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Abstract

Visual segmentation from language queries has
attracted significant research interest. Despite
the effectiveness, existing works require ex-
pensive labeling and suffer severe degradation
when deployed to an unseen domain. In this pa-
per, we investigate a novel task Cross-domain
Query-based Visual Segmentation (CQVS),
aiming to adapt the segmentation model from
a labeled domain to a new unlabeled domain.
The challenges of CQVS stem from three do-
main discrepancies: (1) multi-modal content
shift, (2) uni-modal feature gap and (3) cross-
modal relation bias. Existing domain adapta-
tion methods fail to address them comprehen-
sively and precisely (e.g. at pixel level), thus
being suboptimal for CQVS. To overcome this
limitation, we propose Semantic-conditioned
Dual Adaptation (SDA), a novel framework to
achieve precise feature- and relation-invariant
across domains via a universal semantic struc-
ture. The SDA consists of two key components:
Content-aware Semantic Modeling (CSM) and
Dual Adaptive Branches (DAB). First, CSM
introduces a common semantic space across
domains to provide uniform guidance. Then,
DAB seamlessly leverages this semantic infor-
mation to develop a contrastive feature branch
for category-wise pixel alignment, and design a
reciprocal relation branch for relation enhance-
ment via two complementary masks. Extensive
experiments on three video benchmarks and
three image benchmarks evidence the superior-
ity of our approach over the state-of-the-arts.1

1 Introduction

Vision-language understanding (Yin et al., 2022,
2021; Jin and Zhao, 2021b; Jin et al., 2022; Cheng
et al., 2023) is a fundamental problem in deep learn-
ing. Recently, in this field, query-based visual seg-
mentation (Wang et al., 2020; Botach et al., 2022)

∗ Equal contribution.
† Corresponding author

1https://github.com/yewzz/SDA.

Figure 1: (a) Example of the query-based visual segmen-
tation. (b) Illustration of the cross-domain query-based
visual segmentation. (c) Three domain discrepancies.

has received considerable critical attention, which
aims at localizing the visual region at the pixel-
level that semantically corresponds to the language
query. Though existing works have made tremen-
dous progress, the manual collection of pixel-wise
annotations is expensive and tedious in practice,
raising a significant requirement for the application
in unseen circumstances. However, varying con-
struction conditions on different domains inevitably
degrades the adaptation performance, which is for-
mally known as the domain shift problem.

In this paper, to breakthrough the constraint, we
propose a novel task Cross-domain Query-based Vi-
sual Segmentation (CQVS). As shown in Figure 1,
given a source domain with pixel-wise annotations
and an unlabeled target domain, CQVS aims to
adapt the segmentation model and recognize the
query-aligned pixels on the target domain.

To achieve effective adaptation for this cross-
modal grounding task, we have to deal with three
domain discrepancies as shown in Figure 1 (c): (1)
Multi-modal content shift. The free-form query and
aligned visual region describe open and diverse con-
tents, leading to arbitrary semantic shift between
domains, e.g. one domain mainly describes hu-
mans while the other focus more on animals. (2)
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Uni-modal feature gap. Even describing the same
content, each modality may have huge feature gap
between domains caused by varying conditions, e.g.
visual light and linguistic syntax. (3) Cross-modal
relation bias. The relation between modalities are
easily learned to be biased by domain-specific fac-
tors, especially when only source annotations is
available. As illustrated, it cannot be guaranteed to
be aligned across domains by separately aligning
each modality and requires dedicated solutions.

To mitigate domain discrepancies, domain adap-
tation (DA) methods align the distributions across
domains (Baktashmotlagh et al., 2014) or learn
domain-invariant representations (Ganin et al.,
2016). While promising, they are confined for
CQVS by two critical limitations. (1) Traditional
DA methods study the uni-modal tasks, e.g. im-
age segmentation (Vu et al., 2019) and text clas-
sification (Glorot et al., 2011), which are insuffi-
cient without consideration of multi-modal con-
tent and cross-modal relation. (2) Though recent
works (Jing et al., 2020; Liu et al., 2021b) inves-
tigate the multi-modal tasks, they (i) are limited
to image-level retrieval that is imprecise compared
with pixel-level grounding, and (ii) only consider
partial discrepancies (feature and relation) regard-
less of internal correlation between domain con-
tents. Motivated by the fact that humans can lever-
age abstract concepts to guide thinking about con-
crete details (Thomas and Thorne, 2009), we aim
to model the high-level semantic structure in multi-
modal contents to harmonize the low-level pixel
adaptation for feature and relation discrepancies.

Grounded on the above discussions, we propose
Semantic-conditioned Dual Adaptation (SDA), a
novel framework to achieve precise feature- and
relation-level adaptation via a universal semantic
structure. Our proposed SDA consists of two key
components, Content-aware Semantic Modeling
(CSM) and Dual Adaptive Branches (DAB). (1)
CSM builds a sharable semantic space across do-
mains based on the multi-modal content. First, to
discover the consistent contents from visual and
textual modalities, we extract informative words
with visual-guided attention. Then we establish the
semantic structure upon the contents, where we ap-
ply unsupervised clustering on the source domain
and measure the cross-domain semantic similar-
ity to identify common parts on the target domain.
Through this module, we implicitly encode the lan-
guage gap and introduce semantic category infor-

mation as common guidance to regularize adap-
tation. (2) Next, DAB seamlessly integrates dual
branches to separately address feature and relation
discrepancies. On the one hand, a contrastive fea-
ture branch leverages the semantic information to
learn category-wise alignment for foreground pix-
els. To preserve pixel-level discrimination during
aligning, we adopt contrastive learning (He et al.,
2020; Jin and Zhao, 2021a) to highlight relevant
foreground pixels between domains and suppress
diverse background pixels. On the other hand, a re-
ciprocal relation branch mitigates the cross-modal
relation bias via two reciprocal masks. Concretely,
the domain-based masks induced by source knowl-
edge can provide precise but biased results and the
semantic-based masks induced by semantic infor-
mation can provide comprehensive but inaccurate
results. With the complementary signals, we indi-
rectly enhance relation via segmentation training
on both domains and also directly maximize the
mutual information between vision and language.

