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Abstract

Despite readily memorizing world knowledge
about entities, pre-trained language models
(LMs) struggle to compose together two or
more facts to perform multi-hop reasoning in
question-answering tasks. In this work, we
propose techniques that improve upon this lim-
itation by relying on random walks over struc-
tured knowledge graphs. Specifically, we use
soft prompts to guide LMs to chain together
their encoded knowledge by learning to map
multi-hop questions to random walk paths that
lead to the answer. Applying our methods on
two T5 LMs shows substantial improvements
over standard tuning approaches in answering
questions that require 2-hop reasoning.

1 Introduction

Performing multi-hop reasoning to answer ques-
tions such as Where was David Beckham’s daugh-
ter born? requires two fundamental capacities: C1:
possessing pre-requisite knowledge (David Beck-
ham’s daughter is Harper Beckham, Harper Beck-
ham was born in Los Angeles), and C2: ability to
compose internalized knowledge. Contemporary
pre-trained language models (LMs) such as BERT
(Devlin et al., 2019) and T5 (Raffel et al., 2020)
have been shown to be adept at encoding factual
knowledge (Petroni et al., 2019; Zhong et al., 2021;
Roberts et al., 2020), an ability that can be further
boosted by explicitly integrating them with knowl-
edge about entities and relations (Bosselut et al.,
2019; Sun et al., 2020; Wang et al., 2021, i.a.). At
the same time, these LMs often struggle to com-
pose the knowledge they encode (Kassner et al.,
2020; Talmor et al., 2020; Moiseev et al., 2022),
and therefore do not satisfy C2. To overcome this
limitation, previous works have proposed methods
that decompose multi-hop questions into single hop
sub-questions that models can more easily answer

F Work done during an internship at Google Research.

(Min et al., 2019; Perez et al., 2020, i.a.). How-
ever, such methods require training entirely sep-
arate models, or make use of human-annotations
(Patel et al., 2022). Furthermore, they focus on
tasks where models explicitly receive additional
text containing relevant facts, which makes it un-
clear if they can truly compose the knowledge that
they have internalized.

In this work, we aim to improve the standalone,
self-contained ability of LMs to perform multi-hop
reasoning. We posit that random walks—paths be-
tween entity nodes sampled from structured knowl-
edge graphs—can provide a useful training signal
for LMs to compose entity knowledge. To test this,
we perform a case-study on two T5 models (LARGE

and XXL, Raffel et al., 2020). Specifically, we first
integrate within the LMs the single-hop knowledge
that is required to answer multi-hop questions (ef-
fectively guaranteeing C1 is met). We show that
this alone is not enough to demonstrate substantial
improvements on questions requiring 2-hop reason-
ing. We then adapt the knowledge integrated T5
models by training soft prompts (Qin and Eisner,
2021; Lester et al., 2021) on random walks over
the structured knowledge that they have encoded,
and devise two methods that trigger this ability in
the LMs given a multi-hop question as input. The
first method, Parse-then-Hop (PATH), uses two
specialized soft prompts: one to parse entities and
relations from the question, and another to gener-
ate a path to the answer, resembling the outputs
of a random walk. The second method, MIXHOP,
trains a single prompt on a mixture that combines
the QA task with the random walk training, so as
to allow the model to implicitly learn PATH’s task.
Both these soft prompt methods use the same un-
derlying LM (kept frozen), and guide it to compose
its internalized entity knowledge.

Our experiments suggest that integrating random
walks in the T5 models using our proposed tech-
niques can substantially improve their ability to
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Figure 1: Overview of our approach. Colored rectangular boxes indicate soft prompts: Hopping Prompts (HP),
Parsing Prompts (PP), and Prompts for the MIXHOP approach (MP).

L
indicates concatenation.

answer entity-centric 2-hop questions (Ho et al.,
2020) at larger model sizes. Briefly, on T5-XXL

our methods show improvements over previously
proposed prompt-tuning approaches (Lester et al.,
2021; Vu et al., 2022) as well as full model fine-
tuning, with PATH and MIXHOP demonstrating
gains of ⇠16 and ⇠9.6 points in exact match scores
over fine-tuning the entire model, respectively. In
the case of T5-LARGE, our methods demonstrate
improvements over standard prompt-tuning meth-
ods, but fall short of the performance achieved
using fine-tuning, suggesting that larger models—
with up to 11B parameters—are more conducive to
leveraging the training signal provided by random
walks via soft prompts.

