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Abstract

Pre-trained language models (PLMs) serve as
backbones for various real-world systems. For
high-stake applications, it’s equally essential to
have reasonable confidence estimations in pre-
dictions. While the vanilla confidence scores
of PLMs can already be effectively utilized,
PLMs consistently become overconfident in
their wrong predictions, which is not desirable
in practice. Previous work shows that intro-
ducing an extra calibration task can mitigate
this issue. The basic idea involves acquiring
additional data to train models in predicting the
confidence of their initial predictions. However,
it only demonstrates the feasibility of this kind
of method, assuming that there are abundant
extra available samples for the introduced cal-
ibration task. In this work, we consider the
practical scenario that we need to effectively
utilize training samples to make PLMs both
task-solvers and self-calibrators. Three chal-
lenges are presented, including limited train-
ing samples, data imbalance, and distribution
shifts. We first conduct pilot experiments to
quantify various decisive factors in the cali-
bration task. Based on the empirical analy-
sis results, we propose a training algorithm
LM-TOAST to tackle the challenges. Experi-
mental results show that LM-TOAST can effec-
tively utilize the training data to make PLMs
have reasonable confidence estimations while
maintaining the original task performance. Fur-
ther, we consider three downstream applica-
tions, namely selective classification, adversar-
ial defense, and model cascading, to show the
practical usefulness of LM-TOAST. The code
will be made public at https://github.
com/Yangyi-Chen/LM-TOAST.

1 Introduction

We have witnessed the great success of pre-trained
language models (PLMs) over the past few years
in various tasks (Wang et al., 2019a,b). Nowadays,
real-world natural language processing (NLP) sys-
tems are mostly built upon PLMs to effectively

Vanilla Confidence Estimation
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Average Confidence Difference: 42.46

Average Confidence Difference: 15.18

Figure 1: The confidence distributions of correct and
wrong predictions on the Amazon review sentiment
analysis dataset. “Average Confidence Difference”
measures the difference in average confidence between
correct and wrong predictions.

utilize their strong capacities (Bommasani et al.,
2021; Han et al., 2021).

Beyond the performance evaluation, an essential
requirement in high-stake applications for PLMs is
to assign reasonable confidence to their predictions.
This can enable the decision-makers to better han-
dle the low-confident predictions, e.g., directly ab-
stain to give predictions or transfer the input to hu-
man experts. The original predictive probability of
PLMs can be effectively utilized for ranking predic-
tions. This simple strategy can reasonably give rela-
tively higher confidence to correct predictions com-
pared to the wrong ones (Hendrycks et al., 2020a).

However, relying on the vanilla confidence
scores cannot well distinguish between correct
and wrong predictions. PLMs consistently assign
high confidence in their predictions, no matter
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correct or not (Chen et al., 2022b). This results in
a large number of wrong predictions distributed in
the high-confident zone (see Figure 1). The direct
undesirable consequence is the false acceptance
of wrong but high-confident predictions. Besides,
previous work avoids the issue of selecting a
concrete confidence threshold by using hyper-
parameter-free metrics (e.g., AUROC) in relevant
tasks (e.g., selective classification). But in practice,
the small gap between confidence in correct and
wrong predictions may cause large performance
variance due to the manually chosen threshold.

Existing work shows that an extra calibration
task can be taken as a remedy (Chen et al., 2022b;
Lin et al., 2022). The calibration task uses extra
samples to train models to have reasonable confi-
dence estimations. However, previous work consid-
ers ideal situations to demonstrate the feasibility,
assuming access to a large number of unused la-
beled samples, typically from the validation set. In
practice, the samples in the validation dataset may
be too small to guarantee good calibration perfor-
mance. Besides, relying on the validation samples
for the calibration task training causes data leakage,
which may result in unreliable performance estima-
tion when adopting the validation dataset to choose
hyper-parameters. In practice, we need to effec-
tively utilize training samples for both the original
and the calibration tasks training. Three challenges
are presented:
• Limited training samples: How to effectively

utilize the training samples to increase the cali-
bration task performance while maintaining the
original task performance?

• Data imbalance: Given PLMs’ high perfor-
mance, the positive cases (correctly classified
samples) significantly dominate the calibration
training set, causing the data imbalance issue.

