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Abstract

Sequence-to-sequence state-of-the-art systems
for dialogue state tracking (DST) use the full
dialogue history as input, represent the current
state as a list with all the slots, and generate the
entire state from scratch at each dialogue turn.
This approach is inefficient, especially when
the number of slots is large and the conversa-
tion is long. We propose Diable, a new task
formalisation that simplifies the design and im-
plementation of efficient DST systems and al-
lows one to easily plug and play large language
models. We represent the dialogue state as a ta-
ble and formalise DST as a table manipulation
task. At each turn, the system updates the previ-
ous state by generating table operations based
on the dialogue context. Extensive experimen-
tation on the MultiWoz datasets demonstrates
that Diable (i) outperforms strong efficient DST
baselines, (ii) is 2.4x more time efficient than
current state-of-the-art methods while retaining
competitive Joint Goal Accuracy, and (iii) is ro-
bust to noisy data annotations due to the table
operations approach.

efficient-dialogue-state-tracking-by-
sequential-information-processing

1 Introduction

Dialogue state tracking (DST; Jacqmin et al., 2022)
is the task of tracking user requests from the dia-
logue history in the form of slot-value pairs (Hen-
derson et al., 2014; Mrkšić et al., 2015; Rastogi
et al., 2020a). The slots are defined in a domain-
specific schema and represent the fields that need to
be extracted from the dialogue to execute queries
in the backend and generate responses. Recent
generative approaches to DST based on language
models (Wu et al., 2019; Kim et al., 2020) often
use the entire dialogue history as input and rep-
resent the state, at each turn, as the concatena-
tion of all the slots in the schema, where inactive

∗Work conducted during an internship at AWS AI Labs.

Figure 1: Diable approach to DST. The figure presents
the first two turns of a dialogue (user’s utterances are
orange, system’s are green). When the conversation
starts, the state table is empty. At each dialogue turn, the
system outputs a table update operation (either INSERT
or DELETE), and the state is modified accordingly.

slots are reported with a placeholder value (see Fig-
ure 2). This representation is known as cumulative
state (Hosseini-Asl et al., 2020; Feng et al., 2021;
Zhao et al., 2022) and implies the generation of all
the states from scratch at each dialogue turn. This
approach is computationally inefficient, especially
for long conversations and large schemas.

We propose Efficient Dialogue State tracking
as Operations on Tables (Diable, shown in Fig-
ure 1), a novel task formulation and a new DST
approach that better uses the generative capabilities
of language models. Our approach simplifies the
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Figure 2: Cumulative state approach to DST. At each
dialogue turn, the system outputs all the slots. Inactive
slots are filled with a placeholder value (none).

design and implementation of DST systems and
works with any sequence-to-sequence model. Our
intuition is that a DST system translates conversa-
tions into filters for database searches. Inspired by
formal languages for databases and the recent suc-
cess in applying sequence-to-sequence models to
text-to-SQL tasks (Yin et al., 2020; Scholak et al.,
2021), we represent the dialogue state as an im-
plicit table and frame DST as a table manipulation
task. At each turn, the system updates the previous
state by generating update operations expressed in
a simplified formal language based on the current
dialogue context (see Figure 1). Diable is the first
end-to-end DST system that outputs state opera-
tions and values jointly while processing all slots
simultaneously.

Based on extensive experimentation using the
MultiWoz benchmark (Budzianowski et al., 2018),
we show that Diable can successfully and ef-
ficiently translate conversations into filters for
database searches. Our approach minimises the
number of input and output tokens required result-
ing in a significant efficiency gain (2.4x reduction
in inference time compared to state-of-the-art cu-
mulative state systems).

Our main contributions are as follows:

• We introduce a novel DST task formulation
and a new system, Diable, specifically de-
signed to enhance efficiency and leverage

the capabilities of state-of-the-art sequence-
to-sequence models.

• We show that our DST task formulation does
not require ad-hoc data preprocessing, the full
history, or extra supervision and works with
any sequence-to-sequence model without re-
quiring any architectural modification.

• We demonstrate that Diable achieves better
Joint Goal Accuracy on MultiWoz than other
efficient baselines while being competitive
with state-of-the-art cumulative state systems.

• We show that Diable is robust to noise in the
training data, resulting in more stable results
across three versions of MultiWoz.

2 A Taxonomy of DST Approaches

The goal of DST systems is to handle long, di-
verse conversations in multiple domains with large
schemas and unrestricted vocabulary, potentially
without extra supervision (Eric et al., 2020; Rastogi
et al., 2020b). Achieving this goal has prompted
the development of different DST approaches.

Ontology-based approaches treat DST as either a
classification or a token classification task. They
assume that all possible slot-value pairs are re-
stricted to a fixed set, or ontology, either predefined
or extracted from the training data. Classification-
based approaches output a probability distribution
over values given the dialogue context and a slot
(Henderson et al., 2014) while token classification
approaches output a probability distribution over
slots for each token (Liao et al., 2021).
The ontology-based formulation simplifies the
DST task considerably, thus the performance of
these systems is usually relatively high for specific
datasets (Zhong et al., 2018; Ye et al., 2021, 2022a).
Complex dialogues with large schemas pose a sig-
nificant challenge for traditional ontology-based
approaches as they do not easily generalise to new
domains nor scale to large ontologies (Mrkšić et al.,
2017; Rastogi et al., 2017; Zhong et al., 2018; Ye
et al., 2021). For this reason, ontology-based ap-
proaches are out of scope for our paper.

Open-vocabulary approaches address these lim-
itations by formulating DST as either a reading
comprehension task wherein for each slot a span
is extracted from the dialogue context (Gao et al.,
2019; Chao and Lane, 2019), or as a generation
task wherein a value for each slot is generated



based on the dialogue history (Wu et al., 2019).
By leveraging sequence-to-sequence mod-
els (Brown et al., 2020; Lewis et al., 2020; Raffel
et al., 2020), generative approaches have recently
achieved states-of-the-art results (Xu and Hu, 2018;
Lee et al., 2019; Chao and Lane, 2019; Gao et al.,
2019; Wu et al., 2019; Kumar et al., 2020; Heck
et al., 2020; Hosseini-Asl et al., 2020; Lee et al.,
2021; Zhao et al., 2021, 2022). However, these
methods predict the dialogue state from scratch at
each turn and generate a value for each slot, even
when a slot is not active (Figure 2). We argue (§6)
that these are the main sources of inefficiencies of
current DST systems. We compare Diable with
these methods in the “Cumulative State Models”
section of Table 1.

Efficient approaches seek efficiency by minimising
the number of values to generate, thus decomposing
DST into two successive sub-tasks: state operation
prediction and value generation. In this way, only
the slots that need to be changed are considered
for value generation (Kim et al., 2020).
These approaches are the most related to Diable
in that they target efficiency. We compare them
against Diable in section “Efficient Models” of Ta-
ble 1. Often, these methods (Ren et al., 2019; Zhu
et al., 2020) use the cumulative state representation
which is the primary source of inefficiencies (we
discuss this issue in the context of §5, Table 2) and
need to output operations for all slots.

For example, Kim et al. (2020) and Zeng and
Nie (2020) predict an operation for each slot in
the input by adding a classification head on top
of the tokens representing the individual slots and
predict four kinds of state operations: “carryover”,
“delete”, “dontcare”, and “update”. For those slots
categorised as “update”, the contextual representa-
tion is further processed to decode the slot value.
However, this approach limits the ability of such
systems to deal with large schemas because the full
schema needs to fit in the input context. Differ-
ently from these approaches, we remove the two-
component structure by adopting a sequence-to-
sequence approach that allows us to jointly gener-
ate operations and values for all slots simultane-
ously and works with any sequence-to-sequence
model. Importantly, we only need to predict op-
erations for the active slots (i.e., the slots actually
mentioned in the conversation).

Lin et al. (2020b) seek efficiency differently by
introducing the notion of “Levenshtein belief span”.

Based on the concept of belief span (Lei et al.,
2018) that reformats the dialogue state into a text
span allowing models to generate slot values dy-
namically. They propose to only focus on the dif-
ferences between states at subsequent turns. We
take this approach a step further by explicitly out-
putting operations for all slots changing from one
turn to another simultaneously while retaining our
minimal state representation.

3 Diable: Dialogue State Tracking as
Operations on Tables

We introduce a novel efficient formulation of the
DST task and a system, Diable, specifically de-
signed to enhance efficiency and optimise the ca-
pabilities of state-of-the-art sequence-to-sequence
models. In this section, we describe our approach,
formalise the DST problem, and introduce the con-
cepts of state as a table and state operations.

3.1 Problem Definition

The goal of DST is defined as learning a mapping
from a dialogue context to a dialogue state. Specif-
ically, let D1:T = (D1, . . . , DT ) denote a dialogue
of T turns, where Dt = (Ut, Rt) represent an ut-
terance composed of the user query and system
response at turn t, respectively. At turn t, the di-
alogue context, Ct, is defined as the set of all the
information available up to that turn. It always
includes the current dialogue utterance, but can
additionally contain the previous state, utterances
from the dialogue history, and extra supervision
(e.g., slot descriptions and the schema). We con-
sider a dialogue context composed by only the pre-
vious dialogue turn(s) and the previous state, that
is Ct = (Dt,Bt−1). We do not use any schema
information and let the model learn it during train-
ing.1 The dialogue state at turn t is defined as a
set Bt = {(s, vt)|s ∈ St}, where St ⊆ S denotes
the subset of active slots at that turn out of all the
predefined slots in the schema and vt is the value
corresponding to slot s.

3.2 The Diable Approach

In our approach, instead of directly outputting the
dialogue state B, we learn a mapping from the
dialogue context, C, to a set of operations O. At
the beginning of each conversation the state table,

1Our preliminary study showed that passing the schema
to the model has little effect on performance but hurts the
model’s efficiency as it needs to encode more tokens.



