic NLP community has been
hampered for a long time by absence of standard-
ized and meaningful evaluations for some tasks.
This is due to several reasons, including the culture
around data sharing but also as a result of insuffi-
cient funding and lack of strong training programs.
This has made it challenging to measure progress.
The Arabic NLP community is now expanding, and
a culture of collaboration is being built as part of
the larger positive developments within the over-
all NLP community itself. As such, it is now ripe
time to introduce benchmarks that can help this
ongoing progress. We hope there will be wide
adoption of ORCA and that our work will trigger
more efforts to create more benchmarks, including
for newer tasks in what could be a virtuous cycle.

Data privacy. Regarding data involved in ORCA,
we develop the benchmark using data from the
public domain. For this reason, we do not have
serious concerns about privacy.

Sufficient assignment of credit to individual data
sources. Another important consideration in bench-
marking is how credit is assigned to creators of
the individual datasets. To ensure sufficient credit
assignment, we refer users to the original publica-
tions, websites, GitHub repositories where a dataset
originated and link all these sources in our leader-
board. We also provide bibliographic entries for all
these sources that users can easily copy and paste in
order to cite these original sources. By encouraging
citation of original sources in any publications in
the context of ORCA use, we hope to afford addi-
tional visibility to many of the individual datasets.
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Appendices
In this appendices, we provide an addition which
organized as follows:

Sections list:

• Language Models. (Section A)

– Multilingual LMs. (Subsection A.1)
– Arabic LMs. (Subsection A.2)

• X-Specific Benchmarks. (Section B)

• ORCA Evaluation. (Section C)

• Public leaderboard. (Section D

• Analysis of Model Computational Cost. (Sec-
tion E)

• ORCA Data. (Section F)

Tables and Figures List:

• Configuration comparisons of Arabic PLMs
and multilingual PLMs (Table A.1).

• Performances of Arabic BERT-based models
on ORCA Dev splits. (Table C.1)

• Randomly picked examples from the dialectal
portion of ORCA Train datasets. (Table F.1 )

• Models’ ORCA scores across all 29 tasks
in ORCA benchmark. (Figure C.1

• Models’ ORCA scores across all clusters
in ORCA benchmark. (Figure C.2)

• Models’ F1 scores across all tasks in the sen-
tence classification cluster. (Figure C.3)

• An example of tasks sorted alphabetically.
(Figure D.1)

• Detailed scores by all models for a given task.
(Figure D.3)

• Detailed information about each task cluster
and associated tasks, with each task assigned
an identifier, language variety, evaluation met-
ric, a link to the dataset website/GitHub/paper
and bibliographic information. (Figure D.3)

• The average number of epochs (in or-
ange), and time needed to converge (mins,
in blue) for all the studied PLMs across
all ORCA tasks. (Figure E.1)

• The time needed in minutes to finetune (25
epochs). We compute the average time of
three runs across all ORCA tasks. (Figure E.2)

• The predicted country-level distribution, in
percentage, in the dialectal portion of ORCA.
(Figure F.1)

A Language Models

In this section, we provide a description of the mul-
tilingual MLM that include Arabic in its coverage.

