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Abstract

Multimodal misinformation on online social
platforms is becoming a critical concern due
to increasing credibility and easier dissemina-
tion brought by multimedia content, compared
to traditional text-only information. While ex-
isting multimodal detection approaches have
achieved high performance, the lack of inter-
pretability hinders these systems’ reliability
and practical deployment. Inspired by Neural-
Symbolic AI which combines the learning abil-
ity of neural networks with the explainability
of symbolic learning, we propose a novel logic-
based neural model for multimodal misinfor-
mation detection which integrates interpretable
logic clauses to express the reasoning process
of the target task. To make learning effective,
we parameterize symbolic logical elements us-
ing neural representations, which facilitate the
automatic generation and evaluation of mean-
ingful logic clauses. Additionally, to make our
framework generalizable across diverse mis-
information sources, we introduce five meta-
predicates that can be instantiated with different
correlations. Results on three public datasets
(Twitter, Weibo, and Sarcasm) demonstrate the
feasibility and versatility of our model. The
implementation of our work can be found in
this link 1.

1 Introduction

Misinformation refers to incorrect or misleading
information2 which includes fake news, rumors,
satire, etc. The enormous amount of misinfor-
mation emerged on online social platforms is at-
tributed to users’ reliability on the information
provided by the internet and the inability to dis-
cern fact from fiction (Spinney, 2017). Moreover,
widespread misinformation can have negative con-
sequences for both societies and individuals. There-

1https://github.com/less-and-less-bugs/
LogicMD

2https://www.merriam-webster.com/dictionary/
misinformation

fore, there is an urgent need to identify misinfor-
mation automatically. While numerous posts are
in multimodal style (i.e., text and image) on so-
cial media, this work concentrates on multimodal
misinformation detection.

Multimodal approaches, which either fuse text
and image features (Wang et al., 2018; Khattar
et al., 2019; Xue et al., 2021; Chen et al., 2022b) or
investigate discrepancies between the two modal-
ities (Li et al., 2022a; Qi et al., 2021), have been
used for misinformation detection with some suc-
cess. However, these methods often lack inter-
pretability because of the black-box nature of the
neural network. Some frameworks have been pro-
posed to solve this challenge. As depicted in Fig. 1,
methods based on attention maps, such as those out-
lined in (Liang et al., 2021) and (Liu et al., 2022a),
have been employed to identify highly correlated
text or image content (referred to here as "where")
according to attention weights, while multi-view
based methods, such as those described in (Zhu
et al., 2022b) and (Ying et al., 2022), have been
utilized to highlight the most contributive perspec-
tives3 (referred to here as "how"). However, the ex-
plainability of the fusion of such attention or views
has yet to be fully established (Liu et al., 2022b),
and these methods cannot concurrently illustrate
both the “where" and “how" of the reasoning pro-
cess. Such interpretability is crucial for ensuring
trust, reliability, and adoption of deep learning sys-
tems in real-world applications (Linardatos et al.,
2021; Sun et al., 2021; Cui et al., 2022), particu-
larly when it comes to detecting misinformation
(Cui et al., 2019).

To address the aforementioned limitations, ow-
ing to Neural-Symbolic learning (Raedt et al., 2020;
Hamilton et al., 2022), we propose to incorporate

3Perspective is defined as a particular aspect to identify
misinformation. In our work, it involves different types of as-
sembly of different modalities, following a popular classifica-
tion method of existing misinformation detection approaches
(Alam et al., 2022).
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(a) Original Rumor (b) Attention Map

(c) Multi-View (d) Neural-Symbolic

Figure 1: Examples of explanations generated by at-
tention map, multi-view, and our proposed Neural-
Symbolic-based method for a rumor sample in Twitter
dataset. For (c) and (d), a higher value indicates a higher
probability of being detected as a rumor.

logic reasoning into the misinformation detection
framework to derive human-readable clauses. As
shown in Fig. 1d, the clause b1((v1, v2), Rumor)∧
b2((t1, t2), Rumor) ⇒ h((T, I)), Rumor) is in-
duced from the text-image pair where constants
v1, v2, t1, t2 are crucial visual patches and textual
tokens for predication, corresponding to "where".
Body predicates b1 and b2 indicate relationships be-
tween patches and tokens for misinformation iden-
tification, corresponding to "how". We propose
to automatically learn these logic clauses which
explicitly express evident features and their inter-
actions to promote interpretability and improve the
final performance, which has not been explored by
previous work.

However, given the intrinsic complexity and di-
versity of multimodal context, it is hard to explicitly
predefine the exact relationships as logic predicates.
To this end, we introduce five general perspectives
relevant to the task of misinformation detection
as meta-predicates for clause formulation. These
perspectives include suspicious atomic textual con-
tent, visual content, relationships between text to-
kens, visual patches and both modalities. Each
meta-predicate can be instantiated with different
correlations between contents of the text-image
pair and target labels (e.g., (t1, t2) and Rumor in
Fig. 1d), aiming to cover a wide range of aspects
leading to misinformation. For instance, the fifth
perspective implicates exploiting cross-modal con-
tents to debunk misinformation while cross-modal
ambiguity learning (Chen et al., 2022b), incon-

sistency between news contents and background
knowledge (Abdelnabi et al., 2022) and entities
misalignment (Li et al., 2022a) are candidate corre-
lations to achieve this goal.

Building upon these definitions, we propose a
logic-based multimodal misinformation detection
model (LogicDM). LogicDM first extracts embed-
dings for text tokens and image patches using corre-
sponding encoders and then generates cross-modal
object embeddings for different predicates using
a multi-layer graph convolutional network (GCN).
We then propose to parameterize meta-predicates
by weighing the importance of each correlation.
When combined with different object constants,
these meta-predicates are softly selected to pro-
duce interpretable logic clauses defining the target
predicate. The whole framework can be trained
end-to-end with differentiable logic operators and
probabilistic logic evaluations. To summarize, the
contributions of this work include: 1) We propose
an explainable neural-symbolic approach capable
of automatically generating logic clauses instanti-
ated with multimodal objects via differentiable neu-
ral components. 2) We define five meta-predicates
building upon existing misinformation detection
perspectives and introduce an adaptive mechanism
to represent these predicates using soft selections
over multiple pre-defined correlations. 3) We pro-
vide comprehensive evaluations of our model on
three benchmark datasets.

2 Related Work

2.1 Misinformation Detection

Misinformation detection has gained significant at-
tention in recent years due to the proliferation of
content on online social media (Alam et al., 2022).
To identify misinformation, the text modality can
be used with clues such as semantics (Zhu et al.,
2022b; Ma et al., 2019), writing style (Zhou et al.,
2019), emotion (Zhu et al., 2022b), special word
usage (Zhu et al., 2022a), and punctuation (Pérez-
Rosas et al., 2018; Rubin et al., 2016). In addi-
tion, image features can help detect misinformation,
with fake and real news often having distinct im-
age distribution patterns, including differences in
image semantics and compression trace (Jin et al.,
2017a,b). Intra-modal inconsistency and incon-
gruity within the text or image (Tay et al., 2018;
Huh et al., 2018) can also serve as indicators of mis-
information. Cross-modal interaction and fusion,
used by many recent multimodality-based methods,
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can assist in detecting misinformation. For exam-
ple, (Li et al., 2022a; Qi et al., 2021) compared
the characteristics of entities across the textual and
visual modalities, while Ying et al. (2022) mea-
sured cross-modal inconsistency through Kullback-
Leibler divergence between unimodal distributions.

