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Abstract

Recent years have witnessed a growing interest
in investigating what Transformer-based lan-
guage models (TLMs) actually learn from the
training data. This is especially relevant for
complex tasks such as the understanding of
non-literal meaning. In this work, we probe
the performance of three black-box TLMs and
two intrinsically transparent white-box mod-
els on figurative language classification of sar-
casm, similes, idioms, and metaphors. We con-
duct two studies on the classification results
to provide insights into the inner workings of
such models. With our first analysis on fea-
ture importance, we identify crucial differences
in model behavior. With our second analysis
using an online experiment with human partici-
pants, we inspect different linguistic character-
istics of the four figurative language types.

1 Introduction

In recent years, Transformer-based language mod-
els (TLMs) have achieved groundbreaking perfor-
mance in various NLP tasks. Along with such
progress, there has been an increasing demand for
understanding the reasons for the decisions made
by the TLMs, as this is often required for humans
to trust the models (Gilpin et al., 2018).

As of now, researchers working on interpretabil-
ity have mostly neglected the precise investigation
of how TLMs models process non-literal language.
Non-literal language, or figurative language, is a
type of language where the intended meaning of
an expression is incongruent with its literal mean-
ing (Kalandadze et al., 2018; Gibbs and Colston,
2012). Typical cases of figurative language include
sarcasm, e.g., saying ‘lovely weather’ on a stormy
day, or metaphors, e.g., describing a person that al-
ways goes to bed late as a ‘night owl’ even though
the person is not an actual owl. This discrepancy
between the surface form and the intended message
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makes tasks involving figurative language complex
both for humans and for models; therefore, it is
harder for humans to trust the output of a model in
such tasks without a precise understanding of the
motivations behind specific models’ decisions.

As the figurative meaning is not literally artic-
ulated in words, humans grasp it via pragmatic
enrichment processes, i.e., inferring the speaker’s
communicative intention that is not uttered (Davis,
2019; Recanati, 2010; Grice, 1975). Although such
processes often rely on non-deterministic factors
such as social and cultural background (Colston
and Katz, 2004), studies have shown that humans
also utilize more explicit contextual cues to achieve
pragmatic enrichment and identify the figurative
meanings (see, e.g., Regel and Gunter, 2016; Kreuz
and Caucci, 2007; Hanks, 2004; Kroll and Schep-
eler, 1987). These cues include contextual incon-
gruity, semantic relations between words, or ex-
plicit syntactic forms. Given such multi-step nature
of figurative language processing, we are interested
in investigating the inner workings of TLMs in
processing different types of figurative language.
Specifically, we focus on two research questions
(RQs): RQ 1 - When the explicit cues that help the
identification of the figurative meaning exist, do
TLMs attend to them as humans do, or do TLMs
adopt totally dissimilar strategies from humans?
RQ 2 - How do the performance and the feature
attention behavior of TLMs compare to those of
intrinsically interpretable white-box models such
as regression models or decision-tree-based mod-
els? Would the attention mechanism enable them
to grasp those cues better?

To explore these two questions, we probe three
black-box TLMs along with two white-box mod-
els as baseline on the task of figurative language
classification, using a dataset that provides a rich
range of figurative language classes with different
opacity degrees, i.e., some classes have obvious
cue words, whereas others do not. Based on the
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classification results, we conduct two analyses that
compare 1) the behavior of different models and 2)
the behavior of models vs. humans. Our main con-
tributions are two-fold: First, we show that even
though different TLMs achieve the same level of
performance in the figurative language classifica-
tion task, they show a striking discrepancy in the
features they attend to, suggesting different levels
of interpretability of different models. Second, we
bridge existing work in psycholinguistics and theo-
retical linguistics with our data analysis results to
gain a better understanding of figurative language
processing in both machines and humans.1