B0, is initialised empty. At turn t, based on the
dialogue context, Ct, the DST system generates
the set of operations, Ot = {O1, . . . , ONt}, where
Nt is the number of slots that change between turn
t − 1 and t. Finally, the generated operations are
applied to the previous state to get the new state.
The tracker is expected to carry over the previously
extracted slots into the current state, i.e., the state
at each turn includes all the slots active since the
beginning of the conversation up to that point.

We operationalise this process by framing it as
a sequence-to-sequence task in which a model, fθ,
receives a textual representation of the dialogue
context, τc(Ct), and outputs a textual representa-
tion of the operations needed, τs(Ot), where τc
and τs are the templating functions that convert the
dialogue context and state operations to a string,
respectively. We provide more details about these
functions in Appendix B. The structure of the sys-
tem can be described as follows

τs(Ot) = fθ(τc(Ct)) (1)

Bt = Interpreter(τs(Ot),Bt−1) (2)

where in Eq. (2) we use an operation interpreter
to parse the string representation of the operations
and apply them to the previous state. Based on
the definition of the state operations, the opera-
tion interpreter can be based on different formal
languages (e.g., Regular Expressions, SQL).

We use T5v1.1 (Raffel et al., 2020) as the back-
bone for Diable. During training, we use teacher
forcing (Goyal et al., 2016) and pass the oracle
dialogue state in the input, Bt−1. At test time, we
pass the previously predicted state, B̂t−1, instead.
To learn the model, we optimise the negative log-
likelihood of the state operations given the dialogue
context, that is

L(θ)t = − logP (τs(Ot)|τc(Ct)) (3)

where fθ is used to parameterise the probabilistic
model P . We use the Adafactor optimiser (Shazeer
and Stern, 2018) with no weight decay and we set
the learning rate to 10−4 with a constant sched-
ule. We fix the training budget at 40k optimiser
steps and set the batch size to 32. We generate the
output sequence using beam search decoding with
4 beams. We describe in detail the training and
inference processes in Appendix C.

3.3 Representing the State as a Table
In our approach, we represent the dialogue state
as a table that is sequentially updated. Specifi-

cally, a state, B, is represented by a simple two-
column table in which the first column is used for
the slot name and the second for the slot value
(Figure 1). We define the slot name as the con-
catenation of domain and slot separated by a dash,
e.g., restaurant-area (see Appendix B). The state
table is passed into the dialogue context by simple
“linearisation” (Suhr et al., 2020; Scholak et al.,
2021; Shaw et al., 2021): the rows are converted to
slot-value tuples, cast to a string using the template
{slot} = {value}, and concatenated together using
; as a separator.2 During the linearisation, we ran-
domise the order of the rows to avoid overfitting to
specific positional biases.

3.4 State Tracking via Table Operations
We introduced how we operationalise table opera-
tions as a combination of strings defining the oper-
ations and an interpreter that applies the operations
to the state. Specifically, in our implementation
of Diable, we use a simplified formal language
consisting of two slot-level operations, INSERT and
DELETE, and a simple regex-based interpreter. The
choice of the available operations is motivated by
the nature of the MultiWoz datasets which include
mostly insertions and deletions. We use the INSERT

operation also to update the value of slots that are
already present in the state. When no operation is
needed, the target is defined as the literal string none.
Updates are less frequent and are caused mostly by
inconsistent annotations. In our preliminary experi-
ments, we empirically found that adding an UPDATE

operation does not improve performance despite
adding complexity; thus, we decided to not use
it. We emphasise that the specific definition of the
operations is not critical for the efficiency of our
method and it can be easily adapted to any specific
use case. To convert operations to strings we use
the template {command} {slot} = {value}. If multiple
operations need to be applied, we concatenate them
using ; as a separator (see Appendix B). We define
the target sequence as the concatenation of all the
slot-level operations. Since the order in which the
operations are applied does not affect the output,
we randomise their position during training.

4 Experiments

In this section, we present our experimental setup
and provide details about the baselines approaches.

2More complex table encoding methods can be ap-
plied (Herzig et al., 2020; Yang et al., 2022; Nassar et al.,
2022). See the discussion in §6.5.



Model Architecture Extra Supervision Context (Ct) 2.1 2.2 2.4

Cumulative State Models

TRADE (Wu et al., 2019) BERT-base (110M) Schema D1:t
‡45.60 ‡45.40 ‡55.10

SUMBT (Lee et al., 2019) BERT-base (110M) Schema D1:t
‡49.20 ‡49.70 ‡61.90

DS-DST (Zhang et al., 2020) BERT-base (110M) Schema + Pick. D1:t
‡51.21 ‡51.70 -

TripPy (Heck et al., 2020) BERT-base (110M) - D1:t
‡55.30 †53.52 ‡59.60

SAVN (Wang et al., 2020) BERT-base (110M) Schema D1:t
‡54.50 - ‡60.10

Seq2Seq-DU (Feng et al., 2021) 2x BERT-base (220M) Schema + Desc. D1:t
†56.10 ‡54.40 -

SimpleTOD (Hosseini-Asl et al., 2020) GPT-2 (117M) Schema D1:t
‡50.3/55.7 ⋆54.02 -

AG-DST (Tian et al., 2021) PLATO-2 (310M) Schema Dt−1:t + Bt−1 - 57.26 -

DaP (seq.) (Lee et al., 2021) T5-base (220M) Schema + Desc. D1:t - 51.20 -
DaP (ind.) (Lee et al., 2021) T5-base (220M) Schema + Desc. D1:t 56.66 57.60 -
Seq2seq (Zhao et al., 2021) T5-base (220M) Pre-training D1:t

⋄52.80 57.60 67.10
lightCumulative (Our impl.) T5v1.1-base (247M) - D1:t 53.91±0.63 57.01±0.45 67.56±0.52

D3ST (Zhao et al., 2022) T5-base (220M) Schema + Pick. + Desc. D1:t 54.20 56.10 72.10

Efficient Models

MinTL (Lin et al., 2020b) BART-large (406M) - Bt−1 53.62 - -
SOM-DST (Kim et al., 2020) BERT-base + GRU (113M) Schema Dt−4:t + Bt−1

‡53.68 ⋆53.81 ‡66.80
Transf.-DST (Zeng and Nie, 2020) BERT-base (110M) Schema Dt−4:t + Bt−1 55.35 - -

Diable (Ours)
T5v1.1-base (247M) - Bt−1

⋄53.91±0.70 56.30±0.67 70.03±0.95

T5v1.1-base (247M) - Dt−4:t + Bt−1
⋄53.97±0.66 56.48±0.57 70.46±1.18

Table 1: JGA on the test sets of MultiWoz (2.1, 2.2 and 2.4) for models trained on the respective training sets
(note that 2.1 and 2.4 share the same training data). Baseline results reported from the original papers or, when not
available, from ⋆: Tian et al. (2021), †: Wang et al. (2022), ‡: Zhao et al. (2021). The column “Context” reports the
dialogue context: D and B denote the dialogue utterances and the set of previous states, respectively. The notation
i:j indicates turns from i to j (included). The column “Extra supervision” reports the additional information used
(e.g., data augmentation, pre-training, etc.). For Multiwoz 2.1 most baselines use data preprocessing; we denote
methods that do not use data preprocessing with ⋄. Underlined the best results overall; bold the best results within
efficient methods.

4.1 Datasets
The MultiWoz dataset (Budzianowski et al., 2018)
is a collection of 10k multi-domain task-oriented
human-to-human conversations. It is one of
the most used benchmarks in the DST litera-
ture (Jacqmin et al., 2022). Nonetheless, it is
known to contain annotation errors and previous
work proposed different versions (Eric et al., 2020;
Han et al., 2021; Ye et al., 2022b) and data nor-
malisation procedures3 to mitigate this issue. Thus,
it is difficult to have a fair comparison of results
across the literature. Following the MultiWoz con-
vention (Wu et al., 2019), we filter out dialogues in
the “bus”, “police”, and “hospital” domains (and
the respective slots from multi-domain dialogues),
and remove the invalid dialogue SNG01862.json. We
experiment with multiple versions (2.1, 2.2, and
2.4) and use the data as-is (see Appendix B). To
construct the training set, we extract the operations
automatically from the dataset.

4.2 Evaluation
We use Joint Goal Accuracy (Henderson et al.,
2014, JGA) as the main metric for all experiments:

3Most notably the TRADE scripts from Wu et al. (2019)
to normalise both text and labels.

it measures the proportion of turns for which the
predicted state (slot-value pairs) exactly match the
gold label. At each turn, for each slot, a list of
acceptable values is included in the annotation
(e.g., hotel-name: ["marriott", "marriott hotel"]).
We consider a value correct if it exactly matches
one of the available options. Importantly, we per-
form an uncased evaluation since the annotation
casing is not consistent.

4.3 Cumulative State and Efficient Baselines

We compare our results with a set of strong cu-
mulative state models (i.e., models that use all
previous turns and output a value for each slot
at each turn, see Figure 2), and efficient baseline
models. We also implement our own version of
a cumulative state model and its “lighter” variant,
lightCumulative: the state does not include the
inactive slots. In all our experiments, the full cumu-
lative models underperform lightCumulative while
being less efficient (∼1.18x slower). Thus, we only
report the results of lightCumulative, effectively se-
lecting a stronger baseline.

In the upper part of Table 1 (“Cumulative State
Models”), we include results from state-of-the-art
generative cumulative state models. In each section,

https://github.com/jasonwu0731/trade-dst/blob/master/utils/fix_label.py


we report details and results for encoder-based,
sequence-to-sequence, and T5-based models, re-
spectively. The latter class of models based on T5
is related to our implementation of Diable in that
they share the same backbone. However, they are
not directly comparable due to the additional text
preprocessing and label normalisation. The results
of our own re-implementation of a cumulative state
model, lightCumulative, are directly comparable
as we adopted the same experimental conditions.