2 Method

2.1 Models
We apply our methods on two T5.1.1 models (Raf-
fel et al., 2020)—T5-LARGE (770M parameters)
and T5-XXL (11B parameters), using checkpoints
that have been adapted using the Prefix LM objec-
tive for 100K steps (Lester et al., 2021).

2.2 Knowledge Integration
We first ensure that the LMs we use have the pre-
requisite single-hop knowledge (C1) required to an-
swer multi-hop questions. This is necessary, as pre-
liminary experiments suggested that the T5 models
we used did not satisfy this primary criterion for
multi-hop reasoning (see Table 1). Specifically, we
follow Bosselut et al. (2019) and fine-tune our LMs
on knowledge graph (KG) triples containing the
relevant knowledge that is to be composed to an-
swer questions. That is, given a triple (e1, r, e2),
where e1 and e2 are entities, and r is the relation,
we fine-tune our T5 models to take as input the
string “e1 ; r1”, and produce “e2” as output, us-
ing the Prefix LM objective (Raffel et al., 2020).
To avoid catastrophic forgetting (McCloskey and

Cohen, 1989) and retain the LMs’ language un-
derstanding abilities, we mix our knowledge inte-
gration training instances with that of the models’
pre-training corpus—i.e., C4 (Raffel et al., 2020)—
in a 50:50 mixture. We denote the resulting models
as KNowledge-Integrated T5 (KNIT5).

2.3 Composing knowledge using soft prompts
Random Walk training Our method is centered
around guiding the KNIT5 LMs to chain together
their encoded knowledge by training them on ran-
dom walks over a relevant KG. We formulate ran-
dom walks here as as a sequence of entity-relation-
entity triples that are connected linearly via shared
entities. Figure 1 shows an example with a ran-
dom walk of length 3 (Violet Tendencies ;
director ; Casper Andreas ; place of birth
; Sweden). To perform our random walk training,
we rely on soft prompts (Li and Liang, 2021; Lester
et al., 2021; Qin and Eisner, 2021), a sequence of
learnable token-vectors that are prepended to the
input of the LM. Importantly, we only update these
vectors during training, thereby keeping intact the
utility and encoded knowledge of the main LM,
while also being parameter efficient. Our training
procedure is as follows: we first perform uniform
random walks of length n over the KG used in sec-
tion 2.2, resulting in a set whose elements are se-
quences of entities interleaved by the relations that
connect them: (e1, r1, e2, . . . , rn�1, en). During
training, KNIT5 receives as input an incomplete
path, with only the initial entity and the intermedi-
ate relations (e1, r1, r2, . . . , rn�1), and is tasked to
generate the full path: (e1, r1, e2, r2 . . . , rn�1, en).
We denote the trained prompts that trigger this abil-
ity in KNIT5 as Hopping Prompts.

2.4 Performing QA using Hopping Prompts
We propose two new techniques that utilize Hop-
ping Prompts to map natural language questions to
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appropriate paths in the knowledge graph:

Parse-then-Hop (PATH) We take advantage of
the modularity of soft prompts, and distribute the re-
sponsibility of parsing the relational structure from
questions and random walk querying using sepa-
rate specialized prompts, keeping the underlying
model the same. We train “parsing” prompts that
parse questions to incomplete random walk queries,
resembling the inputs to the Hopping Prompts de-
scribed above. For instance, the question “Where
was David Beckham’s daughter born?” is parsed
to “David Beckham ; daughter ; place of
birth”. We then swap the parsing prompts with
the hopping prompts, using the outputs from the
parsing step as inputs and then run inference to get
a path from the entity in the question to the answer:
“David Beckham ; daughter ; Harper Beckham
; place of birth ; Los Angeles”, as shown
in Figure 1. We posit that parsing of the appropri-
ate relational structure from the question should
be easy and self-contained, since it only involves
using the surface form of the question as opposed
to invoking any external knowledge, which is dele-
gated to Hopping Prompts.

MIXHOP We propose to jointly train a single
set of prompts on a mixture of the QA task and
the Hopping Prompts task (50:50), thereby halving
the number of forward passes from the previous
method. Our primary motivation here is to pro-
vide diverse training signals that get models to map
questions to the structured knowledge that explic-
itly connects the entity in the question to the answer
entity. Like PATH, MIXHOP directly produces ran-
dom walk paths as output, as shown in Figure 1.