2 Related Work

NLP researchers have attempted to build models
that can comprehend figurative meaning. The pub-
lic availability of large-scale annotated corpora,
e.g., the Sarcasm Corpus V2 (Oraby et al., 2016),
the VU Amsterdam Dataset of Metaphor (Steen,
2010), and the MAGPIE dataset for potentially id-
iomatic expressions (Haagsma et al., 2020), has en-
couraged the task of figurative language detection.
Before the extensive use of neural networks, most
studies have treated figurative language processing
as a classification task and utilized theoretically-
derived features. For example, incongruent senti-
ment expressions have often been used for sarcasm
detection (Joshi et al., 2015; Riloff et al., 2013);
while abstractness of words (Köper and Schulte im
Walde, 2017; Turney et al., 2011) and topic transi-
tion information (Jang et al., 2016) have been used
for metaphor detection. Recent studies have been
using neural models (e.g., Gao et al., 2018; Wu
et al., 2018; Do Dinh and Gurevych, 2016), and
TLMs especially have shown good performance
(see, e.g., Chakrabarty et al., 2022a, 2021; Avvaru
et al., 2020; Dong et al., 2020; Liu et al., 2020).
Some recent work using TLMs treats figurative lan-
guage processing as a natural language inference
(NLI) task instead of a classification task (He et al.,
2022; Chakrabarty et al., 2021), which is a step
closer to comprehending figurative language.

Despite the successful model performance of
TLMs, little research has attempted to delve into
their inner workings. Several studies have probed
into whether knowledge of figurative meaning is
encoded in TLMs (Chen et al., 2022; Dankers et al.,

1All code, models, and experimental instructions are avail-
able at: https://github.com/CoPsyN/figurati
ve-language-processing

2022; Ehren et al., 2022; Tan and Jiang, 2021).
Though this strand of work has confirmed that this
knowledge is encoded in TLMs to some extent, it
does not provide information about what motivates
the output of the models in the task of figurative
language processing. Our work attempts to fill this
gap by inspecting the behavior of different models
in processing different types of figurative language.
We zoom into the most salient lexical properties
used by different TLMs in distinguishing four types
of figurative language and compare such properties
with those used by humans.

3 Figurative Language Classification

As TLMs are not intrinsically explainable, one way
of inspecting the reasons behind their decisions
is by a post-hoc feature analysis. We treat figu-
rative language processing as a classification task
where the models classify 4 different types of fig-
urative language. We then conduct analyses on
the classification results to compare the behavior
of 1) different models (Section 4) and 2) models
vs. humans (Section 5). In this section, we report
the results from our classification experiments us-
ing a variety of black-box and white-box models.
All supplementary details of this experiment are
provided in Appendix A.

3.1 Data
We use FLUTE (Figurative Language Understand-
ing through Textual Explanations), an English-
language dataset released for the Shared Task
on Understanding Figurative Language 2022
(Chakrabarty et al., 2022b)2. We choose FLUTE as
it is the most recent comprehensive dataset with a
rich variety of figurative language types: sarcasm,
similes, idioms, and metaphors. Even though the
dataset is relatively small and imbalanced (see de-
tails below), we believe that it is beneficial for our
research questions described in Section 1, as it
brings together four different figurative language
classes with varying lexical characteristics:
a) Classes with apparent cues: Sarcasm instances
often contain words indicating positive sentiment
and descriptions of a negative event or state (see
Example (1)). Simile instances typically contain
cues such as ‘like’ or ‘as’ (see Example (2)).

(1) Grad school was so comforting that I had
no choice but to drop out to keep my sanity.

2Publicly available at https://figlang2022share
dtask.github.io
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(2) He was as graceful as a giraffe.

b) Classes without apparent cues: Idioms (see
Example (3)) and metaphors (see Example (4)) do
not come with obvious cues.

(3) Rule of thumb is escape while you’re on the
move.

(4) He felt a wave of excitement.

We assume that varying opacity degrees of different
figurative language types provide a good test-bed
for comparing the behavior of different models.
Specifically, for the classes with obvious contextual
cues, we investigate how well different models can
capture these cues; for the classes without obvious
contextual cues, we investigate how such models
use contextual information to overcome the lack of
clear cues.

As FLUTE is originally designed for an NLI task,
each figurative sentence is the hypothesis paired
up with its literal counterpart, the premise. For
the purpose of our experiment, we reorganize the
dataset by extracting all the hypotheses together
with their original labels. In the original dataset,
the same hypotheses are sometimes paired up with
different premises and thus appear multiple times.
We drop duplicates of such kind. As our focus is
investigating the behavior of models and humans
in processing figurative language types with dif-
ferent characteristics (with vs. without apparent
cues), but not investigating figurative language as
a whole as opposed to literal language, in our ex-
periments we exclude the premises (i.e., the literal
sentences). Table 1 summarizes the dataset after
reorganization.

With Apparent Cues No Apparent cues
Sarcasm Simile Idiom Metaphor Total

#Sentences 2212 625 884 621 4342
#Tokens 45233 9062 14795 5692 74782

Table 1: Number of sentences and tokens for each figu-
rative language class used in the analyses.