In summary, our main contributions are listed
as follows: (1) We propose a new task CQVS to
explore domain adaptation for query-based visual
segmentation. (2) We introduce a novel framework
SDA, which develops a content-aware semantic
modeling module to model the multimodal con-
tents and designs a dual adaptive branches module
to mitigate the feature and relation discrepancies.
(3) Extensive experiments on both query-based im-
age and video segmentation datasets evidence the
effectiveness and superiority of our approach.

2 Related Work

2.1 Query-based Visual Segmentation

Query-based visual segmentation aims at recogniz-
ing the relevant pixels in the images or videos based
on the language query. For image segmentation,
several works explore cross-modal fusion methods
(Hu et al., 2016; Liu et al., 2017; Margffoy-Tuay
et al., 2018), extract multi-modal context with atten-
tion (Ye et al., 2019; Huang et al., 2020; Jain and
Gandhi, 2021), develop cycle-consistency learn-
ing (Chen et al., 2019b) and study the adversarial
training (Qiu et al., 2019). Recently, more works in-
vestigate video segmentation. Several works focus
on dynamic convolution-based methods (Gavri-
lyuk et al., 2018; Wang et al., 2020; Hui et al.,
2021), explore cross-modal attention (Wang et al.,
2019; Liu et al., 2021a) and study visual-textual
capsule routing algorithms (McIntosh et al., 2020).
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Figure 2: The illustration of the proposed Semantic-conditioned Dual Adaptation framework.

Recent work (Botach et al., 2022) builds the trans-
former model for this task. However, existing re-
search heavily relies on expensive annotations and
could barely generalize to unseen circumstances,
hindering the feasibility in practice. Hence, we
further study the domain adaptation for this task.

2.2 Domain Adaptation

Traditional unsupervised domain adaptation (UDA)
methods have been explored to close the domain
gap, e.g., maximum mean discrepancy (Long et al.,
2017, 2018) and adversarial learning (Ganin and
Lempitsky, 2015; Chen et al., 2019a). In the vi-
sual research, more advanced approaches are in-
vestigated, e.g., image classification (Ganin and
Lempitsky, 2015; Pan et al., 2020), semantic seg-
mentation (Vu et al., 2019; Zhang et al., 2021)
and object detection (Saito et al., 2019; Li et al.,
2022). However, these methods merely consider
the domain discrepancy of the single modality.

Recently, few works study domain adaptation for
multi-modal tasks, e.g., image captioning (Chen
et al., 2017), text-based person search (Jing et al.,
2020) and video-text retrieval (Chen et al., 2021;
Liu et al., 2021b). Despite the effectiveness, they
fail to comprehensively and precisely address vari-
ous domain discrepancies in this cross-modal seg-
mentation task. Thus, we propose a novel frame-
work to achieve effective adaptation for CQVS.

3 Method

3.1 Preliminary

Problem Formulation. In this task, we are given
a labeled source domain Ds = {V s

i , Q
s
i , A

s
i}Ns

i=1

and an unlabeled target domain Dt={V t
i , Q

t
i}Nt

i=1

containing Ns and Nt samples respectively, where

V,Q,A is the visual sample (i.e. image/video), tex-
tual query and pixel-wise annotations. The goal is
to construct a model with existing data to segment
the query-relevant pixels on the target domain Dt.
Base Network. To illustrate our SDA paradigm
clearly, we first formulate the base segmenta-
tion network as three common modules: (1) En-
coder: Given the raw visual input V and query
embedding W, it encodes visual features as V ∈
RT×H×W×C and query features as Q ∈ RN×C ,
where T ,H ,W ,C are the frame number, height,
width and hidden size of the visual features re-
spectively, N is the word number. Note T = 1
for the image and T will be omitted for ease of
presentation. Based on annotations As, the visual
features Vs can be correspondingly divided into
the foreground Vs,+ and the background Vs,−; (2)
Interaction: It develops the cross-modal interac-
tion with attention weight α ∈ RH×W×N and out-
puts enhanced pixel-level features F ∈ RH×W×C ;
(3) Decoder: It is applied on F to generate fi-
nal response map S = {si}H×W

i=1 . To train the
model, we utilize a binary cross-entropy loss as
Lseg = Lbce(S, A).
Overall Framework. The overall SDA is shown
in Figure 2. SDA includes a CSM module (Sec-
tion 3.2) that encodes the content shift and a DAB
module (Section 3.3) that closes the feature- and
relation-level gap, achieving effective adaptation.

3.2 Content-aware Semantic Modeling
To explore the semantic structure of open and di-
verse vision-language content, we propose a novel
method to extract informative contents via cross-
modal attention, and construct a universal semantic
space by leveraging a clustering algorithm and mea-
suring cross-domain semantic similarity.
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Figure 3: The illustration of the CSM module.

Attentive Extraction. The multi-modal contents
exist in the informative and common parts of visual
and textual modalities. As visual features easily
vary under different conditions and textual features
are comparatively stable but scattered over the se-
quence, we employ vision-language attention to
highlight the correlated words in the query that are
attended by the visual foreground. In the source do-
main, with attention αs ∈ RH×W×N in the interac-
tion module and the annotations As∈{0, 1}H×W ,
we calculate visual-guided attention {ᾱs

n}Nn=1 over
words by averaging the attention scores of all
foreground pixels as ᾱs

n = 1
H×W

∑H×W
i=1 αs

i,nA
s
i .

Then we normalize {ᾱs
n}Nn=1 with temperature τ

for a sharper distribution and combine it with query
embeddings W = {wi}Ni=1 to obtain content fea-
tures Hs ∈ RC , given by:

α̃n=
exp(ᾱn/τ)∑N
n=1 exp(ᾱn/τ)

, Hs=
1

N

N∑

n=1

α̃s
nw

s
n (1)

Here we adopt the embedding W rather than Q for
its generalizable ability (Bravo et al., 2022).