2.2 Neural-Symbolic Reasoning

Deep learning has achieved impressive results, but
its limitations in interpretability and logical reason-
ing have been noted by (Hamilton et al., 2022). To
address these limitations, the integration of sym-
bolic reasoning and neural networks, known as
Neural-Symbolic AI, has gained attention as a po-
tential solution (Raedt et al., 2020). One approach
enhances neural networks with structured logic
rules, such as first-order logic, that act as exter-
nal constraints during model training (Hu et al.,
2016; Manhaeve et al., 2018; Wang and Pan, 2021;
Chen et al., 2022a). The other approach, Inductive
Logic Programming (ILP), aims to automatically
construct first-order logic rules from noisy data
(Cropper et al., 2022). There have been various
proposed ILP architectures, including NeuralLP
(Yang et al., 2017), LNN (Sen et al., 2022), δILP
(Evans and Grefenstette, 2018), and RNNLogic
(Qu et al., 2021). ILP has been applied in a range
of areas including knowledge-base completion (Qu
et al., 2021), question answering (Li et al., 2022b),
and multi-hop reading comprehension (Wang and
Pan, 2022). However, multimodal misinformation
detection, unlike these previous applications, faces
the challenge of lacking well-defined predicates
and constants due to the unstructured and modality-
different text-image input.

3 Preliminaries

3.1 Task Definition

In this paper, we aim to address the problem
of multimodal misinformation detection. Given
a text-image pair (T, I), we seek to predict its
label. To incorporate logic reasoning into the
neural network, we define a candidate label set
Y = {NonRumor,Rumor} for rumor detection
task while Y = {NonSarcasm,Sarcasm} for sar-
casm detection task. We also define a 2-ary pred-
icate h that takes as input a text-image pair and a
label, with the implicit meaning that the text-image
pair satisfies the label. Our goal can then be re-
formulated as selecting a label y ∈ Y such that
h((T, I), y) holds. It is worth noting that this def-

Figure 2: The core architecture of the proposed inter-
pretable multimodal misinformation detection frame-
work based on logic reasoning (LogicDM). Textual
nodes are fully connected to visual nodes but we only
visualize edges between one textual node and visual
nodes for ease of illustration.

inition allows for the extension of our framework
to multi-class classification tasks by increasing the
size of the set of labels Y .

3.2 Inductive logic programming

To address the interpretability challenge in misin-
formation detection, we propose a framework that
induces rules or clauses of the form b1∧ . . .∧bq ⇒
h, where b1, . . . , bq are predicates in the body, h is
the head predicate, and ∧ denotes the conjunction
operation. The body predicates are 2-ary, defined
over object variable O (i.e., combinations of text
tokens, image patches, or both) and label variable
Y (i.e., labels in the set Y). These predicates with
associated variables, such as b(O, Y ), are referred
to as logic atoms. By instantiating variables in
body atoms with constants (e.g., b(o, y), where o
is an object and y is a label), we can obtain truth
values of these body atoms and subsequently derive
the value of the head atom h((T, I), y) using logic
operators (e.g., conjunction ∧ and disjunction ∨),
where the truth value indicates the probability of
the atom or clause being true and is in the range of
0 to 1, denoted as µ(·) ∈ [0, 1].

4 Methodology

This section introduces the proposed logic-
based multimodal misinformation detection model
(LogicDM), which offers a more explicit reason-
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ing process and better performance than existing
approaches. The model consists of four main com-
ponents: Feature Extraction, Cross-modal Object
Generation, Clause Generation, and Clause Evalu-
ation. Feature Extraction generates representations
for text tokens and image patches using encoders.
Cross-modal Object Generation constructs a cross-
modal graph and applies a multi-layer graph convo-
lutional neural network to generate multi-grained
representations that constitute cross-modal objects
as logic constants. Clause Generation produces
dynamic embeddings for predicates (see Table 1)
by weighing the importance of different correla-
tions and considers the logic relationship among
all predicates to adaptively derive probable logic
clauses. These clauses, when instantiated with ob-
ject constants, can be evaluated to determine the
truth value as Clause Evaluation. The overview
of this model is shown in Fig. 2 and a running
example is depicted in Fig. 6.

4.1 Feature Extraction
Given text-image pair (T, I) as input, we first
tokenize T into m tokens, denoted as XT =
{w1, w2, . . . , wm}. Then we use BERT (Devlin
et al., 2019) with a one-layer LSTM (Hochreiter
and Schmidhuber, 1997) as the textual encoder
to obtain d-dimension representations for all to-
kens in XT , given as T = [t1, t2, . . . , tm], where
T ∈ Rm×d.

For image modality, we first resize the image
to the size 224 × 224 and divide each image into
r = z2 patches, where the size of each patch is
224/z × 224/z. Similar to text modality, these
patches are reshaped to a sequence, denoted as
XI = {p1, p2, . . . , pr}. Then we exploit the
pre-trained visual backbone neural network (e.g.,
ResNet34 (He et al., 2016) and ViT (Dosovitskiy
et al., 2021)) to extract visual features and map
these features to d-dimension using a two-layer
MLP as V = [v1,v2, . . . ,vr], where V ∈ Rr×d.

4.2 Cross-modal Object Generation
Cross-modal Object Generation aims to produce
representations for constants (e.g., (v1, v2), (t1, t2)
in Fig. 1) to instantiate logic clauses. Different
from the common definition of constants as sin-
gle objects (in images or texts), we define con-
stants according to our newly introduced meta-
predicates. Specifically, we define meta-predicates
as higher-level perspectives pertinent to discrimi-
nating misinformation. For this task, we use five

meta-predicates, namely bt for single-token per-
spective, bv for single-image-patch perspective, bt,t
for intra-text interactions, bv,v for intra-image inter-
actions and bt,v for inter-modal interactions. The
detailed explanations are shown in Table 1. The
constants for these meta-predicates include a single
token ti, a single image patch vi, a pair of tokens
(ti, tj), a pair of image patches (vi, vj), and a pair
consisting of both modalities (ti, vj). The repre-
sentations, denoted by o, for these constants are
computed according to the formula in Table 1 and
will be illustrated next.

The atoms, defined in Table 1, necessitate dis-
parate uni-modal and cross-modal inputs, thus, re-
quiring our model to capture intricate intra-modal
and inter-modal representations concurrently. In-
spired by recent work on multimodal task (Liang
et al., 2021; Liu et al., 2020), we propose to con-
struct a cross-modal graph G for (T, I) to leverage
the relations among text tokens XT , image patches
XI as well as those units between both modali-
ties for computing representations of cross-modal
constants.

Concretely, we take textual tokens XT and vi-
sual patches XI as nodes of graph G, i.e., the node
matrix is the concatenation of XT and XI , denoted
as [XT , XI ] and the initial node embedding matrix
is the concatenation of text-modality and image-
modality representations, denoted as H = [T,V],
where H ∈ R(m+r)×d. For edges, the semantic
dependencies among textual tokens are first ex-
tracted by Spacy4. And if there exits a dependency
between any two tokens, there will be an edge be-
tween them in G. Then visual patches are con-
nected according to their geometrical adjacency in
the image, following (Liu et al., 2022a). Addition-
ally, we assume the text nodes and visual nodes
are fully connected to each other to increase in-
teractions between two modalities, thus reducing
the modality gap. Finally, the adjacency matrix
A ∈ R(m+r)×(m+r) can be represented as

Aij =





1, if i, j ≤ m and a dependency exists in wi, wj

1, if i ≤ m, j > m or i > m, j ≤ m

1, if i, j > m and pi−m, pj−m are adjacent,
(1)

where pi−m and pj−m are determined as ad-
jacent when |(i−m) mod z − (j −m) mod z| ≤ 1
and |(i−m)/z − (j −m)/z| ≤ 1. Subsequently,
a L-layer GCN (Kipf and Welling, 2017) is
used to update each node embedding after fus-