3.2 Models

We experiment with two types of models: black-
box and white-box. Black-box models are the mod-
els whose predictions cannot be directly explained
in ways that humans can understand whereas white-
box models are the ones whose predictions can be
interpreted at least by experts (Islam et al., 2021;
Loyola-Gonzalez, 2019; Rudin, 2019). Given that

the detection of figurative language is not the objec-
tive of this work, we fine-tune these models on our
dataset and add a sequence classification head to
identify the strongest lexical patterns characterizing
various figurative language types (see Appendix A
for details).

Black-Box Models We experiment with three
TLMs: BERT (Devlin et al., 2019), RoBERTa
(Liu et al., 2019), and XLNet (Yang et al., 2019).
All three models have frequently been used in for-
mer studies on figurative language processing and
shown good performance (see studies mentioned
in Section 2).

White-Box Models We experiment with four
white-box models: Logistic Regression (LR), Ran-
dom Forest (RF), Decision Tree (DT), and Naive
Bayes (NB). As input of the white-box models,
each text is represented as a Tf-idf vector with the
number of dimensions equaling to the vocabulary
size of our dataset. We do not conduct any token
selection (e.g., excluding infrequent tokens and/or
stop words) to keep the features (i.e., the tokens)
for the white-box models maximally comparable
to those for the black-box models. We are aware
though that it is impossible to keep the token sets
for different models completely identical because
they use different tokenizers and token represen-
tations. The use of Tf-idf as text representations
guarantees the white-box models to be completely
transparent for humans as each vector dimension
corresponds to a word. This contrasts to represent-
ing a sentence as an average of pre-trained static
word embeddings (e.g., Word2Vec or GloVe em-
beddings) as they are opaque by definition and
averaging them adds another layer of opacity.

3.3 Results
Given the relatively small size of the dataset, we
evaluate the performance of each model using a 10-
fold cross-validation instead of a single hold-out
test set. Table 2 shows the macro-F1 scores aver-
aged from 10 folds: Among the white-box models,
LR achieves the best performance, followed by RF.
Among the black-box models, all three of them
perform to a comparable degree.

3.4 Model Selection
In order to obtain informative features for the analy-
sis of the model behavior, we only select the models
with good performance in figurative language clas-
sification. As indicated by the F1-scores, TLMs
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Model Macro-F1
BLACK-BOX MODELS

bert-base-uncased 0.95
roberta-base 0.95
xlnet-base-cased 0.94

WHITE-BOX MODELS

Logistic Regression (LR) 0.87
Decision Tree (DT) 0.77
Random Forest (RF) 0.85
Naive Bayes (NB) 0.68

Table 2: Macro-F1 from 10-fold cross-validation.

outperform white-box models by a large margin.
But, given that white-box models constitute an
inherently interpretable baseline, we include the
two best-performing white-box models as refer-
ence points for our feature analysis. Figure 1 pro-
vides the per-class F1 scores of the selected models
on the test set (20% of the full dataset) that we
used for all of them for better comparability (see
more details in Appendix B). Apart from the fact
that the black-box models perform better than the
white-box models for all classes, all models per-
form better in detecting the classes with obvious
cues (sarcasm and simile) than the classes without
obvious cues (idiom and metaphor).

LRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLR

RFRFRFRFRFRFRFRFRFRFRFRFRFRFRFRFRFRFRFRF

XLNetXLNetXLNetXLNetXLNetXLNetXLNetXLNetXLNetXLNetXLNetXLNetXLNetXLNetXLNetXLNetXLNetXLNetXLNetXLNet
BERTBERTBERTBERTBERTBERTBERTBERTBERTBERTBERTBERTBERTBERTBERTBERTBERTBERTBERTBERT
RoBERTaRoBERTaRoBERTaRoBERTaRoBERTaRoBERTaRoBERTaRoBERTaRoBERTaRoBERTaRoBERTaRoBERTaRoBERTaRoBERTaRoBERTaRoBERTaRoBERTaRoBERTaRoBERTaRoBERTa
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Figure 1: Per-class F1 scores of the selected models.

4 Feature Analysis 1: Models vs. Models

In our first analysis, we investigate the impact of
each feature on the model predictions. We com-
pare the features that different models deem impor-
tant for each figurative language class (cross-model
comparison). We also identify the common behav-
ior of the five models for each figurative language
class (cross-class comparison).