In the bottom part of Table 1 (“Efficient Mod-
els”), we report the JGA of the latest generative effi-
cient DST approaches in the literature. Despite be-
ing related to our implementation of Diable, these
approaches are not directly comparable since they
rely on additional information (e.g. the schema) or
are based on a different backbone model.

5 Results

In this section, we discuss our experimental results.
In Table 1, we summarise the JGA on three versions
of MultiWoz (2.1, 2.2, and 2.4) for both Diable
and the baseline models. The results for the base-
line models are taken from previous work (Tian
et al., 2021; Wang et al., 2022; Zhao et al., 2021)
when better or if missing for a particular version
in the original papers. The results for Diable
and lightCumulative implementation are averaged
across 5 random seeds.

5.1 Diable and Cumulative State Models

We compare Diable’s performance to cumulative
state models, i.e., models that have access to all
previous turns in the conversation. We emphasise
that Diable uses none or a limited number of previ-
ous turns and thus has less context with respect to
these models. On one hand, our goal is to evaluate
the trade-off between efficiency and performance;
on the other hand, to study the capability of the
system to generate correct table operations.

The cumulative state model results are shown in
the first part of Table 1. First, D3ST (Zhao et al.,
2022) achieves the best JGA score on MultiWoz
2.4 when the backbone is T5-base. Similarly to
Diable, D3ST is based on a T5 model; however, it
has access to more information such as the schema,
the slot descriptions, and the list of possible values
(“picklist”) for categorical slots. Nonetheless, Dia-
ble scores within 1 standard deviation in terms of
JGA, while being more than 2x more efficient.

When the backbone model of D3ST (Zhao et al.,

Context Runtime (ms) Speedup (↑)

Cumulative

D1:t 40.83 1.00

lightCumulative

D1:t + Bt−1 34.28 1.19
D1:t 33.65 1.21
Dt−4:t + Bt−1 32.56 1.25
Bt−1 30.62 1.33

Diable

D1:t + Bt−1 19.59 2.09
D1:t 19.41 2.11
Dt−4:t + Bt−1 18.29 2.23
Bt−1 17.17 2.38

Table 2: Median instance-level runtime in milliseconds
and relative speed-up vs a cumulative state baseline.

2022) is T5-xxl (11B), it scores 57.80, 58.70, and
75.90, respectively, on the three versions of the
MultiWoz dataset. These scores are significantly
higher than all other baselines. However, this im-
provement is solely due to increasing the model
size, and we argue that the same performance im-
provement can be achieved by scaling the backbone
of Diable to larger models. In particular, error anal-
ysis shows that most of the errors in our instantia-
tion of Diable-based systems are due to the model
not recognising active slots (“under-predictions”).
A larger backbone model can alleviate this issue by
picking up less obvious contextual cues. Finally,
the difference is more significant for version 2.1
because D3ST also applies text preprocessing, as
used in other baselines. Moreover, baselines that
use smaller models (the first part of Table 1) con-
sistently score lower than those based on the larger
and better pre-trained T5 checkpoints. The only
exception is AG-DST (Tian et al., 2021) but their
backbone model has 310M parameters.

We further compare Diable to our implemen-
tation of a cumulative state T5-based model
(lightCumulative). This comparison is fairer, as
the models are put in the exact same experimen-
tal conditions. Our goal here is to quantify the
improvements due to our proposed approach iso-
lating additional effects from model pre-training
and architectural changes. The results show that
our Diable approach has a significantly better JGA
(+3 absolute points) on the less noisy version of
MultiWoz (i.e., 2.4) and has similar performance
on 2.1 and 2.2, while still being more efficient.



Next, we compare Diable with two other strong
models based on the T5 architecture (making
them directly comparable, besides the preprocess-
ing steps): DaP (ind) (Lee et al., 2021) and
Seq2seq (Zhao et al., 2021). Both models achieve
a slightly higher JGA than Diable on 2.2 (1 point
absolute); however, they are again less efficient and
have access to a larger context. DaP relies on slot
descriptions (thus, the schema) and runs inference
once for every slot, which is not scalable to large
schemas. The improvements in Seq2seq are likely
due to its extensive DST-specific pre-training.

Our results confirm that Diable-based systems
while being efficient, achieve competitive JGA on
MultiWoz as compared to both other strong effi-
cient DST baselines and cumulative state state-of-
the-art DST systems without requiring any ad-hoc
data preprocessing, access to the full history, extra
supervision, or large backbone models.

5.2 Diable and Efficient Models

Comparing Diable to other efficient state-of-the-art
DST models, that are based on state operations,
we see significant improvements up to almost 4
JGA points on version 2.4 (shown in the “Efficient
Models” section of Table 1). Only Transformer-
DST (Zeng and Nie, 2020) is able to outperform
our model on 2.1. However, they use data prepro-
cessing (text and label normalisation) and extra
supervision (schema). This model is an improved
version of SOM-DST (Kim et al., 2020), there-
fore the same argument applies to the latter, which
achieves slightly lower performance even using the
same extra supervision and text normalisation.

5.3 Latency Analysis

Table 2 reports the median4 inference time
and the speed-up factor of Diable relative to
lightCumulative. Our approach is more than 2x
faster, even when using the full history as con-
text. These results clearly show that the biggest
efficiency gains are obtained by shortening the out-
put sequence, that is, replacing the cumulative state
with state operations. Consequently, adding only
the last N turns comes at a small cost for a Dia-
ble while potentially helping the model to recover
values not present in the current dialogue context.
Using the Inference Time Complexity (ITC) nota-
tion introduced by Ren et al. (2019), our proposed

4We report the median as the distribution of the inference
time is left-skewed.

Train → Test lightCumulative Diable

Context: D1:t

2.2 → 2.2 57.01±0.45 55.63±0.68

2.2 → 2.4 63.11±0.83 64.95±0.55

Context: Bt−1

2.2 → 2.2 56.50±0.47 56.30±0.67

2.2 → 2.4 63.52±0.96 66.13±0.97

Table 3: Effect on JGA (mean ±1 standard deviation)
of different context and state representations.

approach has Ω(1) and O(N), where N is the num-
ber of slots in the schema, as the best and worst
case ITC, respectively. Whereas, SOM-DST and
Transformer-DST have a best-case ITC of Ω(N).

5.4 Robustness to Noisy Annotations
Table 3 compares the performance of models
trained on MultiWoz 2.2 with different context
and state representations. Notably, when evalu-
ated on the cleaner 2.4 version (bottom row for
both parts of the table), Diable consistently out-
performs lightCumulative. In fact, regardless of
the dialogue context, Diable achieves a better JGA
on 2.4. We hypothesise that the lower accuracy of
lightCumulative is due to overfitting the noisy an-
notations of the training set. In particular, we think
that since it generates the full state from scratch
at every turn, the decoder might learn wrong cor-
relations amongst slots that are wrongly anno-
tated in the training set. For example, hotel-type
and attraction-type are inconsistently and sparsely
annotated in the training set, while in the test
set of version 2.4 they tend to appear almost al-
ways together with the respective hotel-name and
attraction-name slots. Thus, a cumulative state
model can learn to not generate one when the other
is present. Instead, being Diable based on state
changes, we presume that it learns to treat slots
more independently.

6 Discussion

Our task formalisation is intuitively simple and is
especially beneficial for large pre-trained sequence-
to-sequence models. First, the state is expanded
sequentially and thus only includes the necessary
slots. This minimises the size of the input context,
allowing the models to scale to larger schemas be-
fore reaching their maximum input length. Second,
since the model needs to focus on the state changes,
the decoder only needs to generate operations for a



Context Test Set JGA

Cumulative state base large

D1:t 2.2 57.37 57.01
D1:t 2.4 65.82 63.11

Diable base large

Dt−4:t + Bt−1 2.2 56.74 56.48
Dt−4:t + Bt−1 2.4 65.01 65.35

Table 4: MultiWoz 2.2 and 2.4 test set JGA for T5v1.1
base and large trained on the MultiWoz 2.2.

limited number of slots (previous slots persist im-
plicitly in the state, no need for explicit “carryover”
operations). Third, our system is general in that it
deals with span-based and categorical slots in the
same way, and outputs both the operations and the
slot-value pairs in a single forward pass, without
the need for specialised architectures. Finally, since
not all pre-defined slots are needed in the input, we
do not have to access the schema beforehand, and
thus it can be learned from the data directly.

6.1 Impact of the Dialogue History

Table 3 compares the effect of the context size for
both lightCumulative and Diable trained on ver-
sion 2.2. Comparing the results from the upper
and bottom parts of the table, we see that using
only the previous state barely changes the JGA of
lightCumulative but benefits Diable. We hypoth-
esise that being a cleaner and more compact rep-
resentation of the conversation, the previous state
introduces less noise than the full history. This is
especially true in conversations for which the value
of a slot is changed or removed throughout the con-
versation. However, completely removing the dia-
logue history reduces the ability of the model to re-
cover values referenced at the beginning of the con-
versation. We hypothesise that this negative effect
is not too evident because of the entity bias present
in the MultiWoz dataset (Qian et al., 2021) that
allows the model to memorise and correctly predict
values for certain slots even when not present in
the dialogue context (§6.4). Finally, when evalu-
ated on the cleaned version 2.4, Diable consistently
matches or outperforms lightCumulative.

6.2 Impact of the Model Size

Table 4 compares the performance of the base and
large version of T5v1.1 for both lightCumulative
and Diable models. We find that scaling up model

Train → Test Predicted Gold

2.1 → 2.1 53.91±0.70 80.65±0.24

2.1 → 2.4 70.03±0.95 90.14±0.30

2.2 → 2.2 56.30±0.67 82.50±0.28

2.2 → 2.4 66.13±0.97 88.29±0.35

Table 5: JGA (mean ±1 standard deviation) with gold
and the predicted previous state in the input context.

size does not improve JGA, however, we hypothe-
sise that scaling it further can improve the perfor-
mance similarly to D3ST (Zhao et al., 2022).