A.1 Multilingual LMs
mBERT is the multilingual version of BERT (De-
vlin et al., 2019) which is a multi-layer bidirec-
tional encoder representations from Transform-
ers (Vaswani et al., 2017) trained with a masked lan-
guage modeling. Devlin et al. (2019) present two
architectures: Base and Large. BERT models were
trained on English Wikipedia10 and BooksCor-
pus (Zhu et al., 2015). mBERT is trained on
Wikipedia for 104 languages (including ∼ 153M
Arabic tokens).
XLM-R (Conneau et al., 2020b) is a transformer-
based multilingual masked language model pre-
trained on more than 2TB of filtered Common-
Crawl data in 100 languages, including Arabic
(2.9B tokens). XLM-R uses a Transformer model
trained a multilingual version of masked language
modeling of XLM (Conneau and Lample, 2019).
XLM-R comes with two sizes and architectures:
Base and Large. The XLM-RBase architecture con-
tains 12 layers, 12 attention heads, 768 hidden
units, and 270M parameters. The XLM-RLarge ar-
chitecture has 124 layers, 16 attention heads, 1024
hidden units, and 550M parameters. While both
XLM-R models use the same masking objective
as BERT, they do not include the next sentence
prediction objective used in BERT.
GigaBERT (Lan et al., 2020) is a customized bilin-
gual BERT-based model for Arabic and English
pretrained on a corpus of 10B tokens collected
from different sources, including: English and Ara-
bic Gigaword corpora,11, OSCAR (Suárez et al.,
2019), and Wikipedia. GigaBERT is designed
specifically for zero-shot transfer learning from
English to Arabic on information extraction tasks.
mT5 (Xue et al., 2021) is the multilingual version
of Text-to-Text Transfer Transformer model (T5)
(Raffel et al., 2020). The T5 model architecture is

10https://www.wikipedia.org/
11https://catalog.ldc.upenn.edu/LDC2011T07
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Models
Training Data Vocabulary Configuration

Type Text Size (ar) Tokens (ar/all) Tok. Size #Param.
M

L
L

M
s mBERT MSA 1.4GB 153M/1.5B WP 110K 110M

XLM-R MSA 5.4GB 2.9B/295B SP 250K 270M
GigaBERT MSA 42.4GB 4.3B/10.4B WP 50k 125M
ARBERT MSA 61GB 6.2B WP 100K 163M
ARBERTv2 MSA, DA 243GB 27.8B WP 100K 163M

MARBERT MSA, DA 128GB 15.6B WP 100K 163M
MARBERTv2 MSA 198GB 21.4B WP 100K 163M

A
ra

bi
c

L
M

s

AraBERT MSA 27GB 2.5B WP 64K 135M
AraELECTRA MSA 77GB 8.8B WP 64K 135M
ArabicBERT MSA 95GB 8.2B WP 64K 135M
Arabic-ALBERT MSA 33GB 4.4B WP 32K 110M
QARiB MSA, DA 97GB 14B WP 64K 135M
CAMeLBERT MSA, DA, CA 167GB 8.8B WP 30K 108M
JABER MSA 115GB − BBPE 64K 135M
SABER MSA 115GB − BBPE 64K 135M
AraT5 MSA, DA 248GB 29B SP 110K 220M

Table A.1: Configuration comparisons of Arabic pre-trained LMs and multilingual LMs which covered Arabic. WP:
WordPiece (Schuster and Nakajima, 2012). SP: SentencePiece (Kudo and Richardson, 2018). BBPE: Byte-level
Byte Pair Encoding (Wei et al., 2021). ARBERTv2: a new model proposed in this paper.

essentially an encoder-decoder Transformer sim-
ilar in configuration and size to BERTBase. The
T5 model treats every text-based language task
as a “text-to-text" problem, (i.e. taking text for-
mat as input and producing new text format as
output), where multi-task learning is applied with
several NLP tasks: question answering, document
summarization, machine translation, and sentiment
classification. mT5 is trained on the “Multilin-
gual Colossal Clean Crawled Corpus" (or mC4
for short), which is ∼ 26.76TB for 101 languages
(including Arabic with more than ∼ 57B tokens)
generated from 71 Common Crawl dumps.

A.2 Arabic LMs

Several Arabic LMs have been developed. We
describe the most notable among these here.