• Distribution shifts: When deployed, PLMs
are also expected to exhibit out-of-distribution
(OOD) robustness, assigning reasonable confi-
dence scores to OOD samples.
In this work, we motivate to make PLMs both

task-solvers and self-calibrators in practical set-
tings. We first conduct pilot experiments to quan-
tify various decisive factors in the calibration task,
including the number of training samples, the data
imbalance ratio, and input “features” for the cali-
bration task. Based on the empirical analysis, we
propose a training algorithm LM-TOAST to tackle
the challenges. We employ K-fold cross-annotation

Task Template Verbalizer

Main It was <mask>, <input_sentence> [bad, good, neutral]

Calibration
Sentence: <input_sentence>, The predicted sentiment is:
<prediction>. Is the prediction True or False? It’s <mask>.

[False, True]

Table 1: Example of templates and verbalizers used in
the sentiment analysis task. <input_sentence> denotes
the original sample. <prediction> denotes the original
prediction. Others are shown in Appendix B.

to generate the training data for the calibration task.
Then we employ data down-sampling, adversarial
data augmentation, and consistent training to tackle
the challenges of data imbalance and distribution
shifts. Note that LM-TOAST can be applied to all
classification tasks to improve confidence estima-
tions. Experimental results show that LM-TOAST
can increase the discrimination between correct and
wrong predictions, evidenced by the fine-grained
order ranked by confidence and a sharp difference
in average confidence.

Further, we show that the good self-calibration
performance of LM-TOAST can be transferred
to downstream applications. We consider three
downstream tasks, including selective classifica-
tion (Geifman and El-Yaniv, 2017), adversarial
defense (Zhang et al., 2020), and model cascad-
ing (Varshney and Baral, 2022a). Experimental
results demonstrate the practical significance of
LM-TOAST in these applications.

2 Background

2.1 Task Formalization

In standard classification training, a model F :
X → Y for the main task is trained on a given
dataset D = {(xi, yi)Ni=1} to minimize the pre-
defined classification loss. For the introduced
calibration task, a new calibration dataset D∗ =
{(xi, y∗i , ci)Mi=1} is generated from D, where xi is
the original sample in D, y∗i is model’s prediction,
and ci is the corresponding confidence score. The
calibration task aims to predict the models’ confi-
dence using the sample and the original prediction.
The generation process of D∗ is one essential part
of the calibration task. Lin et al. (2022) propose to
deem accuracy on a batch of samples as the confi-
dence ci for samples in this batch. In this work, we
simplify this assumption and directly treat ci as a
binary value, indicating whether the prediction y∗i
is correct or not.

Once D∗ is generated, one can fit an extra model
F∗ separately or conduct multi-task training using
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Figure 2: Quantify the influence of available training samples in the calibration task. The evaluation datasets (ID,
OOD-1, OOD-2) are listed in Table 2. Increasing the dataset size of the calibration task continually brings benefits.

Task ID OOD-1 OOD-2

Sentiment Analysis Amazon SST-5 SemEval
Hate-speech Detection Civil Hate Speech Implicit
Natural Language Inference MNLI HANS ANLI

Table 2: The chosen evaluation datasets for each task.

the original model F to learn the calibration task1.
In this work, we adopt the latter paradigm since
no obvious performance difference is observed in
previous work (Chen et al., 2022b). Specifically,
we adopt the unified text-to-text paradigm and use
T5 as the backbone model in this paper (Raffel
et al., 2020). We use two sets of templates and
verbalizers for the main task and the calibration
task respectively (Liu et al., 2021). See Table 1
for an example used in the sentiment analysis
task. Other templates and verbalizers selected
are listed in Appendix B. The probability of the
“True” class in the calibration task is deemed as
PLMs’ confidence in their predictions. In testing,
the original test set is used for evaluating both the
original and the calibration tasks.

2.2 Evaluation Setting

Evaluation metric. We adopt two evaluation
metrics to characterize whether PLMs assign rea-
sonable confidence to testing samples that consist
of correct and wrong predictions: (1) AUROC
(Area Under the Receiver Operating Characteristic
curve), which doesn’t require manually picking a
threshold value (Davis and Goadrich, 2006). A bet-
ter AUROC score indicates that correct predictions
have relatively higher confidence scores than wrong
ones; (2) ∆Conf, which directly measures the av-
erage confidence difference between correct and
wrong predictions. A higher ∆Conf score indicates
a better distinction between correct and wrong pre-

1Due to the unified modeling approach proposed by Raffel
et al. (2020), F can be easily utilized as a mapping function
F : (X,Y) → C.

dictions from the confidence scores. Note we don’t
use ECE (Naeini et al., 2015) since we mostly con-
sider relative confidence scores in this work. See
Fisch et al. (2022) for detailed elaborations.