4.1 Methods
To maximize the comparability of our results, we
use just one feature analysis method for all models:
Shapley Additive Explanations (SHAP; Lundberg
and Lee, 2017). SHAP returns the feature impor-
tance values by computing the Shapley Values of
each feature, i.e., the feature’s contribution towards
a certain output of the model. Aside from its grow-
ing popularity in model explainability, we choose
SHAP because it can be used for all the models
selected in our analysis (both TLMs and white-
box models). Also, SHAP is model-agnostic and
provides global feature importance analysis meth-
ods based on the aggregations of Shapley Values,
which allows us to compare and inspect the overall
behavior of the models. Finally, SHAP allows us
to conduct a per-class feature importance analysis,
which is beneficial for our purpose of investigating
the model behavior in processing different figura-
tive language types.

For each model, we extract the top 20 features
(i.e., tokens) with the highest mean Shapley Values
for each figurative language class (sarcasm, simile,
idiom, metaphor) as they are the most important
features in the classification task.

To provide a linguistically informed and human-
interpretable feature importance overview, we cate-
gorize the extracted tokens using the selected cat-
egories described below. For this mapping, we
use LIWC (Linguistic Inquiry and Word Count;
Pennebaker et al., 2015), a dictionary-based soft-
ware that automatically maps individual words to
linguistically motivated conceptual categories.

• Function Words: articles, auxiliary verbs,
conjunctions, interrogatives, negations, prepo-
sitions, pronouns, quantifiers.

• Content Words3: adjectives, adverbs, com-
parisons, verbs.

3The original LIWC dictionaries for these four content
words categories only cover common (i.e., high-frequency)
words. To minimize this dictionary coverage bias, we manu-
ally map the words that belong to these categories but were
not covered by LIWC to their corresponding categories.
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• Sentiment Words: negative emotion words,
positive emotion words.

The categories function words and content words
are intentionally chosen to investigate the syntactic
components each model attends to. We also in-
clude the category comparisons (subsumed under
content words) and sentiment words because we
assume they are typical cues for the classes sar-
casm and simile, as mentioned in Section 3.1. We
are interested in inspecting whether the models are
able to actively use these cues for the classification.

4.2 Results

Figure 2 shows the results of the most important
features given by the five models mapped to the
selected linguistic categories. An elaborated list of
all extracted tokens is given in Appendix C.

4.2.1 Cross-Class Comparison

Classes With Apparent Cues As shown in Fig-
ure 2, the class sarcasm displays the most obvious
pattern: The category that most models attend to is
positive emotion words (posemo). The category ad-
jective (adj) also shows a high count, because most
of the positive emotion words are also adjectives.
As mentioned in Section 3.1, sarcasm instances
in the dataset typically use a positive sentiment to
describe a negative situation. Our feature analysis
shows that models are generally able to capture
these cues.

For simile, it can be observed from Figure 2 that
four out of the five models (BERT, RoBERTa, XL-
Net, LR) attend to the category comparisons (com-
pare), which contains the typical cues for similes
including ‘like’ and ‘as’ (see examples in Section
3.1). The count values of the comparison words is
not particularly high because not many variations
exist for comparison words in the dataset (each
variant adds 1 to the total count represented by the
y-axis). Upon a closer inspection, we find that such
words have the highest ranking among the top most
important features in BERT and XLNet (BERT:
‘resemble’, ‘resembled’, ‘like’; XLNet: ‘like’, ‘re-
sembled’, ‘resemble’, ‘similar’, ‘resembling’; see
Appendix C for details), indicating that they can
successfully capture these cues. These models also
have a relatively high focus on adj, possibly be-
cause the words adjacent to the comparison words
are often adjectives, e.g., ‘Her words were like a
sharp blade’.

Classes Without Apparent cues Despite our ini-
tial assumption that metaphors provide no apparent
cues that models can rely on, all TLMs show rel-
atively stronger attention to verbs for metaphor
compared to the other classes (sarcasm, simile, and
idiom). In fact, this observation is in line with
what previous work has suggested, that verbs play
a crucial role in the understanding of metaphors
(Gibbs et al., 1997), as verbs are often the ma-
jor component in creating metaphorical sentences
(predicative metaphor; Glucksberg and McGlone,
2001). As such, some psycholinguistic work (Feng
and Zhou, 2021; Chen et al., 2008; Wilson and
Gibbs Jr, 2007) and computational work (Song
et al., 2021) have been specifically dedicated to
predicate metaphors.The words that the models at-
tend to for idiom appear to show less transparent
patterns: for all the models, these features show a
sporadic pattern across the linguistic categories.