6.3 Impact of the State Representation

When replacing the tabular state representation
with a cumulative one in Diable, ceteris paribus,
we find a 3% reduction in JGA for version 2.4 and
up to 5% for other versions. Specifically, at the
beginning of the conversation, the state includes all
the slots with the none value. In this case, the INSERT

operation is unchanged while the DELETE operation
becomes an update with a none value.

6.4 Error Propagation

Diable, like any recursive state model (Zhao et al.,
2021), is affected by error propagation: since we
pass the previous predicted state at each turn, er-
rors can be persisted. We measure the potential
gains stemming from completely avoiding the er-
ror propagation by using the gold previous state
rather than the predicted one in the dialogue con-
text. Table 5 reports the upper bound on JGA for
our simple Diable instantiation and highlights that
there is potential to improve JGA by adopting re-
cent methodologies targeted at reducing error prop-
agation (Zhang et al., 2022).

In our experiments, we identify two main
sources of error propagation that account for more
than 60% of the total mistakes: state “under-
prediction” (i.e., the model does not recognise
that a certain state is active) and value mispredic-
tion. Under-prediction happens when the system
is unable to recognise that specific slots are active.
Since MultiWoz presents a strong entity bias—e.g.,
“Cambridge” appears in 50% of the destination
cities in the training data (Qian et al., 2021)—a
possible direction to address this issue is to use data
augmentation methods targeted at reducing entity
bias and annotation inconsistency (Summerville
et al., 2020; Lai et al., 2022) by improving the over-
all slot recall. Value misprediction happens when



the value for a correctly predicted slot is wrong.
This is especially evident when the same slot is
discussed in multiple turns and its value can poten-
tially change. One way to address this limitation
is by automatically pre-selecting the previous di-
alogue turns to include the relevant information
about a specific slot in the context window (Yang
et al., 2021; Guo et al., 2022; Wang et al., 2022).

We do not constrain the generation in any way,
and thus Diable can generate invalid slots or values
(e.g., attraction-time). In our experiments, errors
due to invalid states are rare (less than 2% of the
total mistakes): in fact, using the schema to filter
incorrectly predicted slots at each turn did not im-
prove the JGA significantly (less than 1%). There
are several promising techniques that can further
improve the performance of our system, at a minor
efficiency cost, such as amendable generation (Tian
et al., 2021), constrained generation (Lin et al.,
2020a), and schema descriptions (Lee et al., 2021;
Zhao et al., 2022). Finally, with larger schemas and
more diverse conversations, constraining the set of
values that the model can predict can potentially
further improve performance and safety.

6.5 Future Directions

In §5, we showed that Diable is an effective DST
approach, at the same time it is competitive with
budget-matched (in terms of parameter count) cu-
mulative state baselines. We emphasise that our
goal is not to reach state-of-the-art JGA on the Mul-
tiWoz dataset. We intentionally keep our Diable-
based models as simple as possible, by not adding
extra supervision signals, to clearly measure the ef-
fectiveness of our approach. However, the benefits
coming from Diable can be easily added on top of
other methods. We believe our approach can be
improved and expanded in several ways.

Explicitly Modelling Slot Dependence. Diable
treats slots independently of each other and implic-
itly uses the model’s capability of learning their
co-occurrence patterns. However, as the schema
becomes larger and the dialogues longer, slot de-
pendence becomes more complex and the model
might fail to learn it effectively. Explicitly mod-
elling the slot dependence can potentially improve
performance, robustness (to spurious correlations),
and efficiency. For example, selecting only rele-
vant turns from the dialogue history as context to
predict slot values. In our experiments, we show
consistent improvement across all MultiWoz ver-

sions by adding the previous 4 dialogue turns in the
dialogue context (Table 1 – last 2 rows). However,
this simple heuristic might be suboptimal when the
schema is large and the dialogue is long because rel-
evant turns may not be the immediately preceding
ones and we might add irrelevant context or omit
relevant information. Instead, adopting a more
granular turn selection method based on the slot
dependence (Yang et al., 2021; Guo et al., 2022)
can improve both performance and efficiency.

Improving Table Representations. When pass-
ing the previous state in the context, we simply
linearise the table. That is, we represent the pre-
vious states as discrete tokens passed in the input
context for the next turn. This allowed us to use the
T5 architecture without modification. A promising
direction for future work is to use continuous repre-
sentations for the state table (Wu et al., 2022). This
representation can potentially require fewer or no
tokens to represent the state, thus further improving
the efficiency of our approach.

7 Conclusions

In this paper, we introduce a novel efficient formu-
lation of the DST task and a new system, Diable,
specifically designed to enhance efficiency and op-
timise the capabilities of state-of-the-art sequence-
to-sequence models. Diable represents the dia-
logue state as an implicit table and updates it us-
ing a sequence-to-sequence model to generate ta-
ble operations at each turn. Our task formalisa-
tion provides a significant efficiency gain (up to
2.4x speed-up in inference time) compared to cu-
mulative state approaches adopted by the current
state-of-the-art DST systems. Moreover, this size-
able improvement comes with a minimal efficiency-
accuracy trade-off. In fact, Diable outperforms
other efficient DST approaches in the literature by
more than 3 absolute JGA points on MultiWoz 2.4
and shows a competitive performance with respect
to current DST state-of-the-art systems. Diable
comes with other advantages: it is simple and gen-
eral (it makes no assumptions about the schema
and does not require any specialised architecture)
and it is robust to noise. Moreover, it allows to
plug and play sequence-to-sequence models with-
out any architectural modification easily. Finally,
our approach goes beyond the dialogue setting and
can be adapted to the sequential processing of long
documents for information extraction tasks with
memory-constrained language models.
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Limitations

In Section 6.4, we already discussed the limitations
and challenges of the model proposed (e.g., the
model has access to less contextual information
from the conversation history, errors can propagate
more easily as it does not re-predict the entire cu-
mulative state at each step, and mistakes could only
be fixed by explicit delete or update operation). In
the following, we concentrate on the limitations
that refer to the scope of this work.

Languages. We experimented with a limited num-
ber of languages (English) and datasets (MultiWoz
2.1, 2.2 and 2.4). We do not have experimental
evidence that our method can work for other lan-
guages, including languages with a richer morphol-
ogy. Still, our system has been built without any
language-specific constraints or resources, other
than the T5 checkpoints and the manually anno-
tated training set. Our method can be applied to any
other language (without modification) for which
these resources are available, or by applying cross-
lingual techniques and resources (e.g., multilingual
language models, translation/projection of the train-
ing set) to transfer to other languages zero-shot. In
those cases, the expected quality is lower, but the
efficiency advantage of Diable remains.

Models. We experimented with two models
(T5v1.1 base and large). This is due to the re-
striction on our computational budget to be both
economically- and environmentally-friendly, which
made it infeasible to conduct thorough experiments
using larger-scale language models. However, we
re-emphasise that Diable allows one to easily plug
and play arbitrary language models and the effi-
ciency advantage of Diable remains.

Diversity in the Evaluation Dataset. We experi-
mented with three different versions of the Multi-
Woz dataset (2.1, 2.2, and 2.4). Although this is the
current benchmark for DST accepted by the com-
munity, and we followed the standard evaluation
methodology and metrics, we are aware that the
results presented might not be directly generalis-
able to other datasets or real-world scenarios with
a considerable data shift with respect to MultiWoz.
Additionally, MultiWoz has a certain level of noise
and this can have an impact on the evaluation and
the generalisation capabilities of the model trained.
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Nikola Mrkšić, Diarmuid Ó Séaghdha, Tsung-Hsien
Wen, Blaise Thomson, and Steve Young. 2017. Neu-
ral belief tracker: Data-driven dialogue state track-
ing. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, pages
1777–1788, Vancouver, Canada.

Ahmed Nassar, Nikolaos Livathinos, Maksym Lysak,
and Peter Staar. 2022. TableFormer: Table structure
understanding with transformers. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR ’22, pages 4614–4623,
New Orleans, Louisiana, USA.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An imperative style, high-performance deep learning
library. In Advances in Neural Information Process-
ing Systems, volume 32, Red Hook, New York, USA.

Kun Qian, Ahmad Beirami, Zhouhan Lin, Ankita De,
Alborz Geramifard, Zhou Yu, and Chinnadhurai
Sankar. 2021. Annotation inconsistency and entity
bias in MultiWOZ. In Proceedings of the 22nd An-
nual Meeting of the Special Interest Group on Dis-
course and Dialogue, pages 326–337, Singapore and
Online.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Abhinav Rastogi, Dilek Hakkani-Tur, and Larry Heck.
2017. Scalable multi-domain dialogue state tracking.
In IEEE Workshop on Automatic Speech Recognition
and Understanding.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020a. Schema-
guided dialogue state tracking task at DSTC8. arXiv
preprint arXiv:2002.01359.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020b. To-
wards scalable multi-domain conversational agents:
The schema-guided dialogue dataset. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applica-
tions of Artificial Intelligence Conference, IAAI 2020,
The Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, pages 8689–
8696, New York, NY, USA.

Liliang Ren, Jianmo Ni, and Julian McAuley. 2019.
Scalable and accurate dialogue state tracking via hi-
erarchical sequence generation. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1876–1885, Hong Kong,
China.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895–9901, Online and Punta Cana, Domini-
can Republic.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and
Kristina Toutanova. 2021. Compositional generaliza-
tion and natural language variation: Can a semantic
parsing approach handle both? In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing, pages
922–938, Online.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 4596–4604,
Stockholm, Sweden.