Evaluation dataset. For all experiments in this
paper, we evaluate in both in-distribution (ID) and
out-of-distribution (OOD) settings. We consider
three classic tasks, including sentiment analysis,
hate-speech detection, and natural language infer-
ence. We follow the same dataset chosen in Chen
et al. (2022b) (see Table 2). The detailed descrip-
tions and references are in Appendix A.

3 Pilot Experiments and Analysis

We conduct pilot experiments to quantify the influ-
ence of several decisive factors in the calibration
task, which can help for a better design of various
components in the training algorithm. Specifically,
we consider the number of training samples, dataset
imbalance, and input “features”. The concrete ex-
perimental settings are described in Appendix C.

3.1 Number of Training Samples

We quantify the influence of available training sam-
ples in the calibration task (see Figure 2). We ob-
serve overall consistent trends in three different
tasks across eight datasets. The results show the
continued benefits of increasing the dataset size
for the calibration task considering the AUROC
and ∆Conf scores. Surprisingly, the performance
in OOD datasets can be improved by introducing
more calibration training samples in ID datasets.
This is different from the common belief that learn-
ing more in-domain knowledge may hurt the OOD
robustness due to the reliance on spurious corre-
lations (Radford et al., 2021). However, we note
that there is an unnatural trend in the natural lan-
guage inference task when ANLI is adopted as the

9847



0.1 0.3 0.5 0.7 0.9
Class Ratio

50

55

60

65

70

75

80

85
AU

RO
C

0

10

20

30

40

50

Co
nf

Sentiment Analysis

0.1 0.3 0.5 0.7 0.9
Class Ratio

55

60

65

70

75

80

85

90

AU
RO

C

0

10

20

30

40

50

60

Co
nf

Hate Speech Detection

0.1 0.3 0.5 0.7 0.9
Class Ratio

45

50

55

60

65

70

75

AU
RO

C

10

0

10

20

30

40

Co
nf

Natural Language Inference

ID AUROC ID △Conf OOD-1 AUROC OOD-1 △Conf OOD-2 AUROC OOD-2 △Conf

Figure 3: Quantify the influence of dataset imbalance in the calibration task. The evaluation datasets are listed in
Table 2. An exact balanced distribution of the two classes will mostly benefit the calibration task.

OOD evaluation dataset. The reason may be par-
tially attributed to the unique construction process
of ANLI based on human-in-the-loop attacks.

3.2 Data Imbalance
We vary the class ratios in the calibration train-
ing set to quantify the influence of data imbalance
in the calibration task (see Figure 3). Note that
there are two classes in the calibration training set,
where the positive (negative) case indicates that the
model’s original prediction is correct (wrong). The
class ratio is defined as the fraction of negative-
class samples in the whole dataset. We consistently
observe inverted V-shapes considering all evalua-
tion settings. Thus, we draw the conclusion that
given a calibration dataset with a fixed number of
samples, an exact balanced distribution of the two
classes will mostly benefit the calibration task.

Further, we consider a more practical question
faced in our algorithm: Given limited training
samples in one class, what is the influence of con-
tinuing to increase the training samples in the other
class? We conduct two rounds of experiments. For
each round, we fix the samples in one class and con-
tinue to increase the samples in the other class. The
results are shown in Figure 7. We observe roughly
V-shapes in both two rounds. Also, we carefully
observe the two ends of the V shapes and find that
these two dataset scaling processes can hardly bring
a positive effect on PLMs’ calibration performance.
Thus, given limited available training samples, the
optimal strategy is to keep the dataset with an exact
balanced distribution of two classes even if we
have extra data because we cannot precisely predict
how many samples we should add to one single
class to improve the calibration performance.

3.3 Input “Features”
Recall from Sec. 2.1 that two “features” exist in
each calibration training sample (xi, y∗i , ci), includ-

Amazon

Dataset Amazon SST-5 SemEval

Method AUROC ∆Conf AUROC ∆Conf AUROC ∆Conf

All Features 89.44 (0.08) 73.96 (0.35) 61.95 (0.16) 28.94 (0.82) 73.70 (1.18) 28.65 (0.57)
w/o Prediction 84.12 (0.49) 64.81 (0.87) 59.47 (1.04) 24.46 (0.24) 68.15 (1.42) 22.46 (2.67)
w/o Sample 70.06 (1.67) 3.93 (1.07) 57.22 (3.31) 1.16 (0.55) 59.19 (0.94) 1.42 (0.37)