4.2.2 Cross-Model Comparison

Black-Box vs. Black-Box With a closer inspec-
tion of the top-ranking features of the five models
for the two classes with obvious cues, i.e., sarcasm
and simile, we find that RoBERTa shows a con-
siderably different behavior compared to BERT
and XLNet: Whereas BERT and XLNet focus on
the expected features to classify these two classes,
RoBERTa focuses on disparate features. This can
be observed from the top 5 most important features
of each model for sarcasm and simile in Table 3
(see Appendix C for details).

Black-Box vs. White-Box Interesting contrasts
between these two model types emerge when in-
specting the categories of the 20 most important
features: As shown in Figure 2, white-box mod-
els show stronger attention to function words like
prepositions and pronouns than the black-box mod-
els, whereas the black-box models attend to the con-
tent words more than the white-box models. This
indicates that in the presence of function words,
usually high-frequency tokens contributing little to
the characterization of specific figurative language
classes, TLMs are better than white-box models
at tuning down their importance and capturing the
more prominent cues. This difference could ex-
plain the overall higher performance of TLMs in
all classes compared to white-box models, besides
the fact that the Tf-idf vectors used as input for the
white-box models are sparse and, usually, outper-
formed by dense vectors.
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Figure 2: Mapping of the 20 most important features for the five models (in the order of BERT, RoBERTa, XLNet,
LR, RF) to the corresponding linguistic categories. We also include the feature analysis results for the experiment
with human participants (the rightmost bar in red) discussed in Section 5.

BERT RoBERTa XLNet
Sarcasm refreshing,thankful, proud,

praised, thrilled
increase, donated, videos,
saving, boost

safest, refreshing, annoyed,
scary, love

Simile resemble, resembled, like,
Arnold, predatory

mor, herd, slightest, move-
ment, indicating

like, resembled, resemble,
similar, resembling

Table 3: Top 5 most important features (tokens) of the black-box models for sarcasm and simile. The features are
sorted in descending order by their SHAP values. Purple: positive emotion words; Yellow: comparison words.

4.3 Discussion

In summary, the behavior of BERT and XLNet
with regard to sarcasm and similes are largely inter-
pretable: As mentioned in Section 3.1, the results
indicate that these models are good at capturing
relevant cues for these classes (RQ 1). On the con-
trary, RoBERTa does not attend to these cues but
to tokens that are difficult to linguistically motivate.
White-box models tend to focus on high-frequency
function words. This suggests that, even though
white-box models are intrinsically interpretable,
it is still difficult to identify the real motivations
behind their output from the human’s perspective
(RQ 2).

For all five models, no clear patterns are ob-
served among the most important features for the
class idiom: Neither from the mapping results nor
from a manual inspection of these tokens. Idiom is
also one of the two classes, together with metaphor,
where most models performed worst (see Figure 1).
A precise classification of idiomatic sentences us-
ing lexical information is clearly very difficult for
the models. This is not surprising considering that
there are no obvious cues that the models can rely

on because the vocabularies used in each expres-
sion of these two classes are highly idiosyncratic.

Verbs are the most important tokens for detect-
ing metaphors for all TLMs, evidence supported by
previous findings in theoretical research. However,
even with the obvious cues, most models struggle
with metaphors, which suggests that additional in-
formation than the identified cues is needed. One
possible reason for the added difficulty could be
the limited context provided in the dataset as the
successful identification of metaphors in the text
usually requires a larger amount of contextual in-
formation (Lemaire and Bianco, 2003; Inhoff et al.,
1984; Ortony et al., 1978).

5 Feature Analysis 2: Models vs. Humans

The classification results in Section 3 suggest that
models especially struggle with identifying idioms
and metaphors. These results are in line with var-
ious studies in cognitive science and psycholin-
guistics showing that the processing of idioms
and metaphors is also complex for humans. Id-
ioms are defined as “constructions whose meanings
cannot be derived from the meanings of its con-
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stituents" (Glucksberg and McGlone, 2001). There-
fore, identifying idioms often relies on memory re-
trieval rather than syntactic and semantic analyses
(Glucksberg and McGlone, 2001) and the speaker’s
familiarity to them (Cronk and Schweigert, 1992;
Gibbs, 1980). Similarly, the difficulty of and the
speaker’s familiarity to metaphors are factors that
influence metaphor processing (Schmidt and Seger,
2009). Drawing in on these intricacies, we build a
classification task for human participants, aiming
to investigate how human behavior differs from
model behavior in figurative language classifica-
tion, and whether humans also struggle more with
identifying idioms and metaphors.