Alane Suhr, Ming-Wei Chang, Peter Shaw, and Ken-
ton Lee. 2020. Exploring unexplored generalization
challenges for cross-database semantic parsing. In

https://doi.org/10.1162/tacl_a_00384
https://doi.org/10.1162/tacl_a_00384
https://doi.org/10.18653/v1/2020.findings-emnlp.165
https://doi.org/10.18653/v1/2020.findings-emnlp.165
https://doi.org/10.18653/v1/2020.findings-emnlp.165
https://doi.org/10.18653/v1/2020.emnlp-main.273
https://doi.org/10.18653/v1/2020.emnlp-main.273
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.3115/v1/P15-2130
https://doi.org/10.3115/v1/P15-2130
https://doi.org/10.18653/v1/P17-1163
https://doi.org/10.18653/v1/P17-1163
https://doi.org/10.18653/v1/P17-1163
https://openaccess.thecvf.com/content/CVPR2022/html/Nassar_TableFormer_Table_Structure_Understanding_With_Transformers_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Nassar_TableFormer_Table_Structure_Understanding_With_Transformers_CVPR_2022_paper.html
https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://aclanthology.org/2021.sigdial-1.35
https://aclanthology.org/2021.sigdial-1.35
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1109/ASRU.2017.8268986
https://doi.org/10.48550/ARXIV.2002.01359
https://doi.org/10.48550/ARXIV.2002.01359
https://ojs.aaai.org/index.php/AAAI/article/view/6394
https://ojs.aaai.org/index.php/AAAI/article/view/6394
https://ojs.aaai.org/index.php/AAAI/article/view/6394
https://doi.org/10.18653/v1/D19-1196
https://doi.org/10.18653/v1/D19-1196
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://proceedings.mlr.press/v80/shazeer18a.html
https://proceedings.mlr.press/v80/shazeer18a.html
https://doi.org/10.18653/v1/2020.acl-main.742
https://doi.org/10.18653/v1/2020.acl-main.742


Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8372–
8388, Online.

Adam Summerville, Jordan Hashemi, James Ryan, and
William Ferguson. 2020. How to tame your data:
Data augmentation for dialog state tracking. In Pro-
ceedings of the 2nd Workshop on Natural Language
Processing for Conversational AI, pages 32–37, On-
line.

Xin Tian, Liankai Huang, Yingzhan Lin, Siqi Bao,
Huang He, Yunyi Yang, Hua Wu, Fan Wang, and
Shuqi Sun. 2021. Amendable generation for dialogue
state tracking. In Proceedings of the 3rd Workshop
on Natural Language Processing for Conversational
AI, pages 80–92, Online.

Yexiang Wang, Yi Guo, and Siqi Zhu. 2020. Slot at-
tention with value normalization for multi-domain
dialogue state tracking. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP ’20, pages 3019–3028,
Online.

Yifan Wang, Jing Zhao, Junwei Bao, Chaoqun Duan,
Youzheng Wu, and Xiaodong He. 2022. LUNA:
Learning slot-turn alignment for dialogue state track-
ing. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 3319–3328, Seattle, United States.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online.

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-Asl,
Caiming Xiong, Richard Socher, and Pascale Fung.
2019. Transferable multi-domain state generator for
task-oriented dialogue systems. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 808–819, Florence, Italy.

Qingyang Wu, Zhenzhong Lan, Kun Qian, Jing Gu, Al-
borz Geramifard, and Zhou Yu. 2022. Memformer:
A memory-augmented transformer for sequence mod-
eling. In Findings of the Association for Computa-
tional Linguistics: AACL-IJCNLP 2022, pages 308–
318, Online only.

Puyang Xu and Qi Hu. 2018. An end-to-end approach
for handling unknown slot values in dialogue state
tracking. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1448–1457, Melbourne, Australia.

Jingfeng Yang, Aditya Gupta, Shyam Upadhyay,
Luheng He, Rahul Goel, and Shachi Paul. 2022.
TableFormer: Robust transformer modeling for table-
text encoding. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics, pages 528–537, Dublin, Ireland.

Puhai Yang, Heyan Huang, and Xian-Ling Mao. 2021.
Comprehensive study: How the context information
of different granularity affects dialogue state track-
ing? In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and
the 11th International Joint Conference on Natural
Language Processing, pages 2481–2491, Online.

Fanghua Ye, Yue Feng, and Emine Yilmaz. 2022a. AS-
SIST: Towards label noise-robust dialogue state track-
ing. In Findings of the Association for Computa-
tional Linguistics: ACL 2022, pages 2719–2731,
Dublin, Ireland.

Fanghua Ye, Jarana Manotumruksa, and Emine Yil-
maz. 2022b. MultiWOZ 2.4: A multi-domain task-
oriented dialogue dataset with essential annotation
corrections to improve state tracking evaluation. In
Proceedings of the 23rd Annual Meeting of the Spe-
cial Interest Group on Discourse and Dialogue, pages
351–360, Edinburgh, UK.

Fanghua Ye, Jarana Manotumruksa, Qiang Zhang,
Shenghui Li, and Emine Yilmaz. 2021. Slot self-
attentive dialogue state tracking. In Proceedings
of the Web Conference 2021, WWW ’21, page
1598–1608, Ljubljana, Slovenia.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. TaBERT: Pretraining for joint
understanding of textual and tabular data. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 8413–8426, On-
line.

Yan Zeng and Jian-Yun Nie. 2020. Jointly optimiz-
ing state operation prediction and value genera-
tion for dialogue state tracking. arXiv preprint
arXiv:2010.14061.

Haoning Zhang, Junwei Bao, Haipeng Sun, Youzheng
Wu, Wenye Li, Shuguang Cui, and Xiaodong He.
2022. MoNET: Tackle state momentum via noise-
enhanced training for dialogue state tracking. arXiv
preprint arXiv:2211.05503.

Jianguo Zhang, Kazuma Hashimoto, Chien-Sheng Wu,
Yao Wang, Philip Yu, Richard Socher, and Caiming
Xiong. 2020. Find or classify? Dual strategy for
slot-value predictions on multi-domain dialog state
tracking. In Proceedings of the Ninth Joint Confer-
ence on Lexical and Computational Semantics, pages
154–167, Barcelona, Spain (Online).

Jeffrey Zhao, Raghav Gupta, Yuan Cao, Dian Yu,
Mingqiu Wang, Harrison Lee, Abhinav Rastogi,
Izhak Shafran, and Yonghui Wu. 2022. Description-
driven task-oriented dialog modeling. arXiv preprint
arXiv:2201.08904.

https://doi.org/10.18653/v1/2020.nlp4convai-1.4
https://doi.org/10.18653/v1/2020.nlp4convai-1.4
https://doi.org/10.18653/v1/2021.nlp4convai-1.8
https://doi.org/10.18653/v1/2021.nlp4convai-1.8
https://doi.org/10.18653/v1/2020.emnlp-main.243
https://doi.org/10.18653/v1/2020.emnlp-main.243
https://doi.org/10.18653/v1/2020.emnlp-main.243
https://doi.org/10.18653/v1/2022.naacl-main.242
https://doi.org/10.18653/v1/2022.naacl-main.242
https://doi.org/10.18653/v1/2022.naacl-main.242
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/P19-1078
https://doi.org/10.18653/v1/P19-1078
https://aclanthology.org/2022.findings-aacl.29
https://aclanthology.org/2022.findings-aacl.29
https://aclanthology.org/2022.findings-aacl.29
https://doi.org/10.18653/v1/P18-1134
https://doi.org/10.18653/v1/P18-1134
https://doi.org/10.18653/v1/P18-1134
https://doi.org/10.18653/v1/2022.acl-long.40
https://doi.org/10.18653/v1/2022.acl-long.40
https://doi.org/10.18653/v1/2021.acl-long.193
https://doi.org/10.18653/v1/2021.acl-long.193
https://doi.org/10.18653/v1/2021.acl-long.193
https://doi.org/10.18653/v1/2022.findings-acl.214
https://doi.org/10.18653/v1/2022.findings-acl.214
https://doi.org/10.18653/v1/2022.findings-acl.214
https://aclanthology.org/2022.sigdial-1.34
https://aclanthology.org/2022.sigdial-1.34
https://aclanthology.org/2022.sigdial-1.34
https://doi.org/10.1145/3442381.3449939
https://doi.org/10.1145/3442381.3449939
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.48550/ARXIV.2010.14061
https://doi.org/10.48550/ARXIV.2010.14061
https://doi.org/10.48550/ARXIV.2010.14061
https://doi.org/10.48550/ARXIV.2211.05503
https://doi.org/10.48550/ARXIV.2211.05503
https://aclanthology.org/2020.starsem-1.17
https://aclanthology.org/2020.starsem-1.17
https://aclanthology.org/2020.starsem-1.17
https://doi.org/10.48550/ARXIV.2201.08904
https://doi.org/10.48550/ARXIV.2201.08904


Jeffrey Zhao, Mahdis Mahdieh, Ye Zhang, Yuan Cao,
and Yonghui Wu. 2021. Effective sequence-to-
sequence dialogue state tracking. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 7486–7493, Online
and Punta Cana, Dominican Republic.

Victor Zhong, Caiming Xiong, and Richard Socher.
2018. Global-locally self-attentive encoder for di-
alogue state tracking. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics, pages 1458–1467, Melbourne, Australia.

Su Zhu, Jieyu Li, Lu Chen, and Kai Yu. 2020. Effi-
cient context and schema fusion networks for multi-
domain dialogue state tracking. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 766–781, Online.

https://doi.org/10.18653/v1/2021.emnlp-main.593
https://doi.org/10.18653/v1/2021.emnlp-main.593
https://doi.org/10.18653/v1/P18-1135
https://doi.org/10.18653/v1/P18-1135
https://doi.org/10.18653/v1/2020.findings-emnlp.68
https://doi.org/10.18653/v1/2020.findings-emnlp.68
https://doi.org/10.18653/v1/2020.findings-emnlp.68


Appendix for “Diable: Efficient Dialogue
State Tracking as Operations on Tables”

A Data Statistics

In this section, we report statistics about versions
2.1-2.4 of the MultiWoz dataset. Table 6 shows the
distribution of domains across dialogues and turns.
Table 9 reports the distribution of slots across dia-
logues and turns. Finally, Table 10 reports general
statistics regarding the frequency of domains, slots,
and turns.