Civil

Dataset Civil Hate Speech Implicit

Method AUROC ∆Conf AUROC ∆Conf AUROC ∆Conf

All Features 86.98 (5.00) 59.30 (0.10) 60.44 (0.39) 11.18 (2.28) 64.16 (1.98) 21.05 (2.95)
w/o Prediction 83.89 (2.51) 52.74 (3.83) 61.83 (4.52) 14.90 (8.28) 63.93 (0.32) 20.96 (0.22)
w/o Sample 5.18 (0.20) -3.5 (2.39) 55.73 (0.79) 4.35 (0.27) 37.02 (0.21) -1.02 (0.71)

MNLI

Dataset MNLI HANS ANLI

Method AUROC ∆Conf AUROC ∆Conf AUROC ∆Conf

All Features 78.80 (0.89) 42.64 (0.58) 67.90 (3.16) 24.11 (6.55) 44.31 (0.30) -6.95 (0.99)
w/o Prediction 79.24 (0.31) 44.94 (0.42) 60.22 (2.11) 14.11 (4.32) 43.99 (0.23) -8.05 (1.33)
w/o Sample 39.19 (0.89) 0 (0.11) 39.12 (0.34) 0 (0.09) 51.28 (0.24) 0 (0.01)

Table 3: Quantify the influence of “features” in the
calibration task. Numbers in parentheses are standard
deviations. Both “features” contribute to the predictions.

ing the original sample xi and the model’s original
prediction y∗i . We ablate the influence of these two
“features” (see Table 3). We observe the dominant
effect of information extracted from the original
sample xi. While still lagging behind the calibra-
tion performance when using all features, only re-
lying on the original sample for the prediction can
achieve descent performance in most cases.

The experimental results can further inform us
of the essence of the calibration task. Given the
descent performance when only using the original
samples as the input features, PLMs mostly are
performing the task of determining the difficulty
of each sample, where hard (easy) samples will be
assigned low (high) confidence scores. The poten-
tial major function PLMs learn in the calibration
task training may be inducing which kinds of fea-
tures in the texts they cannot handle well. In this
work, we motivate to exploit the calibration meth-
ods, and further exploration and utilization of the
inner mechanism are left for future work.

4 Method

Based on our empirical analysis summarized in
Appendix C, we motivate a practical training al-
gorithm to make PLMs both Task-sOlvers And
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Figure 4: The demonstration of LM-TOAST , consisting of three separate stages, namely generating calibration
data, post-processing calibration data, and multi-task training.

Self-calibraTors (LM-TOAST ). LM-TOAST can
be divided into three stages (see Figure 4): (1)
Generate calibration training data from the given
training dataset; (2) Post-process generated calibra-
tion training data; (3) Multi-task training using the
original training data and the processed calibration
training data. We follow the notations in Sec. 2.1.

Generate calibration training data. We pro-
pose the K-fold cross-annotation to generate the
calibration dataset from the original training sam-
ples. We first split the original training dataset
into K subsets equally, and perform K-rounds an-
notation. For each round, we leave one subset
out and train the model on the remaining K-1 sub-
sets. Then we use the trained model to annotate the
held-out set. Specifically, for each sample in the
held-out set, we obtain the model’s prediction and
compare it with the golden label. A binary anno-
tated label is obtained, indicating whether the pre-
diction is correct or not. After K-rounds annotation,
we can generate a calibration training dataset D∗

with the size equal to the original training dataset’s
size. We empirically set K=2 in LM-TOAST to
avoid hyper-parameter searching. We justify this
setting in the further analysis of LM-TOAST (see
Appendix D). Note that due to the strong capac-
ity of PLMs, there exists a significant data imbal-
ance issue in D∗, where positive cases dominate the
distribution. Thus, post-processing the generated
calibration data is needed to make full use of D∗.

Post-process generated calibration training data.
Data imbalance is a long-standing research prob-
lem in machine learning. We visit existing meth-
ods for our calibration task. According to our pilot
exploration, we adopt two strategies tailored for
our task, namely down-sampling the majority class

and performing data augmentation on the minority
class. For the former one, we simply down-sample
the majority class to achieve the exact balance of
two classes in the calibration training dataset. For
data augmentation on the minority class, we em-
ploy textual transformation methods (Wei and Zou,
2019; Li et al., 2021a) to generate the constructed
set D∗

A that contains augmented negative samples:

D∗
A = {(xi, f(xi), y∗i )Ni=1}, (xi, y∗i , 0) ∼ D∗ (1)

where f is the textual transformation method.
Specifically, we consider the following methods
and choose them randomly: (1) Synonym substi-
tution: Exploiting WordNet (Miller, 1995) to sub-
stitute words in original samples with their syn-
onyms; (2) Random insertion: Randomly inserting
or repeating some words in original samples; (3)
Random swap: Randomly swapping the order of
adjacent words in original samples; (4) Random
deletion: Randomly deleting some words in origi-
nal samples.