AraBERT (Antoun et al., 2020) is the first pre-
trained language model proposed for Arabic. It
is based on the two BERTBase and BERTLarge ar-
chitectures. AraBERTBase (Antoun et al., 2020)
is trained on 24GB of Arabic text (70M sentences
and 3B tokens) collected from Arabic Wikipedia,
Arabic news, Open Source International dataset
(OSIAN) (Zeroual et al., 2019), and 1.5B words
corpus from (El-Khair, 2016). In order to train
BERTLarge Antoun et al. (2021) use the same

AraBERTBase data augmented with the unshuffled
Arabic OSCAR dataset (Suárez et al., 2019) and
news articles provided by As-Safir newspaper12

(77GB or 8.8B tokens) . The augmented data is
also used to train AraELECTRALarge–an Arabic
language model that employs an ELECTRA objec-
tive (Clark et al., 2020).
ArabicBERT is an Arabic BERT-based model pro-
posed by Safaya et al. (2020) Authors pretrain fourr
variants: ArabicBERTMini, ArabicBERTMedium,
ArabicBERTBase, ArabicBERTLarge.13 The mod-
els are pretrained on unshuffled Arabic OS-
CAR (Suárez et al., 2019), Arabic Wikipedia, and
other Arabic resources which sum up to 95GB of
text (∼ 8.2B tokens).
Arabic-ALBERT (Safaya, 2020) is an Arabic
language representation model based on A Lite
Bert (ALBERT) (Lan et al., 2019). ALBERT
is a Transformer-based neural network architec-
ture (similar to BERT and XLM-R) with two
parameter reduction techniques proposed to in-
crease the training speed and lower memory con-
sumption of the BERT model. Arabic-ALBERT
is pretrained on ∼ 4.4B tokens extracted from
Arabic OSCAR (Suárez et al., 2019) and Arabic
Wikipedia. Arabic-ALBERT comes with three dif-

12https://www.assafir.com/
13https://github.com/alisafaya/Arabic-BERT
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ferent architectures: Arabic-ALBERTBase, Arabic-
ALBERTLarge, Arabic-ALBERTXLarge.
QARiB. Chowdhury et al. (2020) propose the
QCRI ARabic and Dialectal BERT (QARiB)
model. QARiB is trained on a collection of 97GB
of Arabic Text (14B tokens) on both MSA (180
Million sentences) and Twitter data (420 Million
tweets). Authors use the Twitter API to collect
Arabic tweets, keeping only tweets identified as
Arabic by Twitter language filter. For MSA data
in QARiB is a combination of Arabic Gigaword,14,
Abulkhair Arabic Corpus (El-Khair, 2016), and
OPUS (Tiedemann, 2012).
ARBERT (Abdul-Mageed et al., 2021) is a pre-
trained language model focused on MSA. AR-
BERT is trained using the same architecture as
BERTBase with a vocabulary of 100K WordPieces,
making ∼ 163M parameters. ARBERT exploits
a collection of Arabic datasets comprising 61GB
of text (6.2B tokens) from the following sources:
El-Khair El-Khair (2016), Arabic Gigaword,15, OS-
CAR (Suárez et al., 2019), OSIAN (Zeroual et al.,
2019), Arabic Wikipedia, and Hindawi Books.16

ARBERTv2. We provide a new Arabic version
of ARBERT, by further pretraining ARBERT on
243GB MSA dataset (70GB MSA data from vari-
ous sources and 173GB extracted and cleaned from
the Arabic part of the multilingual Colossal Clean
Crawled Corpus (mC4) (Xue et al., 2021).
MARBERT (Abdul-Mageed et al., 2021) is a pre-
trained language model focused on both dialectal
Arabic and MSA. This model is trained on a sam-
ple of 1B Arabic tweets (128GB of text, 15.6B
tokens). In this dataset, authors keep only tweets
with at least 3 Arabic words (based on character
string matching) regardless of whether the tweet
has non-Arabic string or not. MARBERT uses
the same vocabulary size (100K WordPieces) and
network architecture as ARBERT (BERTBase), but
without the next sentence prediction objective since
tweets are short. MARBERTv2. Abdul-Mageed
et al. (2021) further pretrain MARBERT with ad-
ditional data using a larger sequence length of 512
tokens for 40 epochs.
CamelBERT (Inoue et al., 2021) is pre-trained us-
ing BERTBase architecture on four types of Arabic
datasets: MSA (107GB), dialectal Arabic (54GB),
classical Arabic (6GB), and a mixture of the last