5.1 Methods

We extract the sentences that are misclassified by
at least two models from the test set, as we as-
sume that they are particularly tricky instances and
thus interesting to inspect whether they are also
difficult for humans. These include 7 sarcasm, 10
simile, 72 idiom, and 47 metaphor instances. To
have a balanced number of sentences per class, for
each class we randomly sample 7 misclassified sen-
tences (henceforth, difficult instances). We also
include 7 correctly classified sentences by all of
our models as a control group (henceforth, easy
instances), selecting 56 sentences in total. We ask
15 English native speakers based in the UK and the
USA to classify these 56 sentences (presented in
a randomized order) into one of the four classes
(multiple-choice questions) and provide 1-3 words
in each sentence that they consider as the most rel-
evant for their classification decisions. We also
add 3 attention-check questions where we ask par-
ticipants to provide a keyword from the previous
sentence. We conduct the experiment online using
Google Forms4 and Prolific5. The average duration
was 26 minutes. Participants received a compensa-
tion of 9£/hour, a fair wage suggested by Prolific.

5.2 Results

5.2.1 Human Classification Results
We collect the classification labels given by human
participants for easy and difficult instances. For
each instance, we extract the classification label
that received the most votes by the participants
(henceforth, majority label) and compare it with
the ground-truth label.

4https://forms.google.com
5https://www.prolific.co

Figure 3 depicts the proportions of the ground
truth labels across majority labels for difficult and
easy instances. Confusions are rarely found for
sarcasm or similes. In contrast, more instances
of metaphors and idioms are incorrectly classified.
We observe that humans struggle in identifying
metaphors more than idioms, which is in line with
model behavior (see Figure 1). Whereas metaphors
require more semantic processing, identifying id-
ioms mainly requires the use of memory retrieval
(Glucksberg and McGlone, 2001). Lastly, we
find that when humans make ‘wrong’ judgments,
they always classify instances of metaphors as id-
ioms. Upon manual inspection, we find that most
metaphor instances misclassified as idioms are
highly conventionalized expressions (e.g., ‘John
fell behind his class mates’).

Difficult instances for the models are also more
difficult for humans. Among the easy instances,
however, there is an exception to this general ten-
dency, where 43% of these instances received the
majority label sarcasm. The sentences in (5) - (6)
are examples of this type of wrong classification.
(5) I wanted that gift as much as cancer.

(6) The formula was as well-known as the
eleventh president of Zambia.

Whereas these examples are only labeled as simile
in the dataset, it is evident that they could also be
instances of sarcasm. Such instances have occurred
possibly because the labeling scheme of our experi-
ment was different from that of the original dataset:
The 4 classes of figurative language in FLUTE stem
from 4 different sources and the potential overlap
between different labels was left unchecked. How-
ever, participants in our experiment had to select
only one of the four classes for each statement, thus
resulting in occasional confusion instances. Never-
theless, these examples reveal an intriguing pattern
about human behavior in processing figurative lan-
guage. When an instance could belong to more
than one figurative language type, humans tend to
make a choice based on the semantic information
available. With these instances excluded, our as-
sumption is confirmed: Idioms and metaphors are
more opaque than sarcasm and similes and thus
pose more difficulty for both humans and models.

5.2.2 Important features
We aggregate all the words that the participants
reported to have had the most influence on their
classification decisions. For each class, we select
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(a) difficult (b) easy

Figure 3: Normalized confusion matrix of the majority labels by human participants (x-axis) and the true labels
provided in the dataset (y-axis) among ‘difficult’ (left) and ‘easy’ (right) instances.

the 20 most mentioned words (ties included) and
map them to the linguistic categories mentioned
in Section 4 (see Figure 2). Figure 2 shows that
humans attend to positive emotion words and the
related adjectives to identify sarcasm, cues that
are also deemed important by BERT and XLNet.
For simile, humans report adjectives as being the
most indicative cues for their decision, followed
by comparison words. BERT and XLNet also at-
tend to adjectives and comparison words, but un-
like the models, humans attend to adjectives more.
This could be explained by findings in previous
research that function words do not elicit more ac-
tivation in the human brain than the content words
(Diaz and McCarthy, 2009). Human participants
also show a high degree of attention to verbs for
metaphor, compared to other classes (sarcasm, sim-
ile, and idiom) and compared to all the linguistic
categories. From the sentences that human partici-
pants correctly identified as metaphors (5 of all 14
sentences), we find that the most frequently men-
tioned words are always verbs (e.g., ‘The tax cut
will fertilize the economy.’). The result once again
indicates the general importance of verbs in pro-
cessing metaphors. No apparent patterns are found
in the words that humans deemed most important
for idioms.