Multi-task training. After the post-processing,
we currently possess the original training set D,
the generated and then down-sampled calibration
training set D∗, the constructed set D∗

A containing
augmented negative samples. We find that directly
mixing D∗ and D∗

A for the calibration task training
has minimal or negative effects on the calibration
performance. The bottleneck substantially lies in
the diversity and quality of the augmented sam-
ples, which is the central problem in textual data
augmentation research.

Thus, we treat D∗ and D∗
A separately and adopt

different training strategies. In high-quality D∗, we
conduct normal classification training:

Lc = CE(F(xi, y
∗
i ), ci), (xi, y

∗
i , ci) ∼ D∗, (2)
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where CE is the cross-entropy loss. For easy
reference, xi is the original sample in D, y∗i is
model’s original prediction, and ci is a binary
value, indicating whether the prediction y∗i is
correct or not. In D∗

A that contains noise, a robust
training algorithm is needed to effectively utilize
the augmented samples. Specifically, we draw
inspirations from Miyato et al. (2017) that consider
the problem of textual adversarial training. They
propose to use consistent training to enforce
that the predictive probability of the original
input is the same as that of the corresponding
input with gradient-based perturbations added in
the embedding layer. Similarly, we propose to
constrain the predictive probability of the original
samples and corresponding augmented samples:

L∗
c = KL(F(xi, y

∗
i ),F(x∗i , y

∗
i )), (xi, x

∗
i , y

∗
i ) ∼ D∗

A,
(3)

where KL measures the Kullback–Leibler diver-
gence between two distributions. Considering the
original task, we conduct multi-task training to
minimize the loss LA:

Lo = CE(F(xi), yi), (xi, yi) ∼ D, (4)

LA = Lo + Lc + α ∗ L∗
c , (5)

where CE is the cross-entropy loss, Lo is the loss
of the original task, and α is a hyper-parameter to
control the influence of the consistent loss. We em-
pirically set α to 0.1 in LM-TOAST to avoid hyper-
parameter searching. We justify this setting in the
further analysis of LM-TOAST (see Appendix D).

5 Experiments

We conduct experiments to demonstrate the effec-
tiveness of LM-TOAST in confidence estimations.
We run all experiments three times and report both
the average performance and the standard variance.

5.1 Baseline Methods

We adopt three baseline methods for confidence
estimations: (1) Vanilla: Use the original pre-
dictive probability as the confidence estimation;
(2) Temperature Scaling (TS): Apply the
temperature scaling method to calibrate PLMs’
confidence scores (Guo et al., 2017); (3) Label
Smoothing (LS): Apply label smoothing to
prevent PLMs from becoming overconfident in
their predictions (Szegedy et al., 2016).

Amazon

Dataset Amazon SST-5 SemEval

Method AUROC ∆Conf AUROC ∆Conf AUROC ∆Conf

Vanilla 85.80 (0.45) 15.18 (0.33) 79.14 (0.83) 16.56 (0.78) 71.68 (0.93) 12.68 (0.59)
TS 85.80 (0.45) 16.85 (0.59) 79.14 (0.83) 10.63 (0.34) 71.68 (0.93) 8.07 (0.64)
LS 81.93 (2.77) 13.81 (0.83) 76.81 (1.41) 13.45 (0.99) 70.52 (1.26) 10.81 (0.90)
LM-TOAST 87.44 (1.12) 42.46 (3.03) 79.32 (1.09) 26.37 (1.04) 73.17 (2.36) 20.21 (1.70)

Civil

Dataset Civil Hate Speech Implicit

Method AUROC ∆Conf AUROC ∆Conf AUROC ∆Conf

Vanilla 90.33 (0.99) 14.23 (0.09) 62.80 (0.55) 2.74 (0.64) 65.99 (1.22) 3.63 (1.19)
TS 90.33 (0.99) 22.71 (0.46) 62.80 (0.55) 5.60 (0.27) 65.99 (1.22) 7.25 (0.23)
LS 91.15 (0.11) 11.59 (0.32) 62.17 (0.22) 2.08 (0.33) 63.92 (0.13) 3.30 (0.34)
LM-TOAST 92.01 (0.14) 51.38 (0.24) 65.55 (1.76) 12.57 (2.47) 65.99 (0.12) 17.29 (0.30)