4https://spacy.io/

9784

https://spacy.io/


Logic Atom Predicate Meaning Formula of Objects
bt(t, y) token t is related to label y ot = tWt, Wt ∈ Rd×d

bv(v, y) image patch v is related to label y ov = vWv, Wv ∈ Rd×d

bt,t((ti, tj), y) the pair of tokens (ti, tj) is related to label y oti,tj = [ti, tj , ti − tj , ti ◦ tj ]Wt,t, Wt,t ∈ R4d×d

bv,v((vi, vj), y) the pair of patches (vi, vj) is related to label y ovi,vj = [vi,vj ,vi − vj ,vi ◦ vj ]Wv,v, Wv,v ∈ R4d×d

bt,v((ti, vj), y) the pair of token and patch (ti, vj) is related to label y oti,vj = [ti,vj , ti − vj , ti ◦ vj ]Wt,v, Wt,v ∈ R4d×d

Table 1: The meaning of proposed five meta-predicates and formulas to produce cross-modal objects for each
predicate. tl ∈ Rd and vl ∈ Rd denote textual and visual features obtained in the l-th iteration of GCN, and
the subscripts i and j represents two different features. The bold symbol o ∈ Rd represents the embedding of
corresponding constant. And Wt, Wv , Wt,t, Wv,v and Wt,v are trainable parameters.

ing the information from its neighbor nodes via
Hl = ReLU(ÃHl−1Wl), where l ∈ {0, 1, . . . , L}
represents the l-th iteration of GCN, Ã =

D− 1
2AD− 1

2 , D is the degree matrix of A, and
Wl ∈ Rd×d is a layer-specific trainable weight
matrix. Hl ∈ R(m+r)×d denotes the output of l-th
GCN where Hl =

[
Tl,Vl

]
and H0 = H. Espe-

cially, Tl ∈ Rm×d and Vl ∈ Rr×d are updated
textual and visual representations at the l-th layer.

With Tl and Vl, we compute representations of
the cross-modal objects Ol

t ∈ Rm×d, Ol
v ∈ Rr×d,

Ol
t,t ∈ R(m×m)×d, Ol

v,v ∈ R(r×r)×d and Ol
t,v ∈

R(m×r)×d as constants for those meta-predicates,
according to formulas in Table 1. In subsequent
illustrations, we omit the layer index l for ease of
illustration. Intuitively, different objects have dif-
ferent importance for multimodal misinformation
detection task. As such, we feed the embedding
of each object to a separate MLP (one linear layer
with a ReLU as the activation function) to compute
its importance score corresponding to a specific
meta-predicate. Then k objects are chosen for each
meta-predicate based on their importance scores
for clause generations and evaluations. We denote
their representations as Ôt, Ôv, Ôt,t, Ôv,v and
Ôt,v, each of which belongs to Rk×d.

4.3 Clause Generation

In Clause Generation, we derive logic clauses con-
sisting of meta-predicates that deduce the head
atom h((T, I), y), e.g., bv(v, y) ∧ bt(t, y) ⇒
h((T, I), y). For each meta-predicate, we pre-
define a set of g fine-grained correlations (param-
eterized with embeddings) between objects and
labels, denoted by C ∈ Rg×d (i.e., Ct, Cv, Ct,t,
Cv,v, Ct,v corresponding to bt, bv, bt,t, bv,v and
bt,v, respectively). For example, Ct stores g corre-
lations between text tokens and labels relevant to
meta-predicate bt(t, y). These correlations can be
flexibly combined to form an embedding for each
meta-predicate with different instantiations.

Concretely, taking meta-predicate bt(t, y) as an

example, the embedding Bt for bt(t, y) with all
instantiations t (i.e., Ôt) is computed as

Bt = sparsemax([Ôt,y]We
tC

⊤
t )Ct. (2)

Here Bt ∈ Rk×d consists of k embeddings corre-
sponding to k different objects extracted in Ôt. y is
the d-dimension embedding of label y and is broad-
casted to k×d for concatenation. We

t ∈ R2d×d is a
learnable matrix. In addition, we utilize sparsemax,
a sparse version of softmax, to select only a small
number of correlations, which has been proven
effective in multi-label classification tasks (Mar-
tins and Astudillo, 2016). The intuition of Eq. 2
is to softly select correlations to form the meta-
predicate embedding when the input constants are
t and y. By adapting Eq. 2 to other meta-predicates,
we obtain a complete set of predicate embeddings
B ∈ R5k×d where B = [Bt,Bv,Bt,t,Bv,v,Bt,v].

Furthermore, we obtain the embedding of the
entire text input tT ∈ Rd and image vI ∈ Rd via
weighed summations of all tokens and patches, re-
spectively: tT = T⊤softmax(TWT ) and vI =
V⊤softmax(VWI), where WT ∈ Rd×1 and
WI ∈ Rd×1 are trainable parameters to compute
importance scores of tokens and patches.

To generate valid clauses, given the predicate
embeddings B, textual representation tT and im-
age representation vI , we use two sparse attention
networks to select relevant predicates pertinent to
the image-text input, as well as the given label, to
form the body of a clause. Formally, we have two
attention scores ST,I and Sy indicative of the input
text-image pair and label respectively, given as

ST,I = sparsemax(BWT,I [tT ,vI ]),

Sy = sparsemax([B,y,B− y,B ◦ y]Wy),
(3)

where WT,I ∈ Rd×2d and Wy ∈ R4d×1 are learn-
able parameters. The final score S ∈ R5k is ob-
tained via

S = sparsemax(ST,I ◦ Sy). (4)

Each score in S indicates the probability of its cor-
responding predicate being selected to deduce the
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head atom h((T, I), y). Then ⌊5k×β⌋ atoms rank-
ing at the top of S are selected to complete the
clause generation, where β ∈ (0, 1) is a hyper-
parameter. For instance, if bv(v, y) and bt(t, y)
are selected, the clause will become bv(v, y) ∧
bt(t, y) ⇒ h((T, I), y).

4.4 Clause Evaluation
In Clause Evaluation, we aim to derive the truth
value of the head atom for each clause, given
body atoms which are instantiated with constants.
Specially, given an atom bt(t, y), its truth value
µ(bt(t, y)) is computed as

µ(bt(t, y)) = sigmoid([bt,p,bt − p,bt ◦ p]Wµ), (5)

where p ∈ Rd, p = ot ◦ y, and Wµ = W4d×1

is a trainable parameter. Note that bt ∈ Rd, ot ∈
Rd and y ∈ Rd are representations of bt, t, y,
respectively, and bt is taken from B.

To obtain the truth value of the head atom,
we approximate logic operators ∧ and ∨ using
product t-norm, an example of T-Norm (i.e., T :
[0, 1] × [0, 1] → [0, 1]) (Klement et al., 2000).
Product t-norm defines T∧(µ1, µ2) = µ1µ2 and
T∨(µ1, µ2) = 1− (1−µ1)(1−µ2), with µ1, µ2 ∈
[0, 1] referring to truth values of atoms. With
Product t-norm, the truth value of the head atom
µ(h((T, I), y)) can be derived as long as the value
for each body atom is given. Recall that our
GCN model generates representations for each
layer l ∈ {0, ..., L}. Therefore, with logic clauses
bl1∧...∧bln ⇒ h((T, I), y) generated for each layer
l, we use disjunctive operators to combine clauses
across all the layers as (b01 ∧ ...) ∨ (b11 ∧ ...) ∨ ... ∨
(bL1 ∧ ...) ⇒ h((T, I), y).

For the target task of multimodal misinforma-
tion detection, given (T, I), we derive truth val-
ues µ(h((T, I), y)) for different candidate labels y,
e.g., y ∈ {NonRumor,Rumor}. Then a cross-
entropy loss is adopted to train our model in an
end-to-end manner which maximizes the truth val-
ues for gold labels. During inference, we compare
the truth values for both labels and pick the one cor-
responding to a larger value as the final prediction.