5.3 Discussion
The results from the human annotation experiment
show that the features that humans focus on to
process different types of figurative language are
largely in line with the features that BERT and XL-
Net attended to (RQ 1). The results also suggest

that the degree of difficulty for humans in detect-
ing different figurative language types generally
matches the difficulty for machine learning mod-
els. A clear pattern is shown as to the opacity of
the four figurative language classes: Sarcasm and
similes are more transparent to detect, followed by
idioms and then by metaphors. Our finding sup-
ports the assumption of Kreuz and Caucci (2007)
that sarcasm can also be more formulaic than one
might assume. However, future work should also
investigate sarcastic sentences in a non-formulaic
structure to have a full grasp of model performance
in sarcasm processing.

6 Conclusion

With our two experiments, we provide insights into
both the behavioral differences between different
language models and the varying linguistic prop-
erties of several figurative language types. Our
first analysis reveals contrasting behavior among
the black-box models. This highlights different de-
grees of interpretability of the TLMs in the task of
figurative language processing despite their similar
performance. It also provides evidence-based indi-
cators for choosing the best model that deals with
rich linguistic information in an extended range
of NLP applications. In the second analysis with
human participants, we show that the general ten-
dency found in the performance of all models is
aligned with that of human participants; this man-
ifests the varying complexity levels of different
figurative language types.
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A Setup Details of Feature Analysis 1

For all experiments reported in Section 4, a random
seed of 45 was used. Other hyperparameter settings
are provided below.

Black-Box Models All black-box models were
implemented using the Hugging Face’s Transform-
ers library.6 All models were fine-tuned for 4
epochs with a learning rate of 2e-5 and a batch
size of 16. The fine-tuning was conducted on a
Quadro RTX 5000 GPU with a total memory of
16GB. As the dataset size is relatively small, for all
models each training epoch was finished under 15
seconds.

White-Box Models All white-box models were
implemented using the scikit-learn library (Pe-
dregosa et al., 2011).7 Table 4 summarizes the
hyperparameters used. For the hyperparameters
not specified in the table, the default values from
scikit-learn were used.

Model Hyperparameters

LR
solver = ‘sag’,
multi_class=‘multinomial’

RF n_estimators = 100

Table 4: Hyperparameters for the white-box models.

B Model Performance

Table 5 shows the precision, recall and F1 of all
models for each figurative language class. Figure 4
shows the confusion matrices of all models.

C Most Important Features

Tables 6-7 illustrate the per-class most important
features extracted from the models and the hu-
man annotation experiment. For each class, we
extracted the top 20 most important tokens (see
Section 4).

6https://huggingface.co/docs/transfor
mers/main/en/index

7https://scikit-learn.org/stable/
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BLACK-BOX MODELS WHITE-BOX MODELS
BERT RoBERTa XLNet LR RF

P R F1 P R F1 P R F1 P R F1 P R F1
Sarcasm 0.99 0.99 0.99 1.00 1.00 1.00 0.99 1.00 0.99 0.92 1.00 0.96 0.91 0.99 0.95
Simile 0.94 0.99 0.96 0.94 1.00 0.97 0.94 0.99 0.96 0.89 0.96 0.92 0.92 0.93 0.92
Idiom 0.93 0.92 0.93 0.94 0.93 0.93 0.93 0.91 0.92 0.81 0.76 0.79 0.84 0.66 0.74
Metaphor 0.94 0.91 0.93 0.95 0.91 0.93 0.94 0.89 0.92 0.92 0.66 0.77 0.86 0.83 0.85

Table 5: Precision (P), recall (R) and F1 of all models for each figurative language class.