B Data Preprocessing

Data Cleaning. Following the MultiWoz conven-
tion, we filter out dialogues in the “bus”, “police”
and “hospital” domains (and the respective slots
from multi-domain dialogues), and we remove
the invalid dialogue SNG01862.json. The processed
dataset contains 5 domains (“restaurant”, “train”,
“hotel”, “taxi”, “attraction”), 30 slots, 9,917 dia-
logues, and 79,793 turns.

Slot-Value Representation. We represent states
as a list of triplets in the form of (domain, slot,

value). We define a slot as the concatenation of the
domain name and slot name, e.g., (restaurant-area,
center). Annotations can possibly contain multiple
acceptable values. During testing, this is not prob-
lematic as we consider a prediction correct when
the predicted value is contained in the acceptable
set of values. However, during training, we need
to choose one in order to use teacher forcing. To
do so, we first check which one of the possible
values is actually a span from the text. If none are
present, we choose the longest. Since the casing is
inconsistent, we lowercase all the values.

Label Normalisation. MultiWoz contains noisy
annotations and different authors have tried to alle-
viate the issue by devising different label normali-
sation procedures. For example, the scripts by Wu
et al. (2019)5 and Hosseini-Asl et al. (2020).6 In
this work, we try to balance being as faithful as pos-
sible to the original annotations without needlessly
penalizing the evaluation of our system. In detail,
we target the following noisy annotation values:

• Typos: “guest house”, “swimming pool”,
“night club”, “concert hall” that appear with

5https://github.com/jasonwu0731/trade-
dst/blob/master/utils/fix_label.py.

6https://github.com/salesforce/simpletod/tree/
master/noisy_annotations.

Domain 2.1 2.2 2.3 2.4

Number of dialogues

attraction 3494 3484 3503 3486
hotel 4190 4182 4228 4188
restaurant 4748 4728 4765 4732
taxi 1879 1872 1884 1875
train 3940 3931 3945 3936

Number of turns

attraction 24016 23940 24144 23986
hotel 31416 31378 31735 31399
restaurant 33201 33104 33369 33121
taxi 7760 7708 7833 7739
train 27738 27699 27830 27721

Table 6: Frequency of domains across dialogues and
turns for MultiWoz 2.1-2.4.

and without spaces. When one is present, we
also add the other version as a possible cor-
rect answer. This normalisation affects “hotel-
type”, “attraction-type”, “hotel-name”, and
“attraction-name” slots.

• Spelling inconsistencies: “theater” and “cen-
ter” appear both in their UK and US En-
glish versions. When one is present, we
add the alternative version. This normalisa-
tion affects the “hotel-area”, “restaurant-area”,
“attraction-area”, and “attraction-type”.

• Names starting with “the”: some names ap-
pear with the “the” proposition. In such
cases, we add a version without the propo-
sition. This normalisation affects the “hotel-
name”,“restaurant-name”, and “attraction-
name” slots.

• Categorical slots: the “hotel-star” slot is a
categorical slot whose values are integers in 0-
8. In some cases, the annotation includes the
literal “star” string. In such cases, we remove
the “star” from the annotation.

Overall, these are minimal changes. Many such
errors caused by noisy labels are still present in the
dataset. We leave as future work the creation of an
even cleaner evaluation dataset. More details on
the impact of these normalisations are available in
Appendix D.

Input Creation. In a preliminary study, we ex-
perimented with different possible templates for
the input sequence and found that, after a certain
degree, adding more text to the prompt was not
beneficial and the exact wording was not having a

https://github.com/jasonwu0731/trade-dst/blob/master/utils/fix_label.py
https://github.com/jasonwu0731/trade-dst/blob/master/utils/fix_label.py
https://github.com/salesforce/simpletod/tree/master/noisy_annotations
https://github.com/salesforce/simpletod/tree/master/noisy_annotations


big impact. Therefore, to balance simplicity and ac-
curacy, for all experiments, we used the following
simple templates,

• lightCumulative:

generate full state: dialogue:

system: {system_utterance} user:

{user_utterance} <sep> previous

dialogue states: {previous_states}

<sep> history: {history} <sep>

states:

• Diable

generate update operations: dialogue:

system: {system_utterance} user:

{user_utterance} <sep> previous

dialogue states: {previous_states}

<sep> history: {history} <sep>

operations:

In our experiments, up to decimal differences, in-
cluding the schema in the input context does not
affect performance. Similarly, there is no impact
from excluding the <sep> token to separate the vari-
ous parts of the input context. However, excluding
the prefixes—i.e., generate update operations and
generate full state—reduces performances by up
to 1.2% JGA for both state operations and cumu-
lative state models. A similar effect is caused by
removing the “system”/“user” identifiers (as also
observed by (Hosseini-Asl et al., 2020).

Note that we did not optimise over the choice of
the prefixes; given the new instruction fine-tuned
models recently proposed (Chung et al., 2022), we
hypothesise—and leave for future work—that dif-
ferent prompts can improve the DST, especially in
the few-shot setting. Finally, lower-casing the text
decreases performances by up to 1% JGA.

An example of an actual processed conversation
is shown in Table 7.

C Training Details

Hardware Details. We used a server with 8 Tesla
V100 GPUs. The batch size on each GPU was
limited to 8. Thus, we ran the majority of the ex-
periments in a multi-GPU setting with 4 GPUs
allocated to each training job with no need for gra-
dient accumulation. Diable models were trained in
3-4 hours, while cumulative state models required
5-6 hours.

Below, we report the output of the lscpu com-
mand (excluding the flags):

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 64
On-line CPU(s) list: 0-63
Thread(s) per core: 2
Core(s) per socket: 16
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 79
Model name: Intel(R) Xeon(R)

CPU E5-2686 v4
@ 2.30GHz

Stepping: 1
CPU MHz: 2700.216
CPU max MHz: 3000.0000
CPU min MHz: 1200.0000
BogoMIPS: 4600.04
Hypervisor vendor: Xen
Virtualization type: full
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 46080K
NUMA node0 CPU(s): 0-15,32-47
NUMA node1 CPU(s): 16-31,48-63

Model. For all experiments, we use the T5 archi-
tecture (Raffel et al., 2020) and use the associated
T5v1.1 base7 and large8 checkpoints available on
the HuggingFace Hub via the transformers (Wolf
et al., 2020) library and implemented using the
PyTorch (Paszke et al., 2019) framework. In a
preliminary study, we compared T5v1.1 with the
original T5 and flan-T5 (Chung et al., 2022) vari-
ants and did not see any significant differences; we
choose to use the T5v1.1 checkpoint since it is not
fine-tuned on downstream tasks.

Data Preparation. We use the default Sentence-
Piece (Kudo and Richardson, 2018) tokenizer with
vocabulary size 32k associated with the T5v1.1
checkpoint and available in the tokenizers library
(Wolf et al., 2020). We add <sep> to the vocabulary
as a special separator token. We truncate only the
input sequence at 512 tokens during training but do
not truncate during evaluation in order to not penal-
ize cumulative state models (our main baseline).

Training. We use the Pytorch-Lightning9 library
to implement the training loop. For all experiments,
we use the Adafactor optimiser (Shazeer and Stern,

7https://huggingface.co/google/t5-v1_1-base.
8https://huggingface.co/google/t5-v1_1-large.
9https://github.com/Lightning-AI/lightning/.

https://huggingface.co/google/t5-v1_1-base
https://huggingface.co/google/t5-v1_1-large
https://github.com/Lightning-AI/lightning/


Turn Utterances State Processed data

System User Input Target

0 none I’m looking for
a place to stay.
It needs to be
a guesthouse
and include free
wifi.

{’hotel-internet’: ’yes’,
’hotel-type’: ’guesthouse’}

generate update operations: dialogue:
system: none user: I’m looking for a
place to stay. It needs to be a guesthouse
and include free wifi. <sep> previous
dialogue states: none <sep> operations:

INSERT
hotel-internet =
yes ; INSERT
hotel-type =
guesthouse

1 There are 23
hotels that meet
your needs.
Would you like
to narrow your
search by area
and/or price
range?

I would like for
it to be cheap
and include free
parking.

{’hotel-internet’: ’yes’,
’hotel-parking’: ’yes’,
’hotel-pricerange’: ’cheap’,
’hotel-type’: ’guesthouse’}

generate update operations: dialogue:
system: There are 23 hotels that meet
your needs. Would you like to narrow
your search by area and/or price range?
user: I would like for it to be cheap and
include free parking. <sep> previous di-
alogue states: hotel-type = guesthouse;
hotel-internet = yes <sep> operations:

INSERT
hotel-parking =
yes ; INSERT
hotel-
pricerange =
cheap

Table 7: Example of a conversation from the MultiWoz dataset (dialogue MUL0003.json) processed according to
our task formalization. The “Input” column shows the template used to construct the input sequence. It includes
optional fields separated by the <sep> token. For example, if the context also includes the dialogue history, we add
<sep> history: {history} before operations. In red the states from the previous turn. We use the value none to
fill-in empty utterances (e.g., the first system utterance), states (e.g., the first state is always empty), or no-operations
(i.e., when the state does not need to be updated.

2018) with no weight decay, eps=[1e-30, 0.001],
clip_threshold: 1.0, decay_rate: -0.8, beta1: null,
scale_parameter: false, relative_step: false, and
warmup_init: false. We set the learning rate to 10−4

and use a constant schedule. We fix the training
budget at 40k optimiser steps and set the batch size
to 32 to trade off the speed and precision of the
gradient estimation.

Inference. For all experiments, we use beam
search decoding, as implemented in the Hugging-
Face library (Wolf et al., 2020) with 4 beams and
no additional settings.