5 Experiment

5.1 Experiment Setup
We verify the effectiveness of our approach on two
public misinformation datasets (Twitter and Weibo)
and further demonstrate its versatility on a sarcasm
detection dataset (Sarcasm). Three datasets are

described as follows: 1) Twitter (Boididou et al.,
2018) contains 7334 rumors and 5599 non-rumors
for training and 564 rumors and 427 non-rumors
for testing. 2) Weibo (Jin et al., 2017a) includes
3749 rumors and 3783 non-rumors for training and
1000 rumors and 996 non-rumors for testing. 3)
Sarcasm (Cai et al., 2019) comprises 8642 sarcasm
posts and 11174 non-sarcasm posts for training,
959 sarcasm posts and 1451 non-sarcasm posts for
validating and 959 sarcasm posts and 1450 non-
sarcasm posts for testing. Furthermore, for Twitter
and Weibo, only samples with both text and image
are kept, following previous work (Boididou et al.,
2018; Chen et al., 2022b). The data pre-processing
of Sarcasm follows Cai et al. (2019). For all exper-
iments, we set k = 5, g = 10 and β = 0.1. Other
details of the implementation and baselines can be
found in the appendix.

5.2 Overall Performance

Table 2 and Table 3 present comparison results for
multimodal misinformation detection and sarcasm
detection tasks against popular baselines. Despite
well-recognized tradeoffs between performance
and model interpretability (Raedt et al., 2020), both
tables indicate our proposed LogicDM consistently
surpasses existing state-of-art methods in terms
of both Accuracy and F1 Score. Especially our
model brings 3.9% and 1.2% improvements based
on accuracy over state-of-art BMR on Twitter and
CAFE on Weibo. Moreover, our model demon-
strates superior Precision than other baselines on
Sarcasm. Such results verify the advantage of the
integration of logical reasoning and neural network.
We conjecture that logic components may motivate
our model to learn useful rules instead of overfitting
to noise. In addition, it is also worth mentioning
that there is a difference in performance between
Rumor and Non Rumor on Twiiter, which may be
due to unbalanced proportions within the training
set.

Furthermore, it is observed that multi-modality
based methods generally outperform uni-modality
based methods, suggesting that text and image can
provide complementary information to enhance de-
tection performance. In addition, CAFE and BMR
can estimate the importance of different modali-
ties to adaptively aggregate unimodal representa-
tions by ambiguity measure component and multi-
view learning, thus, showing better performance
than simple fusion or concatenation. In contrast,
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Dataset Method Acc
Rumor Non Rumor

Precision Recall F1 Score Precision Recall F1 Score

Twitter

Uni-Modal
Bert (Devlin et al., 2019) 0.733 0.571 0.754 0.650 0.857 0.722 0.784
ResNet (He et al., 2016) 0.644 0.473 0.712 0.568 0.812 0.610 0.697

Multi-Modal

Vanilla 0.784 0.669 0.683 0.676 0.843 0.834 0.838
EANN (Wang et al., 2018) 0.648 0.810 0.498 0.617 0.584 0.759 0.660

MAVE (Khattar et al., 2019) 0.745 0.745 0.719 0.758 0.689 0.777 0.730
SAFE (Zhou et al., 2020) 0.762 0.831 0.724 0.774 0.695 0.811 0.748
MVNN (Xue et al., 2021) 0.784 0.778 0.781 0.779 0.790 0.787 0.788
CAFE (Chen et al., 2022b) 0.806 0.807 0.799 0.803 0.805 0.805 0.809
BMR (Ying et al., 2022) 0.872 0.842 0.751 0.794 0.885 0.931 0.907

LogicDM 0.911 0.909 0.816 0.859 0.913 0.958 0.935

Weibo

Uni-Modal
Bert (Devlin et al., 2019) 0.716 0.671 0.671 0.671 0.692 0.762 0.725
ResNet (He et al., 2016) 0.678 0.701 0.638 0.668 0.658 0.720 0.688

Multi-Modal

Vanilla 0.746 0.610 0.622 0.616 0.814 0.806 0.810
EANN (Wang et al., 2018) 0.795 0.806 0.795 0.800 0.752 0.793 0.804

MAVE (Khattar et al., 2019) 0.824 0.854 0.769 0.722 0.720 0.740 0.730
SAFE (Zhou et al., 2020) 0.816 0.818 0.818 0.817 0.816 0.818 0.817
MVNN (Xue et al., 2021) 0.823 0.858 0.801 0.828 0.787 0.848 0.816
CAFE (Chen et al., 2022b) 0.840 0.855 0.830 0.842 0.825 0.851 0.837
BMR (Ying et al., 2022) 0.831 0.831 0.838 0.834 0.831 0.824 0.827

LogicDM 0.852 0.862 0.845 0.853 0.843 0.859 0.851

Table 2: Comparison results for multimdoal misinformation detection on Twitter and Weibo datasets.
Model Acc P R F1

Uni-Modal
BERT (Devlin et al., 2019) 0.839 0.787 0.823 0.802

ViT (Dosovitskiy et al., 2021) 0.678 0.579 0.701 0.634

multimodal

HFM (Cai et al., 2019) 0.834 0.766 0.842 0.802
D&R Net (Xu et al., 2020) 0.840 0.780 0.834 0.806

Att-BERT (Pan et al., 2020) 0.861 0.809 0.851 0.829
InCrossMGs (Liang et al., 2021) 0.861 0.814 0.844 0.828

HCM (Liu et al., 2022a) 0.874 0.818 0.865 0.841
LogicDM 0.881 0.857 0.850 0.853

Table 3: Comparison results for mutlimodal sarcasm
detection on Sarcasm dataset.

our model achieves this goal by softly choosing
predicates to induce logic clauses when taking into
consideration the logic relationship among these
predicates.

5.3 Interpretation Study

To illustrate the interpretability of our proposed
framework LogicDM, we visualize the learned
rules in Fig. 3. Despite the complicated text-image
input, it is evident that our model can explicitly
locate highly correlated content as constants for
"where" and softly choose suitable meta-predicates
for "how". For example, as shown in Fig. 3c, ob-
jects "a city" and "my baby" are selected to in-
stantiate b1 (i.e., bt,t) and b2 (i.e., bt) where both
predicates implicate that samples with indefinite
pronouns are more likely to be rumors. By com-
parison, samples of proper nouns can usually be
detected as non-rumors because of their more re-
alistic description, as seen in Fig. 3d. Moreover,
the derived explanation can provide supplemen-
tary insights and knowledge previously unknown
to practitioners. For example, as seen from Fig. 3a,
the logic reasoning based on two visual patches,
b1, b2 (i.e., both are bv) implies that these areas are

hand-crafted5 (i.e., produced by Photoshop), which
is difficult to be discriminated by human-beings.

Furthermore, our model can mitigate the trust
problem of AI systems according to further analyz-
ing derived clauses. For instance, although the non-
rumor in Fig. 3b is identified accurately, it may not
be sufficiently convincing based on only "tower",
"landmark" and relevant predicates b1, b2 (i.e., both
belongs to bt,t). In other words, the decision result
may not be reliable in this case. The interpretability
of the model allows for further understanding of
the decision-making process, thus increasing the
reliability and trustworthiness of the system.