3 Experimental Setup

3.1 Data
Multi-hop QA Dataset While traditional multi-
hop QA datasets provide additional paragraphs
(Yang et al., 2018; Trivedi et al., 2022) for models
to reason over, we operate under the more challeng-
ing closed-book QA setting (Roberts et al., 2020),
where such contexts are omitted. Specifically, we
use the “compositional” and “inference” subsets of
the 2WikiMultiHopQA dataset (Ho et al., 2020),
which contains 2-hop English questions focusing
on 98,284 entities and 29 relations, sourced from
WikiData (Vrandečić and Krötzsch, 2014). We se-
lect this dataset as it uniquely provides the precise
structured knowledge that is required to answer

each question, in the form of entity-relation-entity
triples.1 Since the test splits for these specific sub-
sets are private, we use the validation split as the
test set, and use 10% of the training set for valida-
tion. In total we have 72,759 train, 8,085 validation,
and 6,768 test questions.

1-hop QA Dataset To characterize if the models
we test have the pre-requisite 1-hop knowledge,
we additionally construct 1-hop questions from
2WikiMultiHopQA by applying manually defined
templates over the entity triples provided for each
2-hop question (see Appendix C). For instance, the
triple Inception ; director ; Christopher
Nolan is converted to Who is the director of Incep-
tion?. We end up with 83,643 train, 5,022 valida-
tion, and 6,440 test QA instances. We term this
constructed dataset as 1WikiHopQA.

Knowledge Integration Data We build the KG
for our methods using the set of ground-truth triples
provided in the 2WikiMultiHopQA dataset (98,284
entities and 29 relations, amounting to 95K triples).

Random Walk Training Corpus For each en-
tity in the above KG, we sample up to 20 random
walks of length 3, each corresponding to an in-
stance of 2 hops between entities. We repeat this
step 5 times with different seeds, discard duplicate
paths, and end up with a total of 165,324 unique
paths as a result. Importantly, we hold out the
paths that include the triples in the QA task’s
validation and test sets in order to avoid leak-
age, ending up with 155,311/ 8,085/6,768 paths
as our train/validation/test sets, respectively. This
way, our experiments test for the kinds of gener-
alization where models should successfully place
entities in novel structures (complete paths in the
KG), whose primitive knowledge (1-hop triples)
is encoded in the model, but the composition is
not. This can be viewed as a partial version of
the lexical and structural generalization tests in
stricter, more prominent compositional generaliza-
tion benchmarks (Lake and Baroni, 2018; Kim and
Linzen, 2020).

3.2 Baselines and Comparisons
We compare our proposed approaches to standard
fine-tuning and prompt-tuning (Lester et al., 2021),

1Works such as Balachandran et al. (2021) propose unsu-
pervised mappings of questions in more popular datasets such
as NaturalQuestions (Kwiatkowski et al., 2019) to paths in
knowledge graphs, but our initial investigations of these paths
found them to be extensively noisy.
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Setup Model LARGE XXL

PT
T5 4.36 6.89
KNIT5 6.30 31.64

FT
T5 6.24 8.82
KNIT5 22.73 43.60

Table 1: Test EM scores achieved by T5 and KNIT5 on
1WikiHopQA. PT: Prompt-Tuning, FT: Fine-Tuning.

which we use to directly produce the answer, with-
out any intermediate entities or relations. Addi-
tionally, we also adapt SPOT (Vu et al., 2022), a
prompt-tuning method where we initialize prompts
with those that were pre-trained on related tasks.
In our adaptation, we initialize prompts using the
values of the Hopping Prompts, and SPOT-transfer
them to guide KNIT5 models to generate the full
output, similar to PATH and MIXHOP. Since we
operate in the closed book QA setting (Roberts
et al., 2020), our methods cannot be directly com-
pared to previous approaches on the dataset we
considered, all of which receive paragraph contexts
during training. Only two other methods have con-
sidered the present dataset in its closed-book format
(Press et al., 2023; Wang et al., 2022). However,
both of them use smaller subsets of the validation
set as their testing set, and test on different pre-
trained models, making it impractical to directly
compare our results to their reported values.

4 Experiments and Findings2

We report and summarize our results as follows:

Integration of 1-hop knowledge only results
in marginal improvements on 2-hop questions
We begin by first establishing the extent to which
T5 models encode and compose 1-hop knowledge
required to answer 2-hop questions, and whether
additional knowledge integration (via KNIT5) can
improve both these abilities. From Tables 1 and 3,
we observe that the T5 models struggle to answer
both 1-hop as well as 2-hop questions, suggesting
that they critically lack the precise 1-hop entity
knowledge required to demonstrate success on the
2-hop questions. The KNIT5 LMs overcome this
limitation, by showing substantial gains on 1Wik-
iHopQA over their T5 counterparts—they show
improvements of ⇠16.5 and ⇠34.8 points in ex-

2Training details for all experiments can be found in Ap-
pendix A.