14https://catalog.ldc.upenn.edu/LDC2011T11
15https://catalog.ldc.upenn.edu/LDC2009T30
16https://www.hindawi.org/books

three datasets (167GB). CamelBERT is trained us-
ing a small vocabulary of 30K tokens (in Word-
Pieces).
JABER and SABER (Ghaddar et al., 2021) are
BERT-based models (Base and Large) pretraind on
115GB of text data collected from Common Crawl
(CC), OSCAR (Suárez et al., 2019), OSIAN (Ze-
roual et al., 2019), El-Khair El-Khair (2016), and
Arabic Wikipedia. In order to overcome the out-
of-vocabulary problem and improve the represen-
tations of rare words, JABER is trained using a
Byte-level Byte Pair Encoding (BBPE) (Wei et al.,
2021) tokenizer with a vocabulary size of 64K.
AraT5 (Nagoudi et al., 2022) is an Arabic text-
to-text Transformer model dedicated to MSA and
dialects. It is essentially an encoder-decoder
Transformer similar in configuration and size to
T5 (Raffel et al., 2020). AraT5 is trained on
more than 248GB of Arabic text (70GB MSA
and 178GB tweets), where the data is from the
following sources: AraNews (Nagoudi et al.,
2020), El-Khair El-Khair (2016), Gigaword,17, OS-
CAR (Suárez et al., 2019), OSIAN (Zeroual et al.,
2019), Wikipedia Arabic, and Hindawi Books.18

Table A.1 shows a comparison between the mul-
tilingual as well as the Arabic language models in
terms of (1) training data size, (2) vocabulary size,
(3) language varieties, and (4) model configuration
and architecture.

B X-Specific Benchmarks

CLUE. Xu et al. (2020) introduce CLUE, a bench-
mark for Chinese NLU. It covers nine tasks span-
ning single-sentence/sentence-pair classification,
text classification, coreference resolution, semantic
similarity, and question answering.
FLUE. Le et al. (2020) offer FLUE, a French NLU
benchmark involving six datasets with different lev-
els of difficulty, degrees of formality, and domains.
FLUE is arranged into three tasks: text classifica-
tion, paraphrasing, and NLI.
IndoNLU. Wilie et al. (2020) present IndoNLU,
a benchmark for Bahasa Indonesian NLU with
12 downstream tasks organized into five task clus-
ters: sentence classification, structure protection,
text classification, semantic similarity, and question
answering.
JGLUE. Kurihara et al. (2022) propose JGLUE,
a Japanese NLU benchmark consisting of six

17https://catalog.ldc.upenn.edu/LDC2009T30
18https://www.hindawi.org/books
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datasets arranged into three task clusters: sentence
classification, text classification, and question an-
swering.
KorNLI and KorSTS. Ham et al. (2020) release
KorNLI and KorSTS, two benchmark datasets for
NLI and STS in the Korean language.

C ORCA Evaluation

In this section, we provide additional information
about the evaluation as follows:

• Performance of Arabic BERT-based models
on ORCA Dev splits are shown in Table C.1.

• Figure C.1 shows ORCA scores from
the different PLMs across all 29 tasks
in ORCA benchmark.

• Figure C.2 shows models’ ORCA scores
across all clusters in ORCA benchmark.

• Figure C.3 shows models’ F1 scores across all
tasks in sentence classification cluster.

D Public leaderboard.

In this section, we provide additional screenshots
for ORCAleaderboard, as follows:

• Figure D.1 shows an example of tasks sorted
alphabetically.

• Figure D.3 shows detailed scores by all mod-
els for a given task..

• Figure D.3 shows detailed information about
each task cluster and associated tasks, with
each task assigned an identifier, language va-
riety, evaluation metric, a link to the dataset
website/GitHub/paper and bibliographic infor-
mation.