5.4 Ablation Study

In the ablation study, we conduct experiments to
analyze the impact of different parameters for per-
formance, including the number of correlations g
and rate β in Sec. 4.3 as well as selected iterations l
in Sec. 4.4. For illustration, we report the precision,
recall, F1 Score of rumor and accuracy on Twitter
and Weibo datasets.
Impact of Number of Correlations. In order to
effectively deal with the diverse online misinfor-
mation, we propose to adaptively represent predi-
cates through their corresponding correlation sets
in Clause Generation. As seen in Fig. 4, the in-
fluence of varying numbers of correlations (i.e.,
g) on performance reveals that the results dramati-
cally increase as g increases and then gradually de-
crease after reaching a peak (e.g., 10 for the Twitter
dataset and 15 for the Weibo dataset). These results
validate the effectiveness of dynamic predicate em-

5https://phogotraphy.com/2015/03/20/
iss-fake-photo/
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(a) Rumor in Twitter (b) Non Rumor in Twitter (c) Rumor in Weibo (d) Non Rumor in Weibo

Figure 3: Examples of derived clauses and related constants. For (c) and (d), we translate the text from Chinese to
English.

(a) Twitter (b) Weibo

Figure 4: The influence of the number of correlations g
for dynamic predicate representation.

(a) Twitter (b) Weibo

Figure 5: The influence of rate β for logic clause gener-
ation.

bedding mechanism and suggest that the optimal
number of correlations depends on the complexity
of specific scenarios. However, it should be noted
that our model can be tolerant of an excessive num-
ber of correlations without significantly impacting
performance.
Impact of Logic Clause Length. In Clause Gener-
ation, we deduce the logic clause of a fixed length
by adjusting rate β. As illustrated in Fig. 5, it is
evident that the performance drops significantly as
β increases from 0.15. This observation can be at-
tributed to two possible reasons: 1) Product t-norm
may result in exponential decay when the number
of atoms in the clause grows, leading to decreased
stability, as previously reported in literature (Wang
and Pan, 2022). 2) Including redundant logic atoms
may inevitably introduce noise and negatively im-
pact performance. These findings suggest that a
moderate β is optimal for clause generation.
Impact of Selected Iterations. In Clause Evalua-

selected iteration l
Twitter Weibo

Accuracy Rumor F1 Non-Romor F1 Accuracy Rumor F1 Non-Romor F1
l ∈ {0} 0.745 0.638 0.799 0.825 0.826 0.824
l ∈ {1} 0.882 0.821 0.912 0.840 0.837 0.843
l ∈ {2} 0.911 0.859 0.935 0.852 0.853 0.851
l ∈ {0, 1} 0.847 0.762 0.887 0.847 0.848 0.846
l ∈ {1, 2} 0.902 0.842 0.928 0.841 0.832 0.849
l ∈ {0, 1, 2} 0.842 0.742 0.886 0.847 0.843 0.850

Table 4: The influence of selected iterations for clause
evaluation. l ∈ {0}, l ∈ {1}, l ∈ {2} are non-
disjunctive combination clauses and the others are
disjunctive combination clauses. For example, when
l ∈ {0}, h((T, I), a) = (b01 ∧ ...) and when l ∈ {0, 1},
h((T, I), a) = (b01 ∧ ...) ∨ (b11 ∧ ...).

tion, we obtain the final truth value of head atom
h((T, I), a) by selectively aggregating clauses pro-
duced at different iterations of GCN based on dis-
junction operator ∨. Table 4 compares various
ways for computing µ(h((T, I), a)), revealing that
our model achieves the best performance when
l = 2 while yielding the worst performance when
l = 0. Such results highlight the importance of
capturing intra-modal and inter-modal interactions
of multimodal input through multi-layer GCN for
our task.

Furthermore, it is observed that disjunctive com-
bination clauses perform more robustly than non-
disjunctive combination clauses on Weibo, poten-
tially due to the logic-based fusion of information
at different iterations. These results provide in-
sights into the importance of incorporating multi-
ple iterations in clauses for better performance in
some cases.

6 Conclusion

We propose an interpretable multimodal misinfor-
mation detection model LogicDM based on neural-
symbolic AI. We predefine five meta-predicates
and relevant variables evolved from corresponding
misinformation detection perspectives. And we
propose to dynamically represent these predicates
by fusion of multiple correlations to cover diversi-
fied online information. Moreover, we differentiate
reasoning process to smoothly select predicates
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and cross-modal objects to derive and evaluate ex-
plainable logic clauses automatically. Extensive ex-
periments on misinformation detection task demon-
strate the effectiveness of our approach and external
experiments on sarcasm detection task reveal the
versatility.

Limitations

Our work has two limitations that may impact the
generalization ability of our proposed framework.
Firstly, in the Clause Generation section (Sec. 4.3),
we deduce logic clauses involving a fixed number
of atoms, represented by ⌊5k×β⌋, rather than vari-
able length for each iteration of GCN. While this
approach has demonstrated superior performance
on the multimodal misinformation detection and
sarcasm detection tasks, it may harm the generaliza-
tion of our framework to more complex multimodal
misinformation tasks, such as the detection of fake
news that involves various modalities, including
social networks, text, user responses, images and
videos, as discussed in (Zhou and Zafarani, 2021;
Alam et al., 2022). Secondly, in our work, the in-
corporation of logic into the neural network relies
on the use of product t-norm to differentiate logic
operators (i.e., ∧ and ∨). However, as shown in the
Ablation Study (Sec. 5.4), product t-norm may lead
to vanishing gradients with the increase of logic
atoms during the training stage, which may limit
the ability of our proposed framework to handle
more sophisticated scenarios. We plan to address
these limitations in future research.
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This paper complies with the ACM Code of Ethics
and Professional Conduct. Firstly, our adopted
datasets do not contain sensitive private informa-
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man beings from the detrimental and unordered
online environment with more trustworthy interpre-
tations.

ACKNOWLEDGEMENT

This work was supported in part by CityU Teaching
Start-up Grant 6000801, CityU New Research Ini-

tiatives/Infrastructure Support from Central (APRC
9610528), the Research Grant Council (RGC) of
Hong Kong through Early Career Scheme (ECS)
under the Grant 21200522 and Hong Kong Innova-
tion and Technology Commission (InnoHK Project
CIMDA).

9789



References
Sahar Abdelnabi, Rakibul Hasan, and Mario Fritz.

2022. Open-domain, content-based, multi-modal
fact-checking of out-of-context images via online
resources. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2022, New
Orleans, LA, USA, June 18-24, 2022, pages 14920–
14929. IEEE.

Firoj Alam, Stefano Cresci, Tanmoy Chakraborty, Fab-
rizio Silvestri, Dimiter Dimitrov, Giovanni Da San
Martino, Shaden Shaar, Hamed Firooz, and Preslav
Nakov. 2022. A survey on multimodal disinforma-
tion detection. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics,
COLING 2022, Gyeongju, Republic of Korea, Oc-
tober 12-17, 2022, pages 6625–6643. International
Committee on Computational Linguistics.

Christina Boididou, Symeon Papadopoulos, Markos
Zampoglou, Lazaros Apostolidis, Olga Pa-
padopoulou, and Yiannis Kompatsiaris. 2018.
Detection and visualization of misleading content on
twitter. Int. J. Multim. Inf. Retr., 7(1):71–86.

Yitao Cai, Huiyu Cai, and Xiaojun Wan. 2019. Multi-
modal sarcasm detection in twitter with hierarchical
fusion model. In Proceedings of the 57th Confer-
ence of the Association for Computational Linguis-
tics, ACL 2019, Florence, Italy, July 28- August 2,
2019, Volume 1: Long Papers, pages 2506–2515.
Association for Computational Linguistics.