Model EM F1

KNIT5-LARGE 22.83 84.72
KNIT5-XXL 58.36 92.82

Table 2: Best reported validation EM and F1 scores
achieved from training Hopping Prompts to get KNIT5
models to generate random-walks. N = 8085.

act match (EM) scores at LARGE and XXL sizes
in the fine-tuning setting, respectively (Table 1).
However, this is insufficient to show improvements
on 2-hop questions—where maximum gain over
T5 is only 2.2 points, achieved by prompt-tuning
KNIT5-XXL (see Table 3). This suggests that even
after being endowed with the prerequisite 1-hop
knowledge, both LMs are unable to successfully
answer more complicated questions, echoing the
results of Moiseev et al. (2022). Note that both
KNIT5 models almost perfectly memorize the KG
in our knowledge-integration experiments (achiev-
ing ⇠96% EM in under 10K training steps; see
Appendix B.1), so their limitations on 2-hop ques-
tions are likely not due to lack of entity knowledge
and perhaps instead due to the inability to compose
or chain together memorized facts.

Generalizing to novel random walks may re-
quire the prompt-tuning of larger LMs We
now turn to analyzing the performance of mod-
els in generating random walks, a critical compo-
nent for all our proposed QA methods. How well
does prompt-tuning LMs generalize to KG paths
composed of facts they have memorized but are
unseen during training? Recall that this step in-
volved leveraging soft prompts (called Hopping
Prompts) to guide the LMs to chain together their
memorized entity knowledge and generate paths
akin to performing a random walk. That is, it is
the Hopping Prompts that must provide the neces-
sary condition in the encoder to facilitate successful
output-generation, and not the entire LM. Also re-
call that we explicitly held out the paths involving
triples in the validation and test sets of the main
QA task to prevent complete memorization (due to
leakage into the training set). This way we are able
to measure the extent to which models learned to
construct KG paths in a generalized manner. To
this end, we compute the EM and F1 scores over
the full generated spans of entities, interleaved by
the relations that connect them. Note that EM is
substantially stricter than F1, since F1 rewards par-
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Size
Prompt-Tuning Fine-Tuning

SPOT PATH MIXHOP
T5 KNIT5 T5 KNIT5

LARGE 4.47 5.29 10.03 11.19 7.22 8.62 6.58
XXL 6.42 8.62 12.92 13.47 20.03 29.37 23.09

Table 3: Test set EM scores achieved by various tuning methods on 2WikiMultiHopQA (Ho et al., 2020). SPOT
(Vu et al., 2022), PATH, and MIXHOP use KNIT5 as their base model.

tial overlap of tokens between the target vs. the
generated output. Table 2 shows these scores for
KNIT5-LARGE and KNIT5-XXL on the validation
set of our random walk task, tuned using the Hop-
ping Prompts. We see from Table 2 that there is
a substantial gap between KNIT5-LARGE (⇠23
EM) and KNIT5-XXL (⇠58 EM), suggesting that
the LARGE model finds it difficult to generalize to
random walk paths involving entities and relations
outside of the training set. We conclude from this
observation that the gap between KNIT5-LARGE

and KNIT5-XXL in generalizing to held-out KG
paths is likely going to be reflected when tested
for 2-hop QA. That is, we expect our prompting
methods with KNIT5-LARGE as the base-model to
struggle on our test set questions as their ground-
truth paths were not encountered during training,
and at the same time, expect the opposite to be the
case for KNIT5-XXL. Additionally, the EM score
achieved by the XXL-sized model is well below
perfect values, highlighting important avenues for
future work to improve upon these gaps.