MNLI

Dataset MNLI HANS ANLI

Method AUROC ∆Conf AUROC ∆Conf AUROC ∆Conf

Vanilla 82.08 (0.43) 12.25 (0.19) 51.14 (1.68) 2.59 (0.52) 44.14 (0.31) -2.31 (0.06)
TS 82.08 (0.43) 18.30 (0.32) 51.14 (1.68) -1.87 (0.70) 44.14 (0.31) -2.89 (0.13)
LS 80.51 (0.14) 10.12 (0.39) 46.52 (2.32) 0.53 (0.80) 43.07 (0.32) -2.91 (0.92)
LM-TOAST 82.74 (0.49) 33.53 (1.40) 60.60 (4.34) 11.19 (3.81) 43.97 (0.62) -6.69 (0.70)

Table 4: Experimental results of calibration perfor-
mance. Numbers in parentheses are standard deviations.

5.2 Results of Calibration Performance
The experimental results are listed in Table 4. We
observe that LM-TOAST achieves overall better
calibration performance. For fine-grained confi-
dence ranking of correct and wrong predictions
(AUROC), LM-TOAST improves the discrimi-
nation of wrong predictions by assigning them
with relatively lower confidence. Also, we note
that vanilla confidence can already be adopted for
effectively detecting wrong predictions, consistent
with previous work (Hendrycks et al., 2020a).

However, as shown in Figure 1, there is no distin-
guished confidence gap between confidence scores
on correct and wrong predictions. This results in
many high-confident wrong predictions, which is
undesirable since false acceptance may happen in
reality. Besides, previous work regarding the uti-
lization of vanilla confidence scores (e.g., selective
classification (Kamath et al., 2020)) overlooks this
issue since the selected metric mostly doesn’t need
a chosen threshold (e.g., AUROC). But in practice,
a small confidence gap between correct and wrong
predictions makes it hard for practitioners to manu-
ally select a concrete threshold and may cause large
performance variance. Thus, it’s also essential to
measure the confidence gap between correct and
wrong predictions. We show that LM-TOAST can
significantly increase this gap, in both ID and OOD
settings. One exception is still the ANLI dataset.
We refer to Sec. 3.1 for our explanation.

Due to space limits, we present further analysis
of LM-TOAST in Appendix D, including the abla-
tion study of each component and the influence of
the hyper-parameter K in the cross-annotation.

6 Applications

We consider applying LM-TOAST for three tasks,
namely selective classification (Geifman and El-
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Dataset PWWS TextBugger BERT-Attack HotFlip ROCKET

Method AUROC ∆Conf AUROC ∆Conf AUROC ∆Conf AUROC ∆Conf AUROC ∆Conf

Vanilla 74.91 15.66 79.11 17.68 81.13 21.57 83.54 19.01 77.23 14.24
TS 74.91 10.79 79.11 12.53 81.13 13.79 83.54 14.19 77.23 11.33
LS 71.10 10.28 74.53 11.18 76.51 12.31 78.69 12.15 64.24 9.26
LM-TOAST 84.64 42.66 86.01 45.75 84.59 45.08 87.96 49.56 85.83 42.78

Table 5: Experimental results of adversarial defense.

Yaniv, 2017), adversarial defense (Zhang et al.,
2020), and model cascading (Varshney et al., 2022).
The baseline methods are the same as in Sec. 5

6.1 Selective Classification

Selective classification provides systems with an
extra reject option. It plays an essential role in high-
stake application scenarios (e.g., fake news detec-
tion) since the systems can trade off the prediction
coverage for better prediction performance. Once
PLMs’ confidence scores on predictions are lower
than the pre-defined threshold, the systems may
reject PLMs’ predictions and transfer the inputs to
human experts. Thus, the task performance can
be improved by clearly distinguishing the wrong
predictions. The evaluation settings are described
in Appendix F.

Experimental results. The results are listed in
Table 9. We observe that LM-TOAST overall
achieves both the minimum risk averaging over
various coverage measured by AUROCrisk and the
maximum coverage for the desired risk level. To
further show the advantage of LM-TOAST, we plot
the accuracy versus confidence level (a.k.a., thresh-
old) curves for three ID datasets (see Figure 8).
The predictions with confidence scores lower than
the confidence level will be rejected. We observe
that LM-TOAST can steadily increase performance
when the confidence level keeps getting larger. Be-
sides, LM-TOAST achieves an overall better bal-
ance between accuracy and coverage rate. On the
contrary, while using TS can achieve good perfor-
mance in high confidence levels, the coverage rate
is very low (near 0 on Amazon).