Jiangjie Chen, Qiaoben Bao, Changzhi Sun, Xinbo
Zhang, Jiaze Chen, Hao Zhou, Yanghua Xiao, and
Lei Li. 2022a. LOREN: logic-regularized reasoning
for interpretable fact verification. In Thirty-Sixth
AAAI Conference on Artificial Intelligence, AAAI
2022, Thirty-Fourth Conference on Innovative Ap-
plications of Artificial Intelligence, IAAI 2022, The
Twelveth Symposium on Educational Advances in Ar-
tificial Intelligence, EAAI 2022 Virtual Event, Febru-
ary 22 - March 1, 2022, pages 10482–10491. AAAI
Press.

Yixuan Chen, Dongsheng Li, Peng Zhang, Jie Sui, Qin
Lv, Lu Tun, and Li Shang. 2022b. Cross-modal am-
biguity learning for multimodal fake news detection.
In WWW ’22: The ACM Web Conference 2022, Vir-
tual Event, Lyon, France, April 25 - 29, 2022, pages
2897–2905. ACM.

Andrew Cropper, Sebastijan Dumancic, Richard Evans,
and Stephen H. Muggleton. 2022. Inductive logic
programming at 30. Mach. Learn., 111(1):147–172.

Limeng Cui, Kai Shu, Suhang Wang, Dongwon Lee,
and Huan Liu. 2019. defend: A system for ex-
plainable fake news detection. In Proceedings of
the 28th ACM International Conference on Informa-
tion and Knowledge Management, CIKM 2019, Bei-
jing, China, November 3-7, 2019, pages 2961–2964.
ACM.

Yue Cui, Zhuohang Li, Luyang Liu, Jiaxin Zhang, and
Jian Liu. 2022. Privacy-preserving speech-based de-
pression diagnosis via federated learning. In 2022
44th Annual International Conference of the IEEE
Engineering in Medicine & Biology Society (EMBC),
pages 1371–1374. IEEE.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image
recognition at scale. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net.

Richard Evans and Edward Grefenstette. 2018. Learn-
ing explanatory rules from noisy data (extended ab-
stract). In Proceedings of the Twenty-Seventh Inter-
national Joint Conference on Artificial Intelligence,
IJCAI 2018, July 13-19, 2018, Stockholm, Sweden,
pages 5598–5602. ijcai.org.

Kyle Hamilton, Aparna Nayak, Bojan Bozic, and Luca
Longo. 2022. Is neuro-symbolic AI meeting its
promise in natural language processing? A structured
review. CoRR, abs/2202.12205.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recogni-
tion. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas,
NV, USA, June 27-30, 2016, pages 770–778. IEEE
Computer Society.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard H.
Hovy, and Eric P. Xing. 2016. Harnessing deep neu-
ral networks with logic rules. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2016, August 7-12, 2016,
Berlin, Germany, Volume 1: Long Papers. The Asso-
ciation for Computer Linguistics.

Minyoung Huh, Andrew Liu, Andrew Owens, and
Alexei A. Efros. 2018. Fighting fake news: Image
splice detection via learned self-consistency. In Com-
puter Vision - ECCV 2018 - 15th European Confer-
ence, Munich, Germany, September 8-14, 2018, Pro-
ceedings, Part XI, volume 11215 of Lecture Notes in
Computer Science, pages 106–124. Springer.

9790

https://doi.org/10.1109/CVPR52688.2022.01452
https://doi.org/10.1109/CVPR52688.2022.01452
https://doi.org/10.1109/CVPR52688.2022.01452
https://aclanthology.org/2022.coling-1.576
https://aclanthology.org/2022.coling-1.576
https://doi.org/10.1007/s13735-017-0143-x
https://doi.org/10.1007/s13735-017-0143-x
https://doi.org/10.18653/v1/p19-1239
https://doi.org/10.18653/v1/p19-1239
https://doi.org/10.18653/v1/p19-1239
https://ojs.aaai.org/index.php/AAAI/article/view/21291
https://ojs.aaai.org/index.php/AAAI/article/view/21291
https://doi.org/10.1145/3485447.3511968
https://doi.org/10.1145/3485447.3511968
https://doi.org/10.1007/s10994-021-06089-1
https://doi.org/10.1007/s10994-021-06089-1
https://doi.org/10.1145/3357384.3357862
https://doi.org/10.1145/3357384.3357862
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.24963/ijcai.2018/792
https://doi.org/10.24963/ijcai.2018/792
https://doi.org/10.24963/ijcai.2018/792
http://arxiv.org/abs/2202.12205
http://arxiv.org/abs/2202.12205
http://arxiv.org/abs/2202.12205
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/p16-1228
https://doi.org/10.18653/v1/p16-1228
https://doi.org/10.1007/978-3-030-01252-6_7
https://doi.org/10.1007/978-3-030-01252-6_7


Zhiwei Jin, Juan Cao, Han Guo, Yongdong Zhang, and
Jiebo Luo. 2017a. Multimodal fusion with recurrent
neural networks for rumor detection on microblogs.
In Proceedings of the 2017 ACM on Multimedia Con-
ference, MM 2017, Mountain View, CA, USA, Octo-
ber 23-27, 2017, pages 795–816. ACM.

Zhiwei Jin, Juan Cao, Yongdong Zhang, Jianshe Zhou,
and Qi Tian. 2017b. Novel visual and statistical im-
age features for microblogs news verification. IEEE
Trans. Multim., 19(3):598–608.

Dhruv Khattar, Jaipal Singh Goud, Manish Gupta, and
Vasudeva Varma. 2019. MVAE: multimodal varia-
tional autoencoder for fake news detection. In The
World Wide Web Conference, WWW 2019, San Fran-
cisco, CA, USA, May 13-17, 2019, pages 2915–2921.
ACM.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

Erich-Peter Klement, Radko Mesiar, and Endre Pap.
2000. Triangular Norms, volume 8 of Trends in
Logic. Springer.

Peiguang Li, Xian Sun, Hongfeng Yu, Yu Tian, Fang-
long Yao, and Guangluan Xu. 2022a. Entity-oriented
multi-modal alignment and fusion network for fake
news detection. IEEE Trans. Multim., 24:3455–3468.

Xiao Li, Gong Cheng, Ziheng Chen, Yawei Sun, and
Yuzhong Qu. 2022b. Adalogn: Adaptive logic graph
network for reasoning-based machine reading com-
prehension. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2022, Dublin, Ireland,
May 22-27, 2022, pages 7147–7161. Association for
Computational Linguistics.

Bin Liang, Chenwei Lou, Xiang Li, Lin Gui, Min Yang,
and Ruifeng Xu. 2021. Multi-modal sarcasm de-
tection with interactive in-modal and cross-modal
graphs. In MM ’21: ACM Multimedia Conference,
Virtual Event, China, October 20 - 24, 2021, pages
4707–4715. ACM.

Pantelis Linardatos, Vasilis Papastefanopoulos, and
Sotiris Kotsiantis. 2021. Explainable AI: A review of
machine learning interpretability methods. Entropy,
23(1):18.

Hui Liu, Wenya Wang, and Haoliang Li. 2022a. To-
wards multi-modal sarcasm detection via hierarchical
congruity modeling with knowledge enhancement.
CoRR, abs/2210.03501.

Yibing Liu, Haoliang Li, Yangyang Guo, Chenqi
Kong, Jing Li, and Shiqi Wang. 2022b. Rethink-
ing attention-model explainability through faithful-
ness violation test. In International Conference on

Machine Learning, ICML 2022, 17-23 July 2022, Bal-
timore, Maryland, USA, volume 162 of Proceedings
of Machine Learning Research, pages 13807–13824.
PMLR.

Yongfei Liu, Bo Wan, Xiaodan Zhu, and Xuming He.
2020. Learning cross-modal context graph for vi-
sual grounding. In The Thirty-Fourth AAAI Con-
ference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial In-
telligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pages 11645–11652. AAAI Press.