Reproducibility. For reproducibility, we use the
pseudo-random seed for both data shuffling and
model initialization. In each experiment, we fix
the seed for pseudo-random number generators
and use CUDA deterministic operations. In par-
ticular, we use the seed_everything function from
Pytorch-Lightning10 to set the seed for pseudo-
random number generators in pytorch, numpy, and
python.random. In addition, it sets the following en-
vironment variables: PL_GLOBAL_SEED that is passed
to spawned subprocesses (e.g. ddp_spawn back-
end) and PL_SEED_WORKERS.

Hyper-parameters. In our initial exploration, we
used the default hyper-parameters suggested in the
T5 paper (Raffel et al., 2020) and on the Hugging-

10https://github.com/Lightning-AI/lightning/
blob/94e6d52b7e2f2a9ffc21f7e11e087808666fe710/
src/lightning_lite/utilities/seed.py#L20

Face blog,11 that is batch size 128 and constant
learning rate equal to 10−3. Given the size of Mul-
tiWoz, it roughly corresponded to 4k update steps.
However, this budget proved to be insufficient. In
particular, our own re-implementation of the cu-
mulative state type of models was not in line with
the results reported in the literature. More impor-
tantly, our Diable model was clearly undertrained
as demonstrated by the fact that model selection on
the validation set was consistently selecting the last
checkpoint. Therefore, we scaled up the training
budget by 10x to roughly 40k update steps. We
rescaled the batch size to 32 and, consistently, the
learning rate to 10−4—a similar setup is used by
Zhao et al. (2022). This new training budget cor-
responds to roughly 20 epochs. We did not notice
any significant improvement by further increasing
it. Finally, we experimented with both Adafactor
and AdamW (Loshchilov and Hutter, 2019) and the
former consistently outperformed the latter while
also speeding up the training process.

D Complete Tables of Results

In this section, we report the complete set of re-
sults for our Diable system and lightCumulative
(our own reproduction of a cumulative state model).
We run each experiment with 5 different random
seeds and report statistics across runs. Furthermore,
we show the effect of label normalisation in rows

11https://discuss.huggingface.co/t/t5-
finetuning-tips/684.

https://github.com/Lightning-AI/lightning/blob/94e6d52b7e2f2a9ffc21f7e11e087808666fe710/src/lightning_lite/utilities/seed.py#L20
https://github.com/Lightning-AI/lightning/blob/94e6d52b7e2f2a9ffc21f7e11e087808666fe710/src/lightning_lite/utilities/seed.py#L20
https://github.com/Lightning-AI/lightning/blob/94e6d52b7e2f2a9ffc21f7e11e087808666fe710/src/lightning_lite/utilities/seed.py#L20
https://discuss.huggingface.co/t/t5-finetuning-tips/684
https://discuss.huggingface.co/t/t5-finetuning-tips/684


Contex Dataset version JGA

Cumulative state

D1:t 2.1 51.06
D1:t 2.2 57.30
D1:t 2.3 48.21
D1:t 2.4 58.52
D1:t 2.1 (fix labels) 51.94
D1:t 2.2 (fix labels) 57.37
D1:t 2.3 (fix labels) 49.77
D1:t 2.4 (fix labels) 65.82

Diable

Dt−4:t + Bt−1 2.1 49.86
Dt−4:t + Bt−1 2.2 56.42
Dt−4:t + Bt−1 2.3 47.84
Dt−4:t + Bt−1 2.4 58.00
Dt−4:t + Bt−1 2.1 (fix labels) 50.92
Dt−4:t + Bt−1 2.2 (fix labels) 56.74
Dt−4:t + Bt−1 2.3 (fix labels) 49.70
Dt−4:t + Bt−1 2.4 (fix labels) 65.01

Table 8: JGA on the evaluation sets of MultiWoz 2.1-2.4
for T5v1.1-large models trained on the MultiWoz 2.2
training set. Result statistics obtained across 5 random
seeds. The evaluation also includes the raw metrics with
no label normalisation.

identified by “fix label”.
Table 8 shows the JGA on the evaluation sets

of MultiWoz 2.1-2.4 for the T5v1.1-large models
trained on the MultiWoz 2.2. Table 11 reports the
JGA on the evaluation sets of MultiWoz 2.1-2.4
for T5v1.1-base models trained on the MultiWoz
2.1. Finally, Table 12 contains the JGA on the
evaluation sets of MultiWoz 2.1-2.4 for T5v1.1-
base models trained on the MultiWoz 2.2.



Slots Number of dialogues Number of turns

2.1 2.2 2.3 2.4 2.1 2.2 2.3 2.4

attraction-area 2397 2396 2431 2396 16232 16401 16521 16277
attraction-name 2270 2260 3348 2358 12557 12710 18348 13041
attraction-type 2502 2500 2542 2503 16900 17003 17203 16940

hotel-area 2416 2417 2478 2452 17213 17562 17457 17490
hotel-day 2599 2599 2620 2597 13927 13963 14141 13928
hotel-internet 1772 1772 1953 1786 12706 12920 13395 12814
hotel-name 3039 3542 3787 3154 16770 19789 21920 17431
hotel-parking 1819 1819 2001 1848 12903 13107 13617 13095
hotel-people 2605 2605 2631 2606 13889 13952 14123 13935
hotel-pricerange 2244 2246 2324 2251 16070 16337 16327 16146
hotel-stars 1984 1984 2035 1969 14220 14475 14435 14177
hotel-stay 2605 2605 2624 2605 13960 14024 14168 13993
hotel-type 2262 2263 2728 2242 16339 16733 17891 16344

restaurant-area 3414 3412 3461 3400 22915 23237 23119 22894
restaurant-day 2626 2626 2643 2626 14463 14485 14643 14492
restaurant-food 3605 3599 3647 3605 24545 24841 24822 24594
restaurant-name 3230 3850 4298 3358 16946 20249 22978 17690
restaurant-people 2635 2635 2655 2638 14543 14590 14747 14591
restaurant-pricerange 3331 3330 3381 3314 22498 22759 22793 22472
restaurant-time 2620 2616 2649 2621 14346 14410 14548 14374

taxi-arriveby 846 840 861 845 3122 3158 3190 3134
taxi-departure 1836 1826 1840 1832 7089 7087 7124 7077
taxi-destination 1837 1831 1841 1829 7091 7117 7149 7073
taxi-leaveat 1071 1051 1094 1063 3963 3929 4077 3934

train-arriveby 2111 2106 2136 2106 13097 13149 13220 13086
train-day 3793 3792 3828 3793 24656 24680 24854 24678
train-departure 3783 3774 3832 3768 24782 24792 25185 24704
train-destination 3806 3799 3831 3796 25254 25247 25458 25201
train-leaveat 2035 2023 2085 2038 12622 12838 12802 12753
train-people 2266 2266 2284 2225 10858 10932 11043 10700

Table 9: Frequency of slots across dialogues and turns for MultiWoz 2.1-2.4.

Train Validation Test

Version 2.1 2.2 2.3 2.4 2.1 2.2 2.3 2.4 2.1 2.2 2.3 2.4

Number of domains

mean 1.81 1.81 1.82 1.81 1.97 1.96 1.97 1.95 1.93 1.93 1.94 1.92
std 0.69 0.68 0.69 0.69 0.62 0.62 0.63 0.61 0.63 0.62 0.63 0.62
min 1 1 1 1 1 1 1 1 1 1 1 1
25% 1 1 1 1 2 2 2 2 2 2 2 2
50% 2 2 2 2 2 2 2 2 2 2 2 2
75% 2 2 2 2 2 2 2 2 2 2 2 2
max 5 4 5 5 4 4 4 4 4 4 4 4

Number of turns

mean 7.96 7.96 7.96 7.96 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37
std 2.59 2.59 2.59 2.59 2.24 2.24 2.24 2.24 2.37 2.37 2.37 2.37
min 2 2 2 2 3 3 3 3 3 3 3 3
25% 6 6 6 6 7 7 7 7 7 7 7 7
50% 8 8 8 8 8 8 8 8 8 8 8 8
75% 10 10 10 10 10 10 10 10 10 10 10 10
max 23 23 23 23 18 18 18 18 19 19 19 19

Number of slots

mean 7.49 7.59 7.95 7.49 7.97 8.10 8.44 8.23 8.08 8.16 8.45 8.08
std 3.51 3.59 3.62 3.51 3.13 3.23 3.23 3.26 3.20 3.27 3.27 3.20
min 1 1 1 1 1 1 1 1 1 1 1 1
25% 5 5 5 5 6 6 6 6 6 6 6 6
50% 7 7 8 7 8 8 8 8 8 8 8 8
75% 10 10 11 10 10 11 11 11 10 11 11 10
max 20 20 20 20 17 18 17 17 18 19 18 19

Table 10: Number of domains, turns, and slots per dialogue for MultiWoz 2.1-2.4.