In the target domain without annotations, we
leverage knowledge distillation (Hinton et al.,
2015) to train a predictor with attention weights
ᾱs as guidance, enabling it to directly learn the im-
portance from the query. Thus, we can adaptively
predict attention weights ᾱt and calculate content
features Ht. Details are listed in Appendix B.1.
Semantic Construction. On the basis of multi-
modal contents, we aim to abstract and summarize
the high-level semantics that represents the key con-
cepts. Concretely, we apply Agglomerative Clus-
tering (Zhang et al., 2012) upon source contents
Hs and obtain ks different semantic categories with
their prototypes (i.e. center of cluster) {Cs

i}k
s

i=1. To
explore the target semantic structure, we then mea-
sure the cross-domain semantic similarity by calcu-
lating the sample-to-prototype distance. That is, we
compute the similarity distribution di = {di,j}ksj=1

from the semantic Ht
i of the i-th target sample to

all source prototypes {Cs
i}k

s

i=1, given by:

di,j =
exp(Ht

i
⊤Cs

j)∑ks

n=1exp(H
t
i
⊤Cs

n)
(2)

With the cross-domain semantic similarity di, we
can define the boundary ρ between “common” and
“unknown” points based on its entropy H(di), so
as to align the common parts of the target domain
to the source domain and reject unknown parts.
Each reliable target sample with entropy below the
boundary ρ will be assigned to the nearest source
cluster while other unreliable ones will be clustered
into extra classes, resulting in kt(≤ ks) common
and ku novel classes. With semantic category la-
bels L assigned to data pairs, we establish a seman-
tic structure across domains, where each source
category label Ls

i ∈ {1, 2, .., ks} and each target
category label Lt

j ∈ {1, 2, .., kt, .., kt+ku}.
Semantic Initialization. To further initialize dis-
criminative pixel features for stable adaptation, we
retrain the segmentation model and incorporate the
category clue to ensure the foreground features
compact within categories and separate between
categories. With the category Ls, we can simi-
larly obtain visual prototypes {Us

i}k
s

i=1 for fore-
ground pixels Vs,+. Following the work (Zhang
et al., 2021), we calculate the similarity between
{Us

i}k
s

i=1 and Vs,+ as Ps = [Ps
1,P

s
2, ..,P

s
ks ], then

compute the prototypical contrastive loss Lsi by:

Ps
i =

exp(Vs,+Us
i )∑ks

n=1exp(V
s,+Us

n)
,Lsi=Lce(P

s,Ls) (3)

3.3 Dual Adaptive Branches

In DAB module, we develop two branches to sepa-
rately address feature and relation discrepancies.

3.3.1 Contrastive Feature Branch
In this branch, we adopt contrastive learning (He
et al., 2020) to achieve category-wise foreground
alignment for the visual feature gap.

For visual samples from two domains with the
same foreground category, we aim to contrastively
strengthen their foreground agreement. While
source foreground can be obtained via annotations
As, we apply two thresholds γmin and γmax on
the predicted response map St and filter the highly
reliable pixels to obtain pseudo masks At on the
target domain, where the position with score over
γmax and below γmin are set to 1 and 0 respectively
while the rest are ignored. Then we can similarly
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obtain foreground and background features Vt,+

and Vt,−. We calculate the pixel-level similarity
from the source foreground Vs,+ to the target re-
liable pixels Vt,∗ = Vt,+ ∪ Vt,−, and make the
similarity of associated foreground pairs higher
than any other irrelevant pairs, given by:

Ls→t
cfb =− 1

|Gs|
∑

i∈Gs
log

exp(Vs,+
i Vt,+

j )
∑

nexp(V
s,+
i Vt,∗

n )
(4)

where Gs is the set of source foreground pixels.
To enhance the diversity of contrastive samples,

we maintain a memory bank {{ml
i}Bi=1}k

t

l=1 with
B feature maps for kt common categories on each
domain, providing abundant samples based on the
category and domain of current training data.

The contrastive training is developed bidirection-
ally to enable the pixel features from each domain
can be enhanced by the other. The full loss com-
bines the symmetric terms as Lcfb = Ls→t

cfb +Lt→s
cfb .

3.3.2 Reciprocal Relation Branch
In this branch, we learn semantic-based masks as
reciprocal signals and enhance relation with two
designed modules to alleviate the relation bias.
Reciprocal Masks. Typical methods optimize re-
lation via annotations As on the source domain
and pseudo masks At on the target domain that are
refined from the predicted response map St (Sec-
tion 3.3.1). However, At essentially relies on the
decoder pre-trained on the source domain. Hence,
As and At are both domain-based masks and suffer
bias due to coupling with source knowledge. In-
stead, we leverage the domain-agnostic semantic
category Lt to develop a multi-label visual classi-
fication on the target domain and obtain semantic-
based masks Āt ∈ {0, 1}H×W from the class acti-
vation map (Appendix B.2), which can highlight
the instances of the specific category. The two
types of masks are complementary: (1) As pro-
vides accurate source annotations for segmentation
ability while Āt provides independent target masks
as external knowledge. (2) At focuses on precise
but biased pixels on the target domain while Āt

provides imprecise but comprehensive category in-
stances as reciprocal signals (Figure 9).
Collaborative Training. Given As on the source
domain and Āt on the target domain, direct training
with mixed annotations of different granularity is
ineffective (Luo and Yang, 2020). Thus, we col-
laboratively train the model on two domains via
a shared encoder and two separate decoders for

two annotations respectively, eliminating the effect
of inaccurate masks on the main decoder and pro-
viding comprehensive information from the shared
encoder. With the source output Ss from the main
decoder and the target output S̄t from the auxiliary
decoder, the objective is given by:

Lct = Lbce(S
s, As) + Lbce(S̄

t, Āt) (5)

Hierarchical Optimization. We also enhance re-
lation based on the cross-modal mutual informa-
tion (MI). On the target domain, with the domain-
based and semantic-based masks At and Āt, we
denote the features of their intersection part as the
selected instance Vt

sel, the features of their union
part as category instances Vt

ct and the features of
the remaining part as background Vt

bg. To distin-
guish the hierarchical confrontment among them
(i.e. background-category-instance), we follow the
work (Hjelm et al., 2018) to maximize MI by:

MI(a,b+,b−)=E[(ϕ(a, b+)]−E[(ϕ(a, b−))]
Lt
ho=MI(Q,Vt

sel,V
t
ct)+MI(Q,Vt

ct,V
t
bg)

(6)

where ϕ(·, ·) is the MI discriminator followed by
the softplus function. Similarly, we enhance MI
with loss Ls

ho in the source domain by directly dis-
tinguishing between the foreground and the back-
ground. The final objective Lho = Ls

ho + Lt
ho.

3.4 Training and Inference
Training. We develop a multi-stage training. (1)
We pre-train the segmentation model with loss Lseg

on the source domain. (2) Then we leverage the
pre-trained model in CSM module and re-train it by
adding the loss Lsi. (3) We incorporate the DAB
module to continue training with the full loss by:

Lsda = Lct + λ1Lcfb + λ2Lho (7)

Inference. During inference, we use the main de-
coder to segment pixels with score higher than half
of the max value in the response map as foreground.