Jing Ma, Wei Gao, and Kam-Fai Wong. 2019. Detect ru-
mors on twitter by promoting information campaigns
with generative adversarial learning. In The World
Wide Web Conference, WWW 2019, San Francisco,
CA, USA, May 13-17, 2019, pages 3049–3055. ACM.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kim-
mig, Thomas Demeester, and Luc De Raedt. 2018.
Deepproblog: Neural probabilistic logic program-
ming. In Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurIPS 2018, Decem-
ber 3-8, 2018, Montréal, Canada, pages 3753–3763.

André F. T. Martins and Ramón Fernandez Astudillo.
2016. From softmax to sparsemax: A sparse model
of attention and multi-label classification. In Pro-
ceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY,
USA, June 19-24, 2016, volume 48 of JMLR Work-
shop and Conference Proceedings, pages 1614–1623.
JMLR.org.

Hongliang Pan, Zheng Lin, Peng Fu, Yatao Qi, and
Weiping Wang. 2020. Modeling intra and inter-
modality incongruity for multi-modal sarcasm de-
tection. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2020, Online Event,
16-20 November 2020, volume EMNLP 2020 of Find-
ings of ACL, pages 1383–1392. Association for Com-
putational Linguistics.

Verónica Pérez-Rosas, Bennett Kleinberg, Alexandra
Lefevre, and Rada Mihalcea. 2018. Automatic de-
tection of fake news. In Proceedings of the 27th
International Conference on Computational Linguis-
tics, COLING 2018, Santa Fe, New Mexico, USA,
August 20-26, 2018, pages 3391–3401. Association
for Computational Linguistics.

Peng Qi, Juan Cao, Xirong Li, Huan Liu, Qiang Sheng,
Xiaoyue Mi, Qin He, Yongbiao Lv, Chenyang Guo,
and Yingchao Yu. 2021. Improving fake news detec-
tion by using an entity-enhanced framework to fuse
diverse multimodal clues. In MM ’21: ACM Multi-
media Conference, Virtual Event, China, October 20
- 24, 2021, pages 1212–1220. ACM.

Meng Qu, Junkun Chen, Louis-Pascal A. C. Xhonneux,
Yoshua Bengio, and Jian Tang. 2021. Rnnlogic:

9791

https://doi.org/10.1145/3123266.3123454
https://doi.org/10.1145/3123266.3123454
https://doi.org/10.1109/TMM.2016.2617078
https://doi.org/10.1109/TMM.2016.2617078
https://doi.org/10.1145/3308558.3313552
https://doi.org/10.1145/3308558.3313552
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1007/978-94-015-9540-7
https://doi.org/10.1109/TMM.2021.3098988
https://doi.org/10.1109/TMM.2021.3098988
https://doi.org/10.1109/TMM.2021.3098988
https://doi.org/10.18653/v1/2022.acl-long.494
https://doi.org/10.18653/v1/2022.acl-long.494
https://doi.org/10.18653/v1/2022.acl-long.494
https://doi.org/10.1145/3474085.3475190
https://doi.org/10.1145/3474085.3475190
https://doi.org/10.1145/3474085.3475190
https://doi.org/10.3390/e23010018
https://doi.org/10.3390/e23010018
https://doi.org/10.48550/arXiv.2210.03501
https://doi.org/10.48550/arXiv.2210.03501
https://doi.org/10.48550/arXiv.2210.03501
https://proceedings.mlr.press/v162/liu22i.html
https://proceedings.mlr.press/v162/liu22i.html
https://proceedings.mlr.press/v162/liu22i.html
https://ojs.aaai.org/index.php/AAAI/article/view/6833
https://ojs.aaai.org/index.php/AAAI/article/view/6833
https://doi.org/10.1145/3308558.3313741
https://doi.org/10.1145/3308558.3313741
https://doi.org/10.1145/3308558.3313741
https://proceedings.neurips.cc/paper/2018/hash/dc5d637ed5e62c36ecb73b654b05ba2a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/dc5d637ed5e62c36ecb73b654b05ba2a-Abstract.html
http://proceedings.mlr.press/v48/martins16.html
http://proceedings.mlr.press/v48/martins16.html
https://doi.org/10.18653/v1/2020.findings-emnlp.124
https://doi.org/10.18653/v1/2020.findings-emnlp.124
https://doi.org/10.18653/v1/2020.findings-emnlp.124
https://aclanthology.org/C18-1287/
https://aclanthology.org/C18-1287/
https://doi.org/10.1145/3474085.3481548
https://doi.org/10.1145/3474085.3481548
https://doi.org/10.1145/3474085.3481548
https://openreview.net/forum?id=tGZu6DlbreV


Learning logic rules for reasoning on knowledge
graphs. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net.

Luc De Raedt, Sebastijan Dumancic, Robin Manhaeve,
and Giuseppe Marra. 2020. From statistical rela-
tional to neuro-symbolic artificial intelligence. In
Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, IJCAI 2020,
pages 4943–4950. ijcai.org.

Victoria L Rubin, Niall Conroy, Yimin Chen, and Sarah
Cornwell. 2016. Fake news or truth? using satirical
cues to detect potentially misleading news. In Pro-
ceedings of the second workshop on computational
approaches to deception detection, pages 7–17.

Prithviraj Sen, Breno W. S. R. de Carvalho, Ryan Riegel,
and Alexander G. Gray. 2022. Neuro-symbolic in-
ductive logic programming with logical neural net-
works. In Thirty-Sixth AAAI Conference on Artificial
Intelligence, AAAI 2022, Thirty-Fourth Conference
on Innovative Applications of Artificial Intelligence,
IAAI 2022, The Twelveth Symposium on Educational
Advances in Artificial Intelligence, EAAI 2022 Vir-
tual Event, February 22 - March 1, 2022, pages 8212–
8219. AAAI Press.

Laura Spinney. 2017. How facebook, fake news
and friends are warping your memory. Nature,
543(7644).

Hao Sun, Zijian Wu, Yue Cui, Liwei Deng, Yan
Zhao, and Kai Zheng. 2021. Personalized dynamic
knowledge-aware recommendation with hybrid ex-
planations. In Database Systems for Advanced Ap-
plications: 26th International Conference, DASFAA
2021, Taipei, Taiwan, April 11–14, 2021, Proceed-
ings, Part III 26, pages 148–164. Springer.

Yi Tay, Anh Tuan Luu, Siu Cheung Hui, and Jian
Su. 2018. Reasoning with sarcasm by reading in-
between. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2018, Melbourne, Australia, July 15-20, 2018,
Volume 1: Long Papers, pages 1010–1020. Associa-
tion for Computational Linguistics.

Wenya Wang and Sinno Jialin Pan. 2021. Variational
deep logic network for joint inference of entities and
relations. Comput. Linguistics, 47(4):775–812.

Wenya Wang and Sinno Jialin Pan. 2022. Deep induc-
tive logic reasoning for multi-hop reading compre-
hension. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2022, Dublin, Ireland,
May 22-27, 2022, pages 4999–5009. Association for
Computational Linguistics.

Yaqing Wang, Fenglong Ma, Zhiwei Jin, Ye Yuan,
Guangxu Xun, Kishlay Jha, Lu Su, and Jing Gao.
2018. EANN: event adversarial neural networks for
multi-modal fake news detection. In Proceedings of

the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD 2018,
London, UK, August 19-23, 2018, pages 849–857.
ACM.

Nan Xu, Zhixiong Zeng, and Wenji Mao. 2020. Reason-
ing with multimodal sarcastic tweets via modeling
cross-modality contrast and semantic association. In
Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2020,
Online, July 5-10, 2020, pages 3777–3786. Associa-
tion for Computational Linguistics.

Junxiao Xue, Yabo Wang, Yichen Tian, Yafei Li, Lei
Shi, and Lin Wei. 2021. Detecting fake news by
exploring the consistency of multimodal data. Inf.
Process. Manag., 58(5):102610.