Training on random walks substantially im-
proves 2-hop capabilities ..but mostly in larger
LMs We used three methods that leveraged
the training signal provided by random walks to
compose the 1-hop knowledge as memorized by
KNIT5: PATH (ours), MIXHOP (ours), and SPOT
(Vu et al., 2022). Due to lack of space, examples of
the outputs from each of these methods, along with
analysis of intermediate steps (e.g., parsing) are
shown in Appendix B. We observe from Table 3
that for the XXL-sized model, all three methods
lead to substantial improvements in performance on
2-hop questions over standard tuning approaches
on T5 and KNIT5. Notably for KNIT5-XXL, ran-
dom walk-integrated methods improve even over
fine-tuning, which is often expected to be better
at transfer learning as compared to parameter effi-
cient methods. Among the three, our PATH method
shows the best improvements (⇠16 point gain over
fine-tuning KNIT5-XXL) at answering 2-hop ques-

tions. This showcases the promise of learning sepa-
rate specialized prompts that operate over the same
underlying model to first parse natural language
into incomplete structured knowledge, and then
expand it to answer the question, while also elic-
iting intermediate steps (Wang et al., 2022), sim-
ilar to recent in-context prompting methods (Wei
et al., 2022b; Nye et al., 2022). While the MIXHOP

method (⇠9.6 point gain over fine-tuning) falls
short of PATH, it still improves over SPOT (⇠6.6
point gain over fine-tuning), suggesting that joint
training of related tasks may improve over sequen-
tial training (as employed by SPOT) in perform-
ing multi-hop reasoning, at larger model sizes. In
the case of T5-LARGE and KNIT5-LARGE, while
the proposed methods show improvements over
standard prompt-tuning, with PATH demonstrating
a gain of 3.33 points over prompt-tuning KNIT5-
LARGE, they fall-short of the performance achieved
by fine-tuning. However, their non-trivial improve-
ments over regular prompt-tuning suggests the gen-
eral benefits of the training signal provided by ran-
dom walks, which end up being most impressive at
models that are an order of magnitude larger. Over-
all, these results corroborate with our hypothesis
from the random walk tests about KNIT5-LARGE’s
potential inability to generate partially novel ran-
dom walks given either natural language multi-hop
questions (MIXHOP) or their parses (PATH).

5 Conclusion

We show that composition of memorized world
knowledge can be triggered in LMs with up to
11B parameters (T5-XXL) to a desirable extent by
leveraging training signal from random walks over
structured knowledge using approaches based on
prompt-tuning (Lester et al., 2021). Doing so leads
to substantial improvements in the LMs’ ability to
answer 2-hop questions, even beyond standard, full
model fine-tuning.
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Limitations

Despite showing non-trivial improvements in the
multi-hop capabilities of T5 models, our work has
multiple limitations.

Restricted to 2-hops First, we chose 2WikiHop-
MultiQA (Ho et al., 2020) as our primary dataset
since it uniquely maps each question to a chain of
triples that contain the precise, noiseless single-hop
knowledge required to answer the question. How-
ever, this comes at the cost of our analyses only
being restricted to 2-hops (though see arguments
by Press et al. (2023, sec 3.5) who suggest 3-and-
4-hop questions to be too convoluted to understand
even by native-speakers). Nonetheless, our random
walk training method is general by definition, and
can be extended to multiple hops, though its effec-
tiveness on QA tasks requiring more than 2-hops
of reasoning remains to be measured.

Knowledge Graph size Our focus in this paper
was to allow models to chain together their inter-
nalized knowledge in order to answer complex 2-
hop questions. However, this critically requires
them to possess the world knowledge required to
answer the questions, for which we had to memo-
rize the KG constructed using the structured triples
provided in the dataset. This trade-off between
focusing on knowledge composition vs. fully en-
coding world knowledge restricted our KG to be
small in size (only 98,284 entities and 29 relations),
which could be impractical in most real-world ap-
plications. In future work, we will experiment with
larger sized KGs (Vrandečić and Krötzsch, 2014),
by adding a substantially larger amount of addi-
tional triples to the existing KG, and measure their
impact on multi-hop reasoning.

Lack of diverse QA tasks Finally, we were un-
able to consider popular datasets with CBQA ver-
sions such as TriviaQA (Roberts et al., 2020), Nat-
uralQuestions (Kwiatkowski et al., 2019), etc., due
to their lack of links from questions to structured
knowledge. Future work can apply entity and re-
lational linking techniques (Balachandran et al.,
2021; Agarwal et al., 2021) in order to augment
such QA datasets with (possibly) noisy links to
structured knowledge, which will allow us to paint
a more holistic picture of our methods. Addition-
ally, this would also overcome the above limitation
(of KG size), as it would substantially increase the
amounts of entities and relations to be encoded

within models.