6.2 Adversarial Defense

For PLMs deployed for security-relevant appli-
cations (e.g., hate-speech detection), malicious
agents may construct adversarial samples to
mislead PLMs’ predictions. Essentially, the attack
methods introduce noise to the original samples,
which may result in various degrees of distribution
shifts (Zhang et al., 2015; Yuan et al., 2021; Wang
et al., 2022). Thus, adversarial sample detection
can be treated as a special kind of OOD detection

Dataset Amazon Civil MNLI

Method AUROC AUROC AUROC

Vanilla 88.24 86.55 81.96
TS 88.37 86.60 82.21
LS 88.34 86.62 82.30
LM-TOAST 89.50 88.54 83.93

Table 6: Experimental results of model cascading.

problem, and the confidence scores can be
exploited. The intuition is that PLMs’ confidence
scores may be lower in adversarial OOD samples
compared to ID ones. The evaluation settings
are described in Appendix F. Basically, a sample
is considered adversarial when the predictive
probability is below a certain threshold.

Experimental results. The results are listed in
Table 5. We observe that LM-TOAST achieves
significantly better performance in detecting adver-
sarial inputs. Further, we sample 1,000 sentences
from the ID dataset and mix them with adversar-
ial samples. We measure the Macro-F1 score at
various confidence levels considering five attack
methods (see Figure 5). The samples with confi-
dence scores lower than the confidence level will
be treated as adversarial samples. We observe that
LM-TOAST reacts more actively to the confidence
threshold chosen, and consistently achieves better
detection results across all thresholds.

6.3 Model Cascading
Model cascading systems build a model pool con-
sisting of PLMs with various scales (Varshney and
Baral, 2022a). Given input samples in the infer-
ence time, smaller models can be first adopted for
predictions. If the predictive confidence scores are
relatively lower, the system can transfer samples to
larger models, which will take more time to solve
but with more accuracy. The basic intuition is that
smaller models can already give correct predictions
in most cases, and larger models are only needed to
be adopted when solving some difficult samples. In
this way, model cascading systems can significantly
improve the efficiency in the inference time. The
evaluation settings are described in Appendix F.

Experimental results. The results are listed in
Table 6. LM-TOAST achieves better performance
on three datasets. Thus, incorporating the confi-
dence estimations computed by LM-TOAST can
improve the efficiency and performance of the cas-
cading systems. We also show the accuracy versus
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Figure 5: Results of adversarial defense against five classic attack methods. LM-TOAST consistently achieves
better detection results across all confidence thresholds.
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Figure 6: Results of model cascading. LM-TOAST performs consistently better for all confidence thresholds.

the confidence level curves in Figure 6. The sam-
ples with confidence scores from the small model
lower than the confidence level will be transferred
to the large model for prediction. LM-TOAST still
exhibits the benefit of reacting dynamically with
the confidence changing and consistently achieves
better performance considering all thresholds.

7 Related Work

Calibration methods. Typically, calibration
methods rely on human intuitions or posterior ad-
justments to make the confidence estimations more
accurate. Data augmentation (Hendrycks et al.,
2020b; Wang et al., 2021) and model ensemble (Gal
and Ghahramani, 2016; Lakshminarayanan et al.,
2017) have been empirically proven to be suc-
cessful in computer vision. However, they cannot
bring the same benefits in NLP according to the
empirical study in Chen et al. (2022b). So we don’t
consider them as baseline methods for comparison
in this work, and two empirically effective methods
are adopted. Temperature scaling (Platt et al., 1999;
Guo et al., 2017) readjusts the output logits in a pos-
terior way according to the calibration performance
on a held-out set. Label smoothing (Szegedy et al.,
2016) imposes a confidence regularization during
the training process, discouraging models from
being overconfident in their predictions.

Recently, there is an emergent trend in NLP, mo-
tivating to directly collect data for training models
to have reasonable confidence estimations. Kada-
vath et al. (2022) assume that the last hidden states

of PLMs contain the uncertainty information, and
directly apply a multi-layer perceptron on them to
perform confidence estimations. Lin et al. (2022)
also show that PLMs can be directly trained to
give their confidence estimations by words. These
two methods are proven to be successful in signif-
icantly reducing the overconfidence issue and are
further extended to exploit the potential in this kind
of methods (Chen et al., 2022b). Existing work
demonstrates the feasibility and potential of this
kind of method in ideal experimental settings that
enough training data is given for the calibration
task. We further consider the practical setting and
propose an effective method in this work.