Fan Yang, Zhilin Yang, and William W. Cohen. 2017.
Differentiable learning of logical rules for knowledge
base reasoning. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neu-
ral Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, pages 2319–2328.

Qichao Ying, Xiaoxiao Hu, Yangming Zhou, Zhenx-
ing Qian, Dan Zeng, and Shiming Ge. 2022. Boot-
strapping multi-view representations for fake news
detection.

Xinyi Zhou, Atishay Jain, Vir V. Phoha, and Reza Za-
farani. 2019. Fake news early detection: A theory-
driven model. CoRR, abs/1904.11679.

Xinyi Zhou, Jindi Wu, and Reza Zafarani. 2020. SAFE:
similarity-aware multi-modal fake news detection. In
Advances in Knowledge Discovery and Data Mining
- 24th Pacific-Asia Conference, PAKDD 2020, Singa-
pore, May 11-14, 2020, Proceedings, Part II, volume
12085 of Lecture Notes in Computer Science, pages
354–367. Springer.

Xinyi Zhou and Reza Zafarani. 2021. A survey of
fake news: Fundamental theories, detection methods,
and opportunities. ACM Comput. Surv., 53(5):109:1–
109:40.

Yongchun Zhu, Qiang Sheng, Juan Cao, Shuokai Li,
Danding Wang, and Fuzhen Zhuang. 2022a. Gener-
alizing to the future: Mitigating entity bias in fake
news detection. In SIGIR ’22: The 45th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, Madrid, Spain, July
11 - 15, 2022, pages 2120–2125. ACM.

Yongchun Zhu, Qiang Sheng, Juan Cao, Qiong Nan,
Kai Shu, Minghui Wu, Jindong Wang, and Fuzhen
Zhuang. 2022b. Memory-guided multi-view multi-
domain fake news detection. CoRR, abs/2206.12808.

A Implementation

In Feature Extraction, we set d = 200 and employ
pretrained Bert (i.e., bert-base-uncased6 for Twit-

6https://huggingface.co/bert-base-uncased
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ter and Sarcasm and bert-base-chinese7 for Weibo)
with one-layer LSTM as textual encoder to extract
200-dimension textual features. For visual modal-
ity, we divide the 224 × 224 image into 32 × 32
patches (i.e., r = 49, z = 7). We utilize ResNet348

as visual backbone for Twitter and Weibo, follow-
ing (Chen et al., 2022b) and ViT9 for Sarcasm,
following (Liu et al., 2022a). The extracted vi-
sual features are subsequently mapped to the same
dimension as textual features. In Cross-modal Ob-
jects Generation, we apply two-layer GCN (i.e.,
L = 2) to generate high-level representations of
textual tokens and visual patches and then k = 5
to filter out five candidate objects for each meta-
predicate. In Clause Generation, we set the number
of correlations g = 10 and β = 0.1 to derive ex-
plainable logic clauses of length ⌊5k × β⌋. At last,
we set h((T, I), a) = b20 ∧ ... ∧ b2⌊5k×β⌋−1 (i.e.,
l ∈ {2}) to obtain the truth value of the target atom
in Clause Evaluation. The number of parameters of
our model is 4601019 without taking parameters of
Bert and the visual backbone neural network (i.e.,
ResNet and ViT) into account.

During model training, we set the batch size to
32, the epoch number to 20 and exploit Adam op-
timizer for three sets. Additionally, we adopt an
initial learning rate of 0.0001 and a weight decay
of 0.0005 for Twitter and Weibo and 0.00002 and
0.0005 for Sarcasm. Moreover, early stopping strat-
egy is used to avoid overfitting. And we run our
experiments on four NVIDIA 3090Ti GPUs.

For model evaluation, in accordance with prior
research (Chen et al., 2022b), we report Accuracy,
and Precision, Recall, F1 Score for rumor and non
rumor on Twitter and Weibo, while Accuracy, and
Precision, Recall, F1 Score for sarcasm posts on
Sarcasm.

B Baseline Models

To comprehensively evaluate our proposed method
LogicDM, we divide the baseline models into two
categories: Uni-Modal and Multi-Modal methods.
For Uni-Modal baselines, we adopt Bert (Devlin
et al., 2019) where the mean embedding of all to-
kens is utilized for classification and pretrained vi-
sual backbone networks where the feature represen-
tation after the final pooling layer is used. Specif-

7https://huggingface.co/bert-base-chinese
8https://pytorch.org/vision/main/models/

generated/torchvision.models.resnet34
9https://github.com/lukemelas/

PyTorch-Pretrained-ViT

ically, for the visual backbone model, we adopt
ResNet (He et al., 2016) for Twitter and Weibo
datasets as suggested by Chen et al. (2022b), and
adopt ViT (Dosovitskiy et al., 2021) for sarcasm
detection dataset by following Liu et al. (2022a).

For Multi-Modal baselines, we utilize different
approaches for multimodal misinformation detec-
tion and sarcasm detection due to the discrepancy
between both tasks. Concretely, for Twiter and
Weibo, we adopt Vanilla, EANN (Wang et al.,
2018), MAVE (Khattar et al., 2019), SAFE (Zhou
et al., 2020), MVNN (Xue et al., 2021), CAFE
(Chen et al., 2022b), BMR (Ying et al., 2022). Es-
pecially, Vanilla fuses the textual and visual fea-
tures extracted by corresponding encoders of our
proposed LogicDM for classification and we re-
implement BMR by using the same Feature Ex-
traction component as our method and removing
image pattern branch for a fair comparison. For Sar-
casm, we utilize HFM (Cai et al., 2019), D&R Net
(Xu et al., 2020), Att-BERT (Pan et al., 2020),
InCrossMGs (Liang et al., 2021) and HCM (Liu
et al., 2022a).

C Running Example

Figure 6: The running sample of our proposed Log-
icDM. In this example, we set ⌊5k × β⌋ = 2, implying
that the derived clauses at each iteration are constituted
of two logic atoms and the number of GCN layers is
L = 2.

To facilitate understanding of the integral rea-
soning process, we provide an external running
example as depicted in Fig. 6. The integral rea-
soning process can be summarized as follows: 1)
Given the text-image pair as input, our model first
extracts textual features T and visual features V
using corresponding encoders. 2) These features
are exploited to construct a cross-modal graph, de-
noted by the adjacency matrix A in Eq. 1 and
node matrix H = [T,V]. This graph is fed into
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an L-layer GCN to conduct cross-modal reason-
ing. Especially at the iteration l of GCN, the out-
put of GCN Hl is taken to construct cross-modal
objects Ol

t, O
l
v, Ol

t,t, O
l
v,v and Ol

t,v, correspond-
ing to each predicate, using formulas in Table 1.
These objects are then refined through a purifica-
tion process to retain only the most salient ones,
denoted as Ôl

t, Ô
l
v, Ôl

t,t, Ô
l
v,v and Ôl

t,v, serve as
constants to instantiate logic clauses. 3) To derive
logic clauses at the iteration l, we obtain the predi-
cate representations by weighting the importance
of each clue in the corresponding clue set C for
each pair of objects and label y using Eq. 2. Then
two atoms from Bl are selected to derive logic
clauses bl0 ∧ bl1 based on the importance score Sl in
Eq. 4. 4) As each iteration will produce one logic
clause, the final logic clause can be deduced by
(b00∧b01)∨(b10∧b11)∨ ...∨(bL0 ∧bL1 ) ⇒ h((T, I), y),
of where the truth value can be computed based
on Eq. 5 and product t-norm. In this example, we
only choose b20(v1, Rumor) ∧ b21(v2, Rumor) as
the final clause.
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