4 Experiments

4.1 Setup
Datasets. For query-based visual segmentation,
we consider three video datasets: Refer-Youtube-
VOS (Seo et al., 2020), A2D Sentences (Gavrilyuk
et al., 2018) and J-HMDB Sentences (Gavrilyuk
et al., 2018). We also evaluate our method on three
image datasets: UNC (Yu et al., 2016), UNC+ (Yu
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Method
RVOS → A2D A2D → RVOS RVOS → J-HMDB A2D → J-HMDB

IoU mAP IoU mAP IoU mAP IoU mAP
O M 0.5:0.95 O M 0.5:0.95 O M 0.5:0.95 O M 0.5:0.95

Base(Ours) 40.21 50.60 21.36 30.24 35.46 13.17 56.42 58.72 26.23 61.48 62.54 35.28
CMDyConv 37.32 46.44 18.36 26.71 32.08 10.12 54.18 56.62 24.07 59.74 60.27 33.62

CMPC-V 40.56 49.83 20.72 29.64 34.92 13.01 57.33 58.61 26.74 61.26 61.40 34.11

MMD 41.19 51.26 22.44 31.06 35.38 14.22 57.13 59.16 27.01 62.04 63.11 36.26
DANN 39.73 49.62 20.14 28.44 34.01 11.96 55.25 57.42 25.64 61.96 62.74 35.71
PLCA 42.03 51.78 22.96 31.87 36.02 14.66 58.23 59.41 28.24 63.12 64.08 36.81
MAN 42.36 51.76 23.84 31.02 35.97 14.21 58.13 60.21 28.56 63.17 64.36 37.42
ACP 43.09 51.92 24.13 31.81 36.24 15.06 59.02 60.79 29.34 62.56 63.28 36.73

SDA 46.31 53.10 27.38 33.41 38.26 16.52 63.47 64.47 34.90 66.03 66.75 39.37

Table 1: Performance comparisons of four transfer tasks on three video datasets. O=Overall. M=Mean.

Method
UNC → UNC+ UNC → G-Ref

IoU mAP IoU mAP
O M 0.5:0.95 O M 0.5:0.95

Base(Ours) 34.57 38.31 23.15 37.45 41.09 26.42
CMSA 33.32 36.94 21.61 36.42 40.28 25.06

CMPC-I 35.23 38.98 23.26 38.61 41.74 27.13

MMD 35.44 38.74 23.96 37.96 41.88 27.02
DANN 33.18 37.42 21.17 35.98 39.76 24.88
PLCA 35.62 39.81 24.46 38.64 41.68 28.02
MAN 36.44 40.03 24.82 38.53 42.12 27.66
ACP 36.39 39.44 25.11 38.42 42.43 28.13

SDA 37.89 41.23 26.34 39.64 43.13 29.76

Table 2: Performance comparisons of two transfer tasks
on three image datasets.

et al., 2016) and G-Ref (Mao et al., 2016). Since
the image datasets are mostly collected on MS-
COCO (Lin et al., 2014), we conduct more experi-
ments on the challenging video datasets.
Evaluation Metrics. Following prior works, we
employ the criterias including IoU (Intersection-
over-Union) and mean average precision as met-
rics. For IoU, we compute the Overall IoU and the
Mean IoU. We compute the mean average preci-
sion over different thresholds as mAP[0.5:0.95].

More details of dataset statistics and the imple-
mentation details are summarized in Appendix C.

4.2 Performance Comparison

Baselines. We compare SDA with the following
methods. (1) For query-based visual segmentation
methods that only utilize the labeled source data
for training, we select CMDyConv (Wang et al.,
2020), CMPC-V (Hui et al., 2021) for videos, and
consider CMSA (Ye et al., 2019), CMPC-I (Hui
et al., 2021) for images. (2) For DA methods that
utilize both the labeled source and unlabeled target
data for training, we consider the uni-modal DA
methods: MMD (Long et al., 2015), DANN (Ganin

and Lempitsky, 2015) for image classification,
PLCA (Kang et al., 2020) for semantic segmenta-
tion and the cross-modal DA methods: MAN (Jing
et al., 2020) for text-based person search, ACP (Liu
et al., 2021b) for vision-language retrieval.
Query-based Video Segmentation: The results of
four transfer directions on three video datasets are
shown in Section 3.4. (1) We observe that our SDA
framework consistently outperforms all other meth-
ods on all criterias, improving mAP[0.5:0.95] by
6.0, 3.3, 8.7, 4.1 on four transfer tasks respectively.
(2) The uni-modal DA method MMD brings little
gains and DANN even slightly degrades the perfor-
mance. We infer the reason is that directly aligning
each modality results in negative transfer, as dis-
cussed in Section 1. (3) Though cross-modal DA
methods achieve a performance boost, they are still
inferior to our approach due to the lack of a compre-
hensive solution to the domain discrepancies. The
above observations solidly demonstrate the strong
adaptation ability of our SDA framework.
Query-based Image Segmentation: As shown in
Section 3.4, our SDA also achieves the best results
on two transfer tasks for query-based image seg-
mentation. The fact validates the generalizable abil-
ity of our approach on different visual modalities
(image/video) and further evidences its effective-
ness.

4.3 Ablation Study

To investigate the validity of the derived modules,
we conduct ablation studies on two adaptation tasks
RVOS → A2D and UNC → UNC+.
Main Ablation Study. As shown in Section 4.3,
we verify the contribution of each module in our
SDA. The CSM refers to the content-aware se-
mantic modeling, DAB refers to the dual adaptive
branches including CFB and RRB. We observe that
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CSM
DAB RVOS→A2D UNC→UNC+

CFB RRB OIoU mAP∗ OIoU mAP∗

40.21 21.36 34.57 23.15
✓ 40.16 21.44 34.82 23.46
✓ ✓ 44.91 26.10 36.73 25.33
✓ ✓ 44.26 25.30 36.09 24.87

✓ ✓ 41.92 23.07 35.12 24.23

✓ ✓ ✓ 46.31 27.32 37.89 26.34

Table 3: Main ablation study on two transfer tasks.
OIoU=Overall IoU. mAP∗=mAP[0.5, 0.95].