Implications for Larger Models Although we
show clear improvements in triggering 2-hop rea-
soning in the largest T5 LM (T5-XXL), with 11B
parameters, contemporary work has shown that
multi-step reasoning capacities naturally emerge
in LMs that are two or three orders of magnitude
larger (Brown et al., 2020; Chowdhery et al., 2022;
Wei et al., 2022b,a). However, these LMs benefit
from examples in-context (especially since tuning
them is non-trivial and expensive), and therefore it
is unclear whether our methods can improve such
models’ capacities even further. We have not tested
such LMs in our work, due to resource limitations.
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A Training and Experiment Details

Hyperparameters We use the default hyperpa-
rameters and optimizers used to train the T5 1.1
checkpoints (Raffel et al., 2020) as well as those
used in the Prompt-Tuning and SPOT papers
(Lester et al., 2021; Vu et al., 2022). We set the
prompt-length to 100 for all prompt-tuning experi-
ments, and initialized them with the top 100 tokens
in the T5 models’ vocabulary, following Lester et al.
(2021). We fine-tune and prompt-tune our models
for a maximum of 100K and 200K steps, respec-
tively. We stop training on convergence, and use the
checkpoint with the best validation performance to
evaluate. Tables 4, 5, and 6 show hyperparameter
values for each type of experiment. All results are
from single runs.

Hardware and Compute Prompt-tuning and
fine-tuning experiments for LARGE models were
run on 16 TPUv3 chips, while those for XXL mod-
els were run on 64 TPUv3 chips. One exception is
knowledge integration (which also involved contin-
ual pre-training on C4, larger batch size, and longer
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sequences), for which we used 256 TPUv3 chips
for XXL, and 64 TPUv3 chips for LARGE.

Code For metric calculation and checkpoints, we
use the T5 and T5x code-base, open-sourced on
github.34 For prompt-tuning experiments, we adapt
the original code-base (Lester et al., 2021), which
is also open-sourced.5

Data The 2WikiMultiHopQA dataset (Ho et al.,
2020) has been released with Apache 2.0 license.6

Hyperparameter Values

Batch Size 32 (XXL), 128 (LARGE)
Learning Rate 0.001
Dropout 0.1
Training Steps 100K (w/ early stopping)

Table 4: Hyperparameters used for fine-tuning T5-
LARGE and T5-XXL. Values except batch size and
training steps kept same as Raffel et al. (2020).

Hyperparameter Values

Batch Size 512
Learning Rate 0.001
Dropout 0.1
Training Steps 100K (w/ early stopping)

Table 5: Hyperparameters used for Knowledge Integra-
tion experiments. Values except batch size and training
steps kept same as Raffel et al. (2020).

Hyperparameter Values

Batch Size 32 (XXL), 128 (LARGE)
Learning Rate 0.3
Prompt Length 100
Dropout 0.1
Training Steps 200K (w/ early stopping)

Table 6: Hyperparameters used for all prompt-tuning
experiments. Values except batch size kept same as
Lester et al. (2021), number of training steps kept same
as Vu et al. (2022), who found longer training to be
beneficial.

3https://github.com/google-research/
text-to-text-transfer-transformer/tree/main/t5

4https://github.com/google-research/t5x
5https://github.com/google-research/

prompt-tuning
6https://github.com/Alab-NII/2wikimultihop
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Figure 2: Time course of KG memorization for differ-
ent KNIT5 model sizes. EM scores calculated for pro-
ducing object entity (e2), given subject (e1) and relation
(r) as inputs to T5 models.

B Additional Analyses

B.1 Knowledge Integration
Integrating single-hop entity knowledge is an im-
portant part of our methods. How well are the mod-
els able to actually encode this knowledge? Fig-
ure 2 shows the dynamics of memorization across
both models, measured as the exact match scores
in generating e2 given e1 and r. From Figure 2, we
see that the XXL and LARGE models can memorize
96% of the KG within 5,000 and 10,000 steps re-
spectively. With a batch size of 512, this translates
to traversing the dataset 27 and 54 times, respec-
tively, for XXL and LARGE. An important caveat
here is that the models are also being tuned on C4
(Raffel et al., 2020), in order to retain the models’
general language understanding-like capabilities.
That is, they can be expected to memorize the KG
relatively faster in the absence of training on the
C4 corpus, but this would constitute a trade-off, by
leading to overfitted models with substantial loss
their original utility on other NLP tasks.