E Analysis of Model Computational Cost

In this section, we provide additional information
about the models’ computational cost, as follows:

• Figure E.1 shows the average number
of epochs (in orange), and time needed
to converge (mins, in blue) for all the
studied pretrained language models across
all ORCA tasks.

• Figure E.2 shows the time needed in minutes
to fine-tune (25 epochs). We compute the aver-
age time of three runs across all ORCA tasks.

F ORCA Data

In this section, we provide additional information
about ORCAData, as follows:

• Table F.1 shows a randomly picked examples
from the dialectal portion of ORCA Train
datasets.

• Figure F.1 shows the predicted country-level
distribution, in percentage, in the dialectal por-
tion of ORCA.
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Cluster Task B1 B2 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16

SC

abusive† 72.68 71.31 76.53 78.36 75.99 78.03 75.92 78.06 76.22 76.87 79.66 75.49 76.98 73.57 74.43 77.34 72.28 67.68
adult† 89.52 88.49 89.7 90.76 89.67 90.97 88.97 89.9 89.65 90.18 90.89 90.33 90.09 90.76 88.68 89.35 89.74 88.88
age† 42.68 44.14 44.76 47.11 45.57 46.24 44.10 44.33 42.02 47.26 46.35 45.89 45.97 45.29 43.29 43.83 45.23 43.61
claim⋆ 65.72 66.66 70.25 67.91 67.38 67.83 69.74 69.34 70.35 71.53 69.2 68.96 70.32 65.66 63.06 68.81 66.29 65.88
dangerous† 64.94 66.31 67.32 66.2 64.96 67.11 64.72 62.6 67.13 65.66 66.25 64.03 65.31 66.92 61.97 62.83 64.56 63.41
dialect-b† 84.29 84.78 86.48 86.78 86.92 86.91 86.64 87.01 87.76 87.21 87.85 86.79 87.40 86.64 84.58 86.57 86.13 85.94
dialect-r† 63.12 63.51 67.71 66.08 65.21 66.32 64.63 67.5 64.46 66.34 66.71 65.59 65.05 68.55 63.36 69.22 63.98 62.87
dialect-c† 25.52 30.34 35.26 35.83 35.69 36.06 31.49 36.33 27.00 36.50 34.36 33.90 35.18 30.83 27.05 33.96 32.99 28.25
emotion† 56.79 60.05 63.6 68.85 64.81 70.82 60.6 64.89 60.98 66.70 68.03 65.25 63.85 64.8 59.66 61.92 62.2 55.22
emotion-reg ⋆ 37.96 52.37 65.37 73.96 67.73 74.27 62.02 67.64 61.51 70.31 71.91 66.73 65.75 64.34 48.46 66.57 62.77 45.72
gender† 61.78 64.16 64.38 66.65 63.18 67.64 62.41 64.37 64.24 65.65 66.64 66.38 65.19 64.25 63.37 63.97 64.35 63.50
hate† 72.19 67.88 82.41 81.33 82.26 83.54 82.21 82.39 81.79 85.30 83.88 81.99 79.68 83.38 74.1 82.25 79.77 74.26
irony† 82.31 83.13 83.53 83.27 83.83 83.09 83.63 84.51 81.56 84.62 85.16 84.01 83.07 81.91 79.68 80.91 83.03 79.05
offensive† 84.62 87.18 89.28 91.84 89.55 92.23 87.5 90.73 89.4 91.89 91.17 90.05 89.32 90.44 86.52 88.76 87.52 85.26
machine G.⋆ 81.4 84.61 88.35 85.14 87.94 86.69 87.45 89.82 90.66 87.96 86.35 86.73 88.62 83.17 83.35 87.43 86.28 83.91
sarcasm† 69.32 68.42 73.11 74.74 74.16 76.19 73.46 74.06 74.81 76.83 75.82 74.17 75.18 72.57 69.94 72.02 73.11 71.92
sentiment† 78.99 77.21 77.78 79.08 78.60 80.83 78.45 80.50 79.56 80.86 80.33 79.51 79.75 77.8 76.76 78.68 78.46 76.46