Ablation Method
RVOS→A2D UNC→UNC+

OIoU mAP∗ OIoU mAP∗

AE
w/ mean-pooling(v) 41.42 22.60 34.21 22.76
w/ mean-pooling(t) 43.92 24.86 36.44 25.26

w/o predictor 45.12 26.25 37.24 25.88

SC w/o boundary 45.34 26.36 37.17 25.79

SI w/o Lsi 44.76 25.63 36.13 24.96

Full 46.31 27.32 37.89 26.34

Table 4: Ablation results about the CSM module.

Ablation Method
RVOS→A2D UNC→UNC+

OIoU mAP∗ OIoU mAP∗

CFB
w/o contrastive 44.96 25.83 36.28 24.92

w/o memory 45.24 26.58 37.21 25.83

RRB
w/o Lct 45.40 26.62 37.32 25.89
w/o Lho 46.02 26.84 37.64 26.12

w/o reciprocal 45.21 26.49 37.18 25.61

Full 46.31 27.32 37.89 26.34

Table 5: Ablation results about the DAB module.

only adding the CSM module brings little gains,
which is reasonable since it mainly models the con-
tent shift for subsequent adaptation. On the basis of
CSM, the CFB and RRB both improve the perfor-
mance dramatically, verifying their effectiveness
to address the feature- and relation-level discrep-
ancies. To evaluate the importance of CSM, we
remove it and obtain inferior results, confirming
the necessity of semantic modeling to harmonize
the adaptation. Our full model integrates these mod-
ules and therefore achieves better performance.
Ablation Study for the CSM Module. We per-
form ablation study for the CSM module and re-
port the results in Section 4.3. (1) For attentive
extraction (AE), we adopt mean-pooling on the
visual and textual features as content features to
generate ablation models w/ mean-pooling(v) and
w/ mean-pooling(t) respectively. By comparison,
our attentive extraction leads to superior perfor-

Figure 4: Effect of Loss Lsi on RVOS→A2D.

(a) RVOS→A2D (b) UNC→UNC+

Figure 5: Impact of Temperature τ on two transfer tasks.

(a) RVOS→A2D (b) UNC→UNC+

Figure 6: Impact of Boundary ρ on two transfer tasks.

mance, evidencing our discussion in Section 3.2.
We also remove the predictor as w/o predictor and
observe it can bring improvement. (2) For seman-
tic construction (SC), we remove the boundary for
filtering as w/o boundary. The result indicates
that filtering the unreliable samples is essential for
adaptation. (3) For semantic initialization (SI),
we remove the initialization as w/o Lsi. We also
draw the performance curve of stage 3 (Section 3.4)
in Figure 4 to reflect the adaptation. The results
show its necessity for the superior and stable per-
formance.
Ablation Study for the DAB Module. We next
perform ablation study for the DAB module and
report the results in Section 4.3. (1) For the con-
trastive feature branch (CFB), we discard the con-
trastive learning and directly enhance the pixel sim-
ilarity as w/o contrastive. It is observed that the
contrastive learning can effectively promote feature
adaptation. We also remove the memory bank as
w/o memory, and find the memory mechanism can
bring further gains. (2) For the reciprocal relation
branch (RRB), we discard the collaborative train-
ing (CT) and hierarchical optimization (HO) as
w/o Lct and w/o Lho, respectively. As illustrated,
both components contributes to better adaptation.
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Figure 7: The t-SNE visualization of the visual features on RVOS→A2D.

Figure 8: The segmentation results on RVOS→A2D and UNC→UNC+. Base shown in the second row. SDA shown
in the third row.

We further replace the reciprocal masks with only
domain-based masks as w/o reciprocal. The in-
ferior results confirm its effectiveness for relation
enhancement.

4.4 Hyper-Parameter Analysis
Impact of Temperature τ in AE method. Tem-
perature τ controls the attention distribution for the
extraction of content features. We evaluate 11 dif-
ferent τ values from 0.01 to 1.0 on RVOS →A2D
and UNC→UNC+. The result in Figure 5 shows
that the performance achieves the best when τ is
set to 0.2 and becomes poor when τ is too small or
too large. This result suggests that a proper τ value
is crucial to capturing key contents.
Impact of Boundary ρ in SC method. To study
the impact of boundary ρ, we set ρ = βlog(ks)
where log(ks) is the theoretical maximum value
of the similarity entropy H(di). The result in Fig-
ure 6 shows that the performance increases and
then decreases with increasing β, indicating that
the boundary controls the openness degree between
domains and hence affects adaptation.

4.5 Qualitative Analysis
To shed a qualitative light on evaluating the pro-
posed approach, we conduct several experiments as
follows. More results are listed in Appendix D.3
Visualization of Visual Features. In Figure 7,
we visualize the visual features on RVOS→ A2D,

Figure 9: The visualization of reciprocal masks.

learned by Base, MAN, ACP and SDA respectively
using t-SNE (Donahue et al., 2014). The visual fea-
tures learned by our SDA obtain a clearer boundary
and a better separation, indicating the cross-domain
visual features are aligned in a category-wise man-
ner under the common semantic guidance.
Visualization of Segmentation Result. As shown
in Figure 8, we visualize the segmentation results to
verify the effectiveness of our method. Notice that
the results from the Base model are more inaccurate
and biased due to the large domain gap, while our
SDA produces more accurate segmentation results.
Visualization of Reciprocal Masks. In Figure 9,
we visualize the reciprocal masks. The domain-
based mask can accurately segment an instance (i.e.
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the left car) but suffers severe bias. Instead, the
semantic-based mask can coarsely localize various
car instances, thus providing comprehensive clue
about the missing one (i.e. the right car).

5 Conclusion

In this work, we first study the task of cross-domain
query-based visual segmentation. To address this
problem, we propose Semantic-conditioned Dual
Adaptation, a novel framework that achieves the
feature- and relation-level adaptation via a univer-
sal semantic structure. Experiments shows that
our framework performs consistently well on both
query-based video and image benchmarks.

6 Limitation

In this section, we make a clear discussion of the
limitation of our work. Our work mainly study the
setting where each dataset serves as an independent
domain. However, the adopted datasets (e.g. UNC,
UNC+) for query-based image segmentation are
mostly collected on MS-COCO (Lin et al., 2014)
and have limited domain gap between visual modal-
ity. The findings could inspire the researchers to
explore other settings, e.g. each class serves as an
independent domain.