B.2 Parsing Step in PATH
The parsing step is essential for our Parse-then-Hop
approach to succeed. Here we perform additional
analyses on how well models can successfully ex-
tract the relational structure that is required to an-
swer the 2-hop questions in 2WikiMultiHopQA.
Recall that the objective of the parsing step is to
produce as output a sequence indicating an incom-
plete random walk, containing only the initial entity
(seed node), followed by the relations (edges) that
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Model Relation EM Entity EM Full EM

KNIT5-LARGE 98.69 76.19 78.98
KNIT5-XXL 99.17 78.46 80.17

Table 7: Metrics for the parsing sub-task of PATH on
test-set questions.

lead to the final entity. For instance, if the ques-
tion is “Where was the director of Inception (film)
born?” the output of the parsing step should be:

Inception (film) ; director ;
place of birth

Here, Inception (film) is the entity, e1, while
director and place of birth are the relations,
r1 and r2, respectively. We analyze the extent to
which models successfully extract these three ele-
ments for the 6,768 test set questions, by measuring
three quantities: (1) Relation EM, which is the ex-
act match score computed between the ground truth
span of relation pairs (here “director ; place
of birth”), and that extracted from the model out-
puts; (2) Entity EM, which is similar to Relation
EM, but only considers the initial entity; and (3)
Full EM, which computes the exact match score
between the full output and the target. Table 7
shows these values from prompt-tuning the two
KNIT5 models.

From Table 7, we see that prompt-tuning both
models allows them to achieve almost perfect EM
values in extracting the relation pairs from the ques-
tions. However, we notice that models are not able
to maintain this performance in copying over the
entity, which lowers their overall EM scores on
this task. We performed a manual analysis of 50
randomly sampled outputs—with incorrect entity
predictions—and found most errors to be due to
omission of tokens involving middle names, or ad-
ditional information about the entity such as the
“(film)” in the above example (other examples in-
clude the entity’s title, such as “Count of East
Frisia”, or “(born in year XXX)”, “(died in
year XXX)”, etc.)

B.3 Example Outputs
Tables 8, 9, 10, and 11 show examples of outputs
from the different approaches used in this work (ex-
amples shown for the XXL-sized models). Below
we discuss each of these cases in detail:

• In Table 8, all approaches that leverage the
training signal from random walks succeed,

while tuning methods that do not fail. Ad-
ditionally, all three random walk-integrated
methods agree on their parsed relational struc-
ture as well as the intermediate entity.

• In Table 9, only the two proposed methods
(PATH and MIXHOP) succeed, while all other
methods fail. Note that SPOT correctly pre-
dicts the correct intermediate entity (Sally
Hemings), but is unable to predict the final
entity (John Wayles).

• Table 10 shows an example where all ap-
proaches fail. However, this question is am-
biguous, as aunt can either mean father’s sis-
ter or mother’s sister – our random walk in-
tegrated methods correctly predict these rela-
tional structures but are unable to resolve the
intermediate and final entities.

• Table 11 shows an example where all ap-
proaches are supposedly scored as incorrect,
but are in-fact correct. Here we argue that the
ground truth answer, “United Kingdom” is in
its incorrect form, since the question asks for
the nationality of a person. Our random walk-
integrated methods successfully predict the
relational structure and intermediate entities.
Moreover all approaches predict British or
English, which are more acceptable forms
of nationality for persons from the United
Kingdom. This problem could be mitigated
by adding in aliases for the entities in the
ground-truth answer space, similar to Trivi-
aQA (Roberts et al., 2020).

C Templates for constructing
1WikiHopQA

Here we describe our process of constructing 1Wik-
iHopQA: a collection of English question-answer
pairs that only require single-hop knowledge using
the 2WikiMultiHopQA (Ho et al., 2020) dataset.
The 2WikiMultiHopQA dataset provides unique
sequences of single-hop triples that collectively an-
swer each 2-hop question. These amount to a total
of 95,103 unique triples spanning 98,284 unique
entities and 29 relations. We manually define a
diverse set of templates for each relation, as shown
in Table 12. For many relations, we have multiple
different paraphrases of the question template, e.g.,
the relation director translates to: Who is the di-
rector of X? or Who directed the film X? In such
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Question: Where was the place of burial of the director of film New World (1995 Film)? Answer: Père Lachaise Cemetery

Model Setup Response

T5-XXL
FT Forest Lawn Memorial Park

PT Forest Lawn Memorial Park

KNIT5-XXL

FT New York

PT Forest Lawn Memorial Park

SPOT New World ; director ; Alain Corneau ; place of burial ; Père Lachaise Cemetery

PATH
PP: New World ; director ; place of burial

HP: New World ; director ; Alain Corneau ; place of burial ; Père Lachaise Cemetery

MIXHOP New World ; director ; Alain Corneau ; place of burial ; Père Lachaise Cemetery

Table 8: An example case where methods that leverage random walks succeed, but baselines fail.