NER anerc. 85.92 86.76 90.27 86.59 90.83 87.86 90.68 90.85 90.17 90.03 87.5 89.27 90.71 83.61 82.94 89.52 88.77 86.54
aqmar 75.95 76.16 80.72 74.57 81.70 74.22 77.34 79.2 73.43 77.66 73.72 76.84 78.54 73.77 70.71 74.97 79.5 73.15
pos-dia† 92.04 92.78 92.92 94.14 93.92 93.38 91.65 93.79 94.70 93.554 94.70 93.95 94.37 93.95 92.05 92.05 93.24 92.57
pos-xglue⋆ 57.68 69.37 51.39 55.02 52.55 55.45 34.65 37.84 41.28 26.61 41.36 27.70 32.89 10.37 17.04 62.58 63.89 42.40

NLI
ans-st⋆‡ 84.49 81.00 91.77 73.82 91.02 80.57 87.59 93.23 92.33 90.17 50.2 82.49 89.21 46.01 71.81 85.31 82.86 80.02
baly-st⋆ 34.48 38.27 45.63 29.07 49.34 36.52 51.19 46.63 41.32 37.12 31.58 48.94 49.67 30.58 48.85 49.21 49.22 47.19
xlni⋆ 61.88 65.06 67.22 60.50 68.17 62.22 64.69 67.93 70.20 66.67 55.67 63.82 66.02 54.29 61.18 66.53 62.15 61.62

STS sts-r† 63.91 62.24 73 63.48 71.90 66.12 71.27 75.4 76.01 70.50 41.15 70.61 74.42 71.23 70.13 73.68 73.56 66.75
sts-c⋆ 62.34 63.35 85.95 74.43 96.73 63.47 96.81 64.11 64.24 63.52 84.11 63.28 97.10 59.57 96.41 85.87 96.69 62.91

TC topic 92.55 93.53 94.17 93.53 93.96 93.9 94.31 94.58 94.11 94.02 93.32 93.72 94.38 93.18 93.41 94.05 93.86 93.27

QA arlue-qa 56.39 56.51 57.65 49.35 61.5 57.9 56.79 61.56 60.70 57.65 45.27 53.98 57.46 30.91 52.11 58.71 55.94 53.89
pos-dia† 92.04 92.78 92.92 94.14 93.92 93.38 91.65 93.79 94.70 93.554 94.70 93.95 94.37 93.95 92.05 92.05 93.24 92.57

Avg. Dia 67.76 68.35 71.56 72.63 71.45 73.28 70.33 71.94 70.47 72.99 73.07 71.67 71.57 71.26 68.09 70.82 70.23 67.59

Avg. MSA 66.91 68.87 75.86 69.36 77.35 70.90 75.82 75.02 73.75 73.09 65.83 72.11 76.85 63.02 70.20 75.05 74.82 68.40

ORCAscore 67.34 68.61 73.71 70.99 74.40 72.12 73.08 73.48 72.11 73.04 69.45 71.89 74.21 67.14 69.15 72.94 72.53 67.99

Table C.1: Performance of Arabic Bert-based models on ORCA Dev splits (F1). ‡ Metric for STSP taks is spearman correlation.
B1, B2: Two baselines mBERT (Devlin et al., 2019) and XLM-R (Liu et al., 2019a). M1, M2: ARBERT, MARBERT (Abdul-

Mageed et al., 2021). M3, M4: ARBERTV2 and MARBERTV2. M5, M6, M7, and M8: AraBERTv1[v2, tw], and AraElec-

tra (Antoun et al., 2020, 2021). M9: Qraib (Chowdhury et al., 2020) M10, M11, M12, and M13: CamelBERTmix[msa, da, ca] (In-

oue et al., 2021). M14: GigaBERTv4 (Chowdhury et al., 2020). M15: Arabic BERT (Chowdhury et al., 2020). M16 : Arabic
Albert (Lan et al., 2020). Avg. Dia, and Avg. MSA: The average of dialect and MSA tasks. ORCAscore : Average overall Dia
and MSA tasks. ⋆MSA tasks. ‡DIA tasks. A task is considered as an MSA if it has more than 98% samples predicted as MSA
using an MSA Vs DIA classifier (see Table 3).
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Figure C.1: Models by ORCA score across all 29 tasks in ORCA benchmark.