7 Ethics Statement

We adopt the widely-used datasets that were pro-
duced by previous researchers. We followed all
relevant legal and ethical guidelines for their acqui-
sition and use. Besides, we recognize the potential
influence of our technique, such as its application in
human-computer interaction and vision-language
grounding system. We are committed to conduct-
ing our research ethically and ensuring that our
research is beneficial. We hope our work can in-
spire more investigations for the domain adaptation
on multi-modal tasks and wish our framework can
serve as a solid baseline for further researches.
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This appendix contains four sections. (1) Ap-
pendix A introduces the detailed design of our base
segmentation network. (2) Appendix B introduces
the technique components in our SDA framework,
including the predictor (Appendix B.1) and the
multi-label visual classification (Appendix B.2).
(3) Appendix C introduces the experiment details,
including the dataset details (Appendix C.1), the
implementation details (Appendix C.2), and the
baseline settings (Appendix C.3). (4) Appendix D
presents extensive experiment results, including
some discussions (Appendix D.1), more hyper-
parameter analysis (Appendix D.2) and more qual-
itative results (Appendix D.3).

A Base Segmentation Network

We adopt a unified segmentation network for both
query-based video and image segmentation. Specif-
ically, we adopt the same architecture including the
query encoder, the interaction mechanism between
the frames and words, the decoder for segmenta-
tion and the training loss. The main difference is
that we adopt different visual encoders for videos
and images, respectively.
Encoder. For each video, we employ pre-
trained I3D layers (Carreira and Zisserman, 2017)
with stacked 3D convolution to learn the spatio-
temporal features for video clips, denoted as
V ∈ RT×H×W×C , where T , H , W , C are the
frame number, height, width and channel num-
ber of output respectively. For each image, we
employ a pre-trained ResNet-101 network (He
et al., 2016) to learn the spatio features, denoted
as V ∈ RH×W×C . For ease of presentation,
we abuse the symbol V to denote both video
and image features and drop the T . Besides, we
adopt the multi-resolution visual features maps
{Vi ∈ RHi×Wi×Ci}Nm

i=1 that are outputs of differ-
ent encoder layers, where Nm is the number of
multi-resolution feature maps, Hi, Wi and Ci are
separately the width, height and channel number
of the i-th feature map. For each query, we employ
the Glove (Pennington et al., 2014) word embed-
dings as the input W and apply a Bi-GRU network
to learn the query features Q ∈ RN×C , where N
is the word number.
Interaction. With the query representation Q ∈
RN×C and the visual features V ∈ RH×W×C ,
we first incorporate the natural language to gener-
ate query-focused visual context Vq ∈ RH×W×C

through a dot-product attention and gating modula-

tion, given by:

V̄ = softmax(g1(V)g2(Q
⊤))Q

Vq = tanh(g3(V̄))V
(8)

where g1, g2, g3 are distinct linear transformations
and V̄ ∈ RH×W×C is the attentive representation.
Note that the cross-modal attention α in Section 3.1
can be obtained by α = softmax(g1(V)g2(Q

⊤)).
We then divide the feature map into different se-
mantic regions based on the unsupervised low-level
SLIC superpixel algorithm (Achanta et al., 2012).
Specifically, we turn the visual context Vq into the
superpixel representation Vr ∈ RNr×C through re-
gion max-pooling, where Nr is the preset number
of superpixels, and compute the region-contextual
representations V̄r with region self-attention, given
by:

V̄r = softmax(gq(Vr)gk(V
⊤
r ))gvVr (9)

where gq, gk, gv are distinct linear transformation.
We further augment the pixel representations by
adding corresponding region-contextual represen-
tations to the original visual context and get the
enhanced pixel-level features F ∈ RH×W×C .

We build the hierarchical cross-modal inter-
action to obtain enhanced feature maps {Fi ∈
RHi×Wi×Ci}Nm

i=1 by stacking the interaction mod-
ule over multi-resolution visual features {Vi}Nm

i=1.
Decoder. After the encoding and interac-
tion, we generate the multi-scale response maps
{{si,j}Hi×Wi

j=1 }Nm
i=1 by employing FCN (fully con-

volutional network) on the enhanced representation
{Fi}Nm

i=1.
Training. With the multi-scale response maps
{{si,j}Hi×Wi

j=1 }Nm
i=1 and pixel-wise annotations

{{ai,j}Hi×Wi
j=1 }Nm

i=1 where ai,j ∈ {0, 1}, we directly
compute the binary cross-entropy loss for j-th pixel
of i-th feature map, given by

Lseg,(i,j) =− ai,j logsi,j

− (1− ai,j)log(1− si,j)
(10)

B Technique Components

B.1 Predictor
In the CSM module (Section 3.2), we indepen-
dently train a predictor to predict the weight for the
words on the target domain, aiming to directly learn
the importance from the query without available
annotations. The predictor consists of a two-layer
MLP. Specifically, we conduct pre-training on the
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source domain where we fix all other network com-
ponents except for the predictor. First, we input the
query embeddings W into the predictor and obtain
the output {ᾱs,pre

n }Nn=1. Then we follow the knowl-
edge distillation scheme (Hinton et al., 2015) to
adopt the visual-guided attention weights {ᾱs

n}Nn=1

as the objective and develop the L1 loss to train the
predictor. The loss is given by:

Lpre = DKL(ᾱ
s,pre
n ||ᾱs

n) (11)

where DKL(A||B) is the Kullback-Leibler diver-
gence from A to B. After training the predictor for
5 epochs, we freeze it and apply it to the target
domain to predict the weight ᾱt

n. The visualized
results can be found in Figure 12.

B.2 Multi-label Visual Classification
In the RRB branch (Section 3.3.2), with the seman-
tic category Lt for each referred instance, we first
construct image-level training samples by combin-
ing all categories that appeared in the image. In
this way, an image (or a video frame) is related
to multiple category labels and we assume that
the ground truth label of an image is y ∈ Rkt+ku ,
where yi = {0, 1} denotes whether label i appears
in the image or not. Next, we leverage an inde-
pendent classification network to perform training,
where we adopt a pre-trained ResNet-101 as the
backbone to encode visual features. Then we apply
the global average pooling on the convolutional
feature maps and input them into a fully-connected
layer with a sigmoid function to produce the de-
sired output ȳ for classification. With total kt + ku

categories on the target domain, the whole network
is trained using the traditional multi-label classifi-
cation loss as follows:

Lmlc = −
kt+ku∑

c=1

(yclogȳc+(1−yc)log(1−ȳc)) (12)

To leverage the weakly-supervised localization
ability, we follow the CAM method (Zhou et al.,
2016) to build the class activation map, which can
coarsely highlight the pixels belonging to a speci-
fied category. We also follow the IRN method (Ahn
et al., 2019) to further refine the class activation
map for more precise masks. Afterwards, each
target training sample (V t

i , Q
t
i) is associated with

a semantic-based mask Āt
i, which provides the

coarse-level instance location of the correspond-
ing category Lt

i. The visualized results are shown
in Figure 9.