(a) BERT (b) RoBERTa (c) XLNet

(d) LR (e) RF

Figure 4: Confusion matrices of the selected models (x-axis: predicted labels; y-axis: true labels).
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Class Most Important Features
BERT RoBERTa XLNet

Sarcasm refreshing, thankful, proud,
praised, thrilled, glad, awe-
some, delighted, excited, in-
credible, terrific, adorable,
amazed, wonderful, fasci-
nated, amazing, delightful,
happily, planet, fantastic

increase, donated, videos,
saving, boost, ankle, healing,
elt, cried, attend, personally,
satisfaction, celebrities, orga-
nization, somehow, shaken,
frustrating, civic, cute, cook-
ing

safest, refreshing, annoyed,
scary, love, irritating, com-
mend, cheered, hottest, en-
sured, celebrating, enjoying,
pleasing, encourages, after-
wards, approve, cheering,
adore, makes, because

Idiom differ, aye, halves, sevens,
shove, eddie, nods, ways,
guess, matthias, platt, hilt,
plank, james, ava, plus,
meantime, overboard, or,
daylight

moist, damned, theory,
arnold, eddie, until, toppled,
caps, english, devils, els,
nicely, production, hell,
playing, words, fucking, jon,
palace, bone

sticks, wire, messenger,
beans, halves, lend, sides,
hatch, platter, record, mark,
splash, naked, broth, plus,
hook, wolf, thieves, trades,
source

Simile resemble, resembled, like,
arnold, predatory, titanium,
resembling, slug, transpar-
ent, compared, twilight, char-
coal, resemblance, similar,
alligator, fragile, magazine,
turtle, calculus, locomotive

mor, herd, slightest, move-
ment, indicating, spicy, had,
shield, disappears, under-
stands, lining, messy, ays,
colleague, resemble, bal-
anced, towers, noble, de-
scended, nationality

like, resembled, resemble,
similar, resembling, richard,
transparent, turtle, com-
pared, as, salt, slot, liev,
cchio, iva, religious, useful,
smooth, unlike, juicy

Metaphor eternity, disasters, prices,
form, consumed, accusa-
tions, sings, gasoline, blos-
soms, summoned, drowned,
trial, hunts, arguments, ob-
jections, tread, oath, clashed,
communicated, fell

consumed, nos, time, rish,
eled, which, imated, rah,
given, jewel, crowned, the-
ory, asionally, still, light,
ving, charles, ift, these, look-
ing

drizzle, tramp, rested, fect,
scan, ravaged, eld, switched,
shuddered, shiver, sighed,
transported, rooms, spoke,
reserve, proceeded, slight,
dri, pivot, enne

Table 6: Top most important features of each figurative language class extracted from the black-box models. The
features in each cell are sorted in descending order by their SHAP values.
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Class Most Important Features
LR RF Humans

Sarcasm that, when, am, like, how,
and, love, out, her, for, great,
proud, saw, got, thrilled, all,
so, friend, just, beautiful

when, like, how, am, that,
love, her, got, proud, great,
for, thrilled, out, stone, fact,
last, car, saw, feel, from

overjoyed, grateful, pleas-
ant, great, praised, roses,
crashed, excited, vomiting,
myself, not, no, hero, ter-
rible, proud, drops, happy,
couldnt, deal, mistake

Idiom like, my, really, me, you,
your, and, go, an, after, let,
been, excited, for, is, they,
people, cut, under, back

my, like, me, and, go, really,
as, you, your, it, people, not,
an, for, with, made, the, ll,
because, he

sink, leak, full, duck, cut,
nth, swim, beans, broad,
beam, lame, bag, baggage,
dried, degree, hand, bear,
flow, smell, of

Simile me, my, really, as, time,
makes, people, on, one,
hills, good, eyes, husband,
by, work, re, person, this,
wanted, you

my, really, me, on, makes,
person, to, time, eyes, world,
skin, son, made, re, have,
doesn, kids, husband, run-
ning, people

as, smooth, tough, dummies,
crocodile, snowman, can-
cer, glass, affectionate, oak,
an, angel, dream, gift, like,
planted, deflated, day, fantas-
tical, washboard

Metaphor like, really, me, my, the,
time, on, makes, an, clothes,
into, made, but, good, where,
is, by, without, of, people

like, really, my, me, the, was,
makes, to, his, in, an, she,
have, of, time, no, good, into,
this, who

toppled, rose, fell, shoot,
burning, gravely, never, cure,
desire, fertilize, the, flicked,
darkness, spirits, prescribes,
behind, ravaged, dwell, leak,
speed

Table 7: Top most important features of each figurative language class extracted from white-box models and human
annotations. The features in each cell are sorted in descending order by their SHAP values.
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