Context Dataset version mean std min 25% 50% 75% max

Cumulative state

D1:t 2.1 53.80 0.65 52.81 53.57 54.02 54.10 54.53
D1:t 2.2 53.48 0.58 52.65 53.30 53.49 53.74 54.22
D1:t 2.3 49.33 0.59 48.43 49.29 49.31 49.62 50.01
D1:t 2.4 60.54 0.57 60.01 60.22 60.42 60.74 61.33
D1:t 2.1 (fix labels) 53.91 0.63 52.96 53.74 54.07 54.11 54.67
D1:t 2.2 (fix labels) 54.60 0.61 53.77 54.37 54.46 55.17 55.25
D1:t 2.3 (fix labels) 51.16 0.40 50.66 50.84 51.29 51.38 51.63
D1:t 2.4 (fix labels) 67.56 0.52 67.13 67.27 67.34 67.65 68.43

Diable

Dt−4:t + Bt−1 2.1 53.80 0.65 52.75 53.78 53.84 54.11 54.50
Dt−4:t + Bt−1 2.2 53.86 0.41 53.31 53.65 53.87 54.11 54.38
Dt−4:t + Bt−1 2.3 49.70 0.57 48.96 49.38 49.76 49.93 50.46
Dt−4:t + Bt−1 2.4 62.80 0.99 61.06 63.13 63.14 63.19 63.48
Dt−4:t + Bt−1 2.1 (fix labels) 53.97 0.66 52.90 53.92 54.07 54.33 54.65
Dt−4:t + Bt−1 2.2 (fix labels) 54.58 0.67 53.51 54.48 54.63 55.02 55.25
Dt−4:t + Bt−1 2.3 (fix labels) 51.65 0.46 51.04 51.33 51.76 52.06 52.08
Dt−4:t + Bt−1 2.4 (fix labels) 70.46 1.18 68.49 70.60 70.66 70.90 71.64
Bt−1 2.1 53.58 0.30 53.16 53.46 53.59 53.73 53.96
Bt−1 2.2 53.03 0.23 52.78 52.81 53.08 53.20 53.30
Bt−1 2.3 49.30 0.85 48.43 48.82 49.12 49.50 50.65
Bt−1 2.4 61.48 0.83 60.85 61.01 61.26 61.33 62.93
Bt−1 2.1 (fix labels) 53.91 0.70 53.31 53.49 53.72 53.99 55.07
Bt−1 2.2 (fix labels) 54.41 0.93 53.73 53.91 54.02 54.35 56.02
Bt−1 2.3 (fix labels) 51.48 0.70 51.07 51.13 51.17 51.29 52.73
Bt−1 2.4 (fix labels) 70.03 0.95 68.79 69.25 69.76 70.55 71.42

Table 11: JGA on the test sets of MultiWoz 2.1-2.4 for T5v1.1-base models trained on the MultiWoz 2.1 training
set. Result statistics obtained across 5 random seeds. The evaluation also includes the raw metrics with no label
normalisation.



Context Dataset version mean std min 25% 50% 75% max

Cumulative state

D1:t 2.1 49.47 0.22 49.12 49.39 49.55 49.63 49.66
D1:t 2.2 56.72 0.49 56.17 56.38 56.61 57.18 57.28
D1:t 2.3 47.67 0.59 47.10 47.19 47.48 48.14 48.44
D1:t 2.4 56.89 0.51 56.16 56.65 57.04 57.08 57.50
D1:t 2.1 (fix labels) 50.69 0.37 50.45 50.47 50.60 50.61 51.34
D1:t 2.2 (fix labels) 57.01 0.45 56.43 56.81 56.89 57.42 57.51
D1:t 2.3 (fix labels) 49.51 0.63 48.74 48.94 49.81 49.85 50.19
D1:t 2.4 (fix labels) 63.11 0.83 61.98 62.89 63.13 63.27 64.30
D1:t + Bt−1 2.1 49.50 0.50 48.91 49.12 49.59 49.72 50.18
D1:t + Bt−1 2.2 56.43 0.73 55.41 56.20 56.28 56.96 57.28
D1:t + Bt−1 2.3 47.63 0.57 46.96 47.26 47.52 48.14 48.29
D1:t + Bt−1 2.4 57.54 0.55 56.76 57.15 57.84 57.95 57.99
D1:t + Bt−1 2.1 (fix labels) 50.71 0.55 50.04 50.47 50.57 50.98 51.51
D1:t + Bt−1 2.2 (fix labels) 56.89 0.57 56.19 56.65 56.67 57.33 57.60
D1:t + Bt−1 2.3 (fix labels) 49.45 0.54 48.81 49.08 49.50 49.67 50.20
D1:t + Bt−1 2.4 (fix labels) 63.27 0.68 62.11 63.27 63.48 63.74 63.75
Bt−1 2.1 49.59 0.26 49.16 49.57 49.65 49.74 49.84
Bt−1 2.2 56.38 0.46 55.68 56.20 56.43 56.69 56.88
Bt−1 2.3 47.20 0.79 46.13 46.72 47.30 47.80 48.06
Bt−1 2.4 57.35 1.21 55.22 57.54 57.89 57.99 58.13
Bt−1 2.1 (fix labels) 50.90 0.11 50.77 50.83 50.91 50.95 51.06
Bt−1 2.2 (fix labels) 56.50 0.47 55.93 56.13 56.57 56.81 57.08
Bt−1 2.3 (fix labels) 49.08 0.90 47.90 48.48 49.23 49.65 50.15
Bt−1 2.4 (fix labels) 63.52 0.96 62.22 62.89 63.73 64.24 64.53
Dt−4:t + Bt−1 2.1 49.38 0.27 49.08 49.09 49.54 49.59 49.61
Dt−4:t + Bt−1 2.2 56.82 0.92 55.48 56.25 57.23 57.49 57.64
Dt−4:t + Bt−1 2.3 47.52 0.72 46.65 47.12 47.38 47.98 48.48
Dt−4:t + Bt−1 2.4 57.71 0.86 56.73 57.01 57.68 58.49 58.64
Dt−4:t + Bt−1 2.1 (fix labels) 50.58 0.34 50.11 50.34 50.76 50.77 50.90
Dt−4:t + Bt−1 2.2 (fix labels) 57.12 0.93 55.70 56.69 57.45 57.81 57.95
Dt−4:t + Bt−1 2.3 (fix labels) 49.58 0.97 48.03 49.27 50.03 50.09 50.46
Dt−4:t + Bt−1 2.4 (fix labels) 63.15 1.56 61.58 61.96 62.70 64.23 65.26

Diable

D1:t 2.1 48.74 0.20 48.48 48.67 48.67 48.91 48.98
D1:t 2.2 55.33 0.70 54.40 55.11 55.28 55.58 56.31
D1:t 2.3 47.46 0.24 47.18 47.35 47.35 47.65 47.78
D1:t 2.4 58.76 0.57 58.25 58.29 58.68 58.94 59.64
D1:t 2.1 (fix labels) 50.00 0.14 49.81 49.88 50.08 50.08 50.14
D1:t 2.2 (fix labels) 55.63 0.68 54.73 55.39 55.63 55.78 56.62
D1:t 2.3 (fix labels) 49.31 0.26 49.09 49.13 49.21 49.40 49.72
D1:t 2.4 (fix labels) 64.95 0.55 64.05 64.79 65.29 65.30 65.33
D1:t + Bt−1 2.1 48.86 0.30 48.49 48.68 48.82 49.04 49.27
D1:t + Bt−1 2.2 56.04 0.77 55.33 55.71 55.82 56.01 57.34
D1:t + Bt−1 2.3 48.53 0.66 47.82 48.17 48.40 48.71 49.57
D1:t + Bt−1 2.4 59.60 0.54 58.94 59.10 59.86 59.94 60.16
D1:t + Bt−1 2.1 (fix labels) 50.00 0.30 49.62 49.86 49.92 50.22 50.39
D1:t + Bt−1 2.2 (fix labels) 56.28 0.84 55.44 55.87 56.19 56.24 57.66
D1:t + Bt−1 2.3 (fix labels) 50.57 0.73 49.74 50.23 50.38 50.79 51.70
D1:t + Bt−1 2.4 (fix labels) 66.51 0.87 65.18 66.35 66.56 66.93 67.53
Bt−1 2.1 49.03 0.24 48.74 48.93 48.96 49.17 49.35
Bt−1 2.2 55.99 0.66 55.40 55.67 55.81 55.94 57.12
Bt−1 2.3 47.81 0.34 47.25 47.82 47.90 47.94 48.14
Bt−1 2.4 59.13 0.86 58.19 58.42 59.10 59.73 60.23
Bt−1 2.1 (fix labels) 50.58 0.52 50.15 50.23 50.45 50.62 51.45
Bt−1 2.2 (fix labels) 56.30 0.67 55.63 55.98 56.21 56.24 57.42
Bt−1 2.3 (fix labels) 49.85 0.40 49.20 49.88 49.88 49.96 50.31
Bt−1 2.4 (fix labels) 66.13 0.97 65.04 65.45 66.03 66.63 67.49
Dt−4:t + Bt−1 2.1 49.27 0.42 48.82 48.87 49.31 49.67 49.69
Dt−4:t + Bt−1 2.2 56.21 0.56 55.67 55.79 56.00 56.62 56.96
Dt−4:t + Bt−1 2.3 48.01 0.52 47.27 47.83 47.98 48.36 48.62
Dt−4:t + Bt−1 2.4 58.86 0.31 58.53 58.68 58.76 58.98 59.32
Dt−4:t + Bt−1 2.1 (fix labels) 50.40 0.38 49.93 50.07 50.50 50.72 50.77
Dt−4:t + Bt−1 2.2 (fix labels) 56.48 0.57 55.90 56.02 56.36 56.88 57.26
Dt−4:t + Bt−1 2.3 (fix labels) 50.00 0.63 49.04 49.86 50.05 50.31 50.73
Dt−4:t + Bt−1 2.4 (fix labels) 65.35 0.50 64.68 65.19 65.37 65.48 66.05

Gold previous state

Bt−1 2.1 68.44 0.14 68.20 68.41 68.49 68.50 68.58
Bt−1 2.2 82.38 0.27 81.96 82.28 82.43 82.53 82.68
Bt−1 2.3 58.49 0.20 58.25 58.40 58.46 58.56 58.79
Bt−1 2.4 55.38 0.25 55.20 55.20 55.21 55.60 55.71
Bt−1 2.1 (fix labels) 70.00 0.16 69.74 69.95 70.05 70.10 70.14
Bt−1 2.2 (fix labels) 82.50 0.28 82.07 82.45 82.54 82.65 82.81
Bt−1 2.3 (fix labels) 61.06 0.22 60.78 60.95 61.04 61.19 61.34
Bt−1 2.4 (fix labels) 61.46 0.32 61.18 61.22 61.29 61.81 61.81

Table 12: JGA on the test sets of MultiWoz 2.1-2.4 for T5v1.1-base models trained on the MultiWoz 2.2 training
set. Result statistics obtained across 5 random seeds. The evaluation also includes the raw metrics with no label
normalisation.