C Experiment Details

C.1 Dataset Details
C.1.1 Query-based Video Segmentation
Refer-Youtube-VOS. Refer-Youtube-VOS (Seo
et al., 2020) is a large-scale referring video seg-
mentation dataset extended from Youtube-VOS
dataset (Xu et al., 2018) which contains 3975
videos, 7451 objects and 27899 expressions with
both first-frame expression and full-video expres-
sion annotated.
A2D Sentences. A2D Sentences (Gavrilyuk
et al., 2018) is extended from the Actor-Action
Dataset (Xu et al., 2015) by providing textual de-
scriptions for each video. It contains 3,782 videos
annotated with 8 action classes performed by 7
actor classes.
J-HMDB Sentences. J-HMDB sentences (Gavri-
lyuk et al., 2018) is extended from the J-HMDB
dataset (Jhuang et al., 2013) which contains 928
videos and corresponding 928 sentences. All the
actors in JHMDB dataset are humans and one nat-
ural language query is annotated to describe the
action performed by each actor.

C.1.2 Query-based Image Segmentation
UNC. UNC (Yu et al., 2016) is collected on MS-
COCO (Lin et al., 2014). It contains 19, 994 im-
ages with 142,209 referring expressions for 50,000
objects. Expressions in UNC contain words indi-
cating the location of the objects.
UNC+. UNC+ (Yu et al., 2016) is also collected
on MS-COCO (Lin et al., 2014). It contains 19,
992 images with 141,564 referring expressions for
49,856 objects. Expressions in UNC+ describe
the objects based on their appearance and context
within the scene without using spatial words.
G-Ref. G-Ref (Mao et al., 2016) is also collected
on MS-COCO (Lin et al., 2014). It contains 26,711
images with 104,560 referring expressions. Expres-
sions in G-Ref contain longer sentences with an
average length of 8.4 words compared with other
datasets (e.g. UNC, UNC+) which have an average
sentence length of less than 4 words.

C.2 Implementation Details
Model Selection. For visual features, we use the
ResNet-101 (He et al., 2016) pre-trained on the Im-
ageNet as the backbone feature extractor for images
and use the I3D network (Carreira and Zisserman,
2017) pre-trained on the Kinetics dataset (Carreira
et al., 2018) for video clips. For query features, we
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employ the pre-trained Glove (Pennington et al.,
2014) word embeddings as input.

Parameter Setting. For the base segmentation set-
ting, we follow the video segmentation work (Wang
et al., 2019) to set the target frame as the center of
8 continuous clips. All the frames are rescaled and
padded to the same size of 320 × 320. The FCN
network for the decoder consists of three fully con-
volutional layers with residual connection, where
the kernel size is 3 × 3 for the first two layers and 1
× 1 for the remaining layer. We set the hidden size
to 1024 and use bilinear interpolation for feature
map upsampling. For images, we adopt the last
three layers of the encoder for the multi-resolution
feature maps (Nm = 3). For videos, we adopt
the last five layers of the encoder for the multi-
resolution feature maps (Nm = 5).

In our SDA framework, we select the visual
features from the last layer of the encoder for
adaptation. For the content-aware semantic mod-
eling module, we set the temperature τ to 0.2, set
the distance threshold in Agglomerative Cluster-
ing (Zhang et al., 2012) to 0.5 and set the boundary
ρ to log(ks)

2 where log(ks) is the theoretical maxi-
mum value of entropy H(d). For the contrastive
feature branch, we set the thresholds γmax and
γmin to 0.9 and 0.1 respectively and set the memory
size B to 100 for each category. Besides, we adopt
the teacher-student architecture (Tarvainen and
Valpola, 2017) to provide stable features with the
momentum parameter set to 0.99. For the recipro-
cal feature branch, we follow the IRN method (Ahn
et al., 2019) to refine the class activation map. The
loss coefficients λ1 and λ2 are empirically fixed at
1.0 and 0.1. To train our model, we use the Adam
optimizer with an initial learning rate 1e-7. The
learning rate increases to 4e-4 linearly for 300 up-
dating steps and then decreases proportionally. The
batch size is set to 8 for both the source data and
target data. We run all the experiments for 5 times
and report the mean results.

Training Step. As mentioned in Section 3.4, we
develop a multi-stage training. In stage 1, we pre-
train the segmentation model with BCE loss Lseg

on the source domain for 20 epochs. In stage 2,
we re-train the model by adding the loss Lsi in
CSM module for 20 epochs. In stage 3, we train
the model with the full loss Lsda for 10 epochs.
More specifically, in stages 1 and 2, we both set the
learning rate to 4e-4 to start training. In stage 3, we
continue training with the updated learning rate.

Experiment Configuration. The SDA is imple-
mented using PyTorch 1.9.0 with CUDA 10.0 and
cudnn 7.6.5. All the experiments are conducted
on a workstation with four NVIDIA GeForce RTX
2080Ti GPUs.