Figure C.2: Models by ORCA score across all clusters in ORCA benchmark.
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Figure C.3: Models by F1 score across all tasks in sentence classification cluster.

Figure D.1: OCRA leaderboard for example tasks sorted alphabetically.
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Figure D.2: Modularity of OCRA leaderboard allows showing detailed scores by all models for a given task.

Figure D.3: OCRA leaderboard also provides detailed information about each task cluster and associated tasks, with
each task assigned an identifier, language variety, evaluation metric, a link to the dataset website/GitHub/paper and
bibliographic information.
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Figure E.1: The average number of epochs (in orange), and time needed to converge (mins, in blue) for all the
studied pretrained language models across all ORCA tasks.

Country Example Dataset Label

Egypt
��. ú�GAª�̄ñ�K @ñJ. J
 	k @Q��Êm.�

	' @ ð AJ
ËA¢�
@ Emotion Happy
�èñ¢ 	k éJ
 	̄ ��Öß
 ÕËð @Q�
º 	®�K ÈAJ
Ó


B@ 	¬B

�
@ éJ
 	̄ �Iª¢�̄ QÓ


@ 	á« �HYj�J�K �I	K


A 	̄ , ½Òê 	®K
 	áË Adult Not Adult

��K
 	Qî �DË @ AêÊëB I. J
j.
��K. �é	m��ñË@ �é 	®Ê	mÌ'@ Sarcasm Sarcasm

Jordan

	Ë@ 20 A 	K @ é 	®J
ª 	� ¼YªK. ��. Pñº� ©Ôg. @ 	Pñ 	̄ @ ��. 	àA ��« XAë éË 	Q 	K @ Ð 	PB 	àðñK
@ Gender Male

A 	JJ
Ê« ��J.¢���K hP Ð@ AK
 éJ
Ò ��	� AK
 ú
» @Pð
	áÓð Offensive Not Offensive

��jm.Ì'Aë ¡�. QK
 Yg@ AÓ Abusive Abusive

KSA
úæ�� 	áK
ñ��� @ 	X @ Dangerous Dangerous

! ÕºK. ñÊ�̄ úÎ« ÕºK
YK
@ 	àñ¢m��'ð ú

	GA 	«B@ 	àñ 	̄ 	Ym��' ÕºK
@P ��ð Emotion Happy

Õç'
A�JË @ I.
�̄ @Q�K é«A� 42 ½J
m.�

�'ð �éJ
ÓAm× AîD� 	® 	K É¿ñ�Kð ��K. A���Ó Ñ«X �é 	̄Qå��Ó Q�
��� ú
Í@ èQ» @ Age Under 25

Kuwait
@Q�® ���. Bð é 	J�
J
ªË@ð éK
PAÒªËAK. Bð H. @QK
YK. B @Yg. é��
ª�K éºJ. ��Ë@ 	�CË Sentiment Negative

©ËA£ èA�®Ë @ ��K
A�̄ X 5 YªK. é ��X@ éÖÏð Õ�̄QË @ ð 	PñJ
Ë @ ¡k@ èQÓ É¿ . ú
æ�
	® 	K Gender Male

éë Õº�JËAJ
« Õæ�@ ú
Î« ø
 @
��Ê¿ ðñë 	àAÓ@ éËAÓ X@A« éë Emotion Fear

Table F.1: Randomly picked examples from the dialectal portion of ORCA Train datasets.

25
9583



Figure E.2: The time needed in minutes to fine-tune (25 epochs). We compute the average time of three runs across
all ORCA tasks.

Figure F.1: Predicted country-level distribution, in percentage, in the dialectal portion of ORCA.
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