Question: Who is Harriet Hemings’s maternal grandfather? Answer: John Wayles

Model Setup Response

T5-XXL
FT Ted Hughes

PT John Hemings

KNIT5-XXL

FT Betty Hemings

PT John Hemings

SPOT Harriet Hemings ; mother ; Sally Hemings ; father ; Thomas Hemings

PATH
PP: Harriet Hemings ; mother ; father

HP: Harriet Hemings ; mother ; Sally Hemings ; father ; John Wayles

MIXHOP Harriet Hemings ; mother ; Sally Hemings ; father ; John Wayles

Table 9: An example case where all baselines fail, and additionally SPoT (Vu et al., 2022) also produces the
incorrect final entity, but our two proposed methods succeed.

Question: Who is Christopher Blom Paus’s aunt? Answer: Hedevig Christine Paus

Model Setup Response

T5-XXL
FT Clotilde of Saxe - Lauenburg

PT Annemarie Blom Paus

KNIT5-XXL

FT Anna of Oldenburg

PT Christina Paus

SPOT Christopher Blom Paus ; father ; Ole Paus ; sibling ; Kjersti Bua Paus

PATH
PP: Christopher Blom Paus ; mother ; sibling

HP: Christopher Blom Paus ; mother ; Margrete Laarmann ; sibling ; Kjartan Flóki

MIXHOP Christopher Blom Paus ; mother ; Ulla Blom ; sibling ; Gunnar Blom

Table 10: An example of an ambiguous question (since “aunt” can be father’s sister or mother’s sister) on which all
approaches fail. Importantly, methods that use random-walks accurately generate the relations required to answer
the question, but fail at predicting the correct entities.

cases, we randomly sample a template from the
entire set, equally weighing each. In total, we end
up with 83,643 train, 5,022 validation, and 6,440
test QA pairs.
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Question: What nationality is John Bede Dalley’s father ? Answer: United Kingdom

Model Setup Response

T5-XXL
FT British

PT British

KNIT5-XXL

FT English

PT English

SPOT John Bede Dalley ; father ; William Dalley ; country of citizenship ; English

PATH
PP: John Bede Dalley ; father ; country of citizenship

HP: John Bede Dalley ; father ; William Bede Dalley ; country of citizenship ; English

MIXHOP John Bede Dalley ; father ; William Dalley, 1st Viscount Darnley ; country of citizenship ; British

Table 11: An example of a scenario where all models fail at answering the question correctly, but this is likely
attributable to the dataset since it does not contain aliases.

Relation Template Space Relation Template Space

director Who is the director of X?, Who di-
rected the film X?

mother Who is the mother of X?, Who is X’s
mother?

date of birth What is the date of birth of X?, When
is X’s birthday?, When was X born?

founded by Who is the founder of X?, Who
founded X?

date of death When did X die?, What is the date of
death of X?

inception When was X founded?

country What country is X from?, What is the
nationality of X?

manufacturer Who manufactures X?

country of
citizenship

What country is X from?, What is the
nationality of X?

performer Who is the performer of the song X?,
Who performed the song X?

award
received

What is the award that X received?,
Which award did X receive?

place of
birth

Where was X born?, What is the
place of birth of X?

cause of
death

Why did X die?, What was the cause
of X’s death?

place of
burial

Where was X buried?, Where is the
place of burial of X?

composer Who is the composer of X?, Who com-
posed X?

place of
death

Where did X die?, Where is the place
of death of X?

creator Who is the creator of X?, Who cre-
ated X?

place of
detention

Where did X go to prison?, Where
was X detained?

child Who is the child of X? presenter Who is the presenter of X?, Who pre-
sented X?

doctoral
advisor

Who is the doctoral advisor of X? publisher Who published X?, What company
published X?

editor Who is the editor of X?, Who edited
X?

sibling Who is the sibling of X?, Who is X’s
sibling?

educated at Where did X graduate from?, What
is the alma mater of X?, Where did X
study?

spouse Who is the spouse of X?, Who is X’s
spouse?

employer Who is the employer of X?, Where
does X work?

student of Who was the teacher of X?, Who was
X’s teacher?

father Who is the father of X?, Who is X’s
father?

Table 12: Question templates for for each of the 29 relations, used to create 1WikiHopQA. X stands for the subject.
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