C.3 Baseline Setting

Query-based Visual Segmentation Baselines.
For video segmentation baselines, CMDy-
Conv (Wang et al., 2020) utilizes a context
modulated dynamic network with group-wise ker-
nel prediction to incorporate context information
and an effective temporal evolution encoder to
capture motion information; CMPC-V (Hui et al.,
2021) builds a cross-modal adaptive modulation
module to dynamically recombine multi-modal
features. For image segmentation baselines,
CSMA (Ye et al., 2019) employs cross-modal
attention and self-attention to extract multi-modal
context between image regions and referring
words; CMPC-I (Hui et al., 2021) applies the
same architecture as CMPC-V without temporal
interaction on the image side. We directly
re-implement the above approaches and adopt the
same visual encoder and query embedding for a
fair comparison.
Domain Adaptation Baselines. We combine
domain adaptation approaches with our Base
segmentation network to conduct experiments.
For DA baselines designed for uni-modal tasks,
MMD (Long et al., 2015) minimizes the feature
distances; DANN (Ganin and Lempitsky, 2015)
employs a gradient reversal layer to learn domain-
invariant features; PLCA (Ganin and Lempitsky,
2015) develops pixel-level contrastive learning
based on the pixel similarity. To apply MMD and
DANN on the CQVS task, we leverage them for
both pixel-level visual features and query features.
Since PLCA mainly works for visual pixels, we fur-
ther apply MMD on query features to improve the
performance. For DA baselines designed for multi-
modal tasks, MAN (Jing et al., 2020) performs
alignment for each modality feature and leverages
pseudo labels to train the target samples; ACP (Liu
et al., 2021a) employs the pre-trained classification
model to preserve the semantic structure of compo-
sitional concepts from uni-modal data. Since both
MAN and ACP are designed for global image-level
features, we apply MAN by replacing the image-
level pseudo labels with pixel-level pseudo labels,
and apply ACP by replacing the image-level con-
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Algorithm Cluster RVOS→A2D

Number OIoU mAP∗

K-Means

10 43.42 24.20
50 44.64 25.86
100 44.97 26.05
500 44.11 24.63

Spectral

10 43.38 24.26
50 45.14 25.93
100 45.42 26.33
500 44.20 24.48

Agglomerative - 46.31 27.32

Table 6: The Comparison of different clustering algo-
rithms.

Feature RVOS→A2D UNC→UNC+

OIoU mAP∗ OIoU mAP∗

Encoded Features 45.36 26.48 37.07 25.39

Word Embedding 46.31 27.32 37.89 26.34

Table 7: The Comparison of Content Extraction: En-
coded Features vs Word Embedding.

cept with the instance-level concept (i.e. average
pooling of pixels in the foreground region).

D Experiment Results

D.1 Discussion

Selection of Clustering Algorithm. To effec-
tively establish the semantic structure of multi-
modal contents, we investigate different clustering
algorithms including K-Means (Lloyd, 1982), Spec-
tral Clustering (Ng et al., 2001) and Agglomerative
Clustering (Zhang et al., 2012). From the results
shown in Appendix D, we observe our framework
is sensitive to the choice of a specific clustering al-
gorithm. Specifically, K-Means and Spectral Clus-
tering both require a cluster number value that is
manually set. The optimal cluster number is dif-
ficult to define, hindering these algorithms to ob-
tain satisfactory clustering results and leading to
inferior adaptation performance. Instead, Agglom-
erative Clustering only requires a proper distance
threshold parameter to automatically perform hi-
erarchical clustering by grouping similar points,
which yields better results on our content features
extracted from the embedding model.
Content Extraction: Encoded Features vs Word
Embedding. As discussed in Section 3.2, the
work (Bravo et al., 2022) shows that a simple lan-
guage model fits better than a large contextualized
language model for detecting novel objects. To fur-

Size 10 50 100 200

mAP* 26.83 27.14 27.32 27.36

Table 8: Impact of Size B on the RVOS → A2D task.

γmax γmin
RVOS→A2D

oIoU mAP∗

0.9 0.1 46.31 27.32
0.8 0.2 45.52 26.54
0.7 0.3 44.96 26.11
0.9 0.2 45.73 26.85
0.9 0.3 45.24 26.22
0.8 0.1 46.17 27.09
0.7 0.1 45.82 26.94

Table 9: Impact of Thresholds γmax and γmin.

(a) RVOS→A2D (b) UNC→UNC+

Figure 10: Impact of Distance Threshold on two transfer
tasks.

ther verify its effectiveness on semantic modeling,
we compare two different query features for con-
tent extraction, i.e. the encoded features vs word
embedding. We present the results in Appendix D
and find that the word embedding performs better
than encoded features, which is consistent with the
conclusion (Bravo et al., 2022).

D.2 Hyper-Parameter Analysis

Impact of Memory Size B in CFB module. We
set the memory size B to [10, 50, 100, 200] to
explore the impact of it. The result in Table 8
reveals that a larger memory size can bring more
improvement, which is also verified in (He et al.,
2020). Notably, when the size B exceeds 100, the
gain is limited. Considering the computation cost,
we set B = 100 in our experiments.
Impact of Thresholds γmax and γmin in the CFB
module. Thresholds γmax and γmin separately
control the number of selected pseudo pixels for
foreground and background in the target domain.
We analyze the impact of two thresholds and report
the results in Appendix D.2. It indicates that both
threshold values are crucial to the adaptation per-
formance. Our SDA achieves the best results when
the values γmax=0.9 and γmin=0.1. It also shows
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Figure 11: The semantic clusters on RVOS→A2D.

Figure 12: The visualization of visual-guided attention
on RVOS→A2D. Darker color means the higher atten-
tion score.

that the γmin value is a bit more important than the
γmax, since the background pixels can provide the
discriminative power serving as negative samples.

Impact of Distance Threshold in the SC method.
Distance threshold in Agglomerative Clustering
defines the minimum distance between two clus-
ters, which indirectly controls the cluster number.
To explore the impact of it, we set the distance
threshold to [0.1, 0.3, 0.5, 0.7, 0.9] and display the
results in Figure 10. We note that the performance
gradually improves with the increase of distance
threshold and slowly reaches the bottleneck. This
phenomenon is reasonable since a large threshold
leads to few clusters where each one contains many
indistinguishable samples and a small threshold re-
sults in too many clusters where each one has few
samples.

D.3 Qualitative Analysis
Visualization of Semantic Construction. In Fig-
ure 11, we present the semantic clusters on each
domain. We observe that the cluster on the source
domain can group semantically similar visual in-
stances and sentences, e.g. "bird", "parrot" and
"owl". Meanwhile, the separation between clusters
is also clear, e.g. "bird" vs "duck". Thus, the simi-
lar parts on the target domain can be well-aligned
to the source clusters. The visualization results
demonstrate the effectiveness of our content-aware
semantic modeling module to explore the multi-
modal contents and learn the semantic structure
across domains.
Visualization of Attentive Extraction. In Fig-
ure 12, we depict the distribution of the visual-
guided attention on the source domain and the pre-
dicted attention on the target domain. We can find
the attention weights on both domains can high-
light the crucial words in the query, e.g. the actor
"viper" and "bird", while suppressing the inessen-
tial parts, e.g. the descriptive words "under bush"
and "in the sky".
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