Applications. The confidence scores have been
widely utilized for various applications. A bunch
of active learning methods relies on models’ con-
fidence to select the most informative samples to
annotate (Zhang et al., 2022; Schröder et al., 2022).
Models’ confidence can also be directly utilized for
OOD and misclassification detection (Hendrycks
and Gimpel, 2017; Hendrycks et al., 2020a). Fol-
lowing the same intuition, selective prediction can
be applied to improve the system performance by
filtering out low-confident predictions (Geifman
and El-Yaniv, 2017; Kamath et al., 2020; Varsh-
ney et al., 2022). Moreover, an alternative strategy
is adopting the model cascading systems, transfer-
ring the low-confident inputs to models with higher
capacities (Li et al., 2021b; Varshney and Baral,
2022a). This can achieve better performance and
efficiency of the whole system.
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8 Conclusion

We present the task-agnostic LM-TOAST to make
PLMs have reasonable confidence estimations
while maintaining the original task performance.
We also show that its good self-calibration can be
transferred to downstream applications.

Limitations and Future Work

We acknowledge the limitations of LM-TOAST in
few-shot calibration training. From our pilot ex-
periments in Sec. 3.1, we observe that a significant
amount of data points are needed for the calibration
task training. In LM-TOAST, we effectively utilize
the whole training set for the calibration task. Some
learning paradigms assume only a small number
of annotated samples at first, which limits the ef-
fectiveness of LM-TOAST. For example, in active
learning (Zhang et al., 2022; Schröder et al., 2022),
only a very small number of samples are available
at the beginning most of the time, and models need
to rely on them to find informative unlabeled sam-
ples to annotate. The vanilla confidence scores
can be effectively utilized in this setting. However,
LM-TOAST may not learn the calibration task well
given very limited samples, resulting in poor perfor-
mance in searching informative samples. We plan
to investigate the calibration task in the few-shot
setting and bring out the potential in LM-TOAST
to make it suitable for more tasks.
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A Dataset

We introduce the datasets used in this paper. The
dataset statistics are listed in Table 7.

Sentiment analysis. We choose Amazon Fine
Foods (McAuley and Leskovec, 2013), abbrevi-
ated as Amazon in this paper, as the ID dataset. It
collects customer reviews from Amazon on fine
foods. Following Chen et al. (2022b), we sample
10k samples per class due to the enormous size of
the original dataset. For OOD datasets, we choose
SST-5 (Socher et al., 2013) and SemEval 2016
Task 4 (Nakov et al., 2013) for evaluation. Specif-
ically, SST-5 collects samples from the movie re-
views website, and all samples are annotated using
5 sentiment tendencies, including negative, some-
what negative, neutral, somewhat positive, or posi-
tive. We discard the samples with somewhat pos-
itive and somewhat negative labels and make it a
three-classes classification dataset. SemEval col-
lects samples from Twitter, where each sample is
annotated as negative, neutral, or positive.

Hate speech detection. We choose Civil Com-
ments2, abbreviated as Civil in this paper, as the
ID dataset. It collects samples from the Civil Com-
ments platform, and each sample is annotated as a
value from 0 to 1, indicating the toxicity level. Fol-
lowing the official instructions, we set the samples
with toxicity levels larger than 0.5 as toxic labels
and smaller than 0.5 as benign labels. For OOD
datasets, we choose Hate Speech (de Gibert et al.,
2018) and Implicit Hate (ElSherief et al., 2021),
abbreviated as Implicit in this paper, for evalua-
tion. Hate Speech collects samples from a white
nationalist forum. We use the test set sampled in
the official repository. Implicit collects tweets that
contain toxic content from extremist groups in the
US. This dataset is challenging for hate speech de-
tection since many samples contain implicit toxic
contents to bypass the detection systems.

Natural language inference. We choose
MNLI (Williams et al., 2018) as the ID dataset. In
our experiments, we choose the matched version
validation set for evaluation. For OOD datasets,
we choose HANS (McCoy et al., 2019) and
ANLI (Nie et al., 2020) for evaluation. HANS
is a synthetic dataset, constructed by heuristic
rules. It’s used to evaluate whether models trained

2https://www.kaggle.com/competitions/
jigsaw-unintended-bias-in-toxicity-\
classification

on standard natural language inference datasets
capture some unwanted spurious correlations.
ANLI is construed by a human-and-model-in-the-
loop process, aiming to explore the weakness of
standard natural language inference models. In our
experiments, we merge the data from three rounds
in the original ANLI dataset.

B Prompt Template and Verbalizer

We follow Chen et al. (2022b) to select the prompt
templates and verbalizers chosen. We list the
prompt templates and verbalizers for the main task
in Table 10. We list the prompt templates and ver-
balizers for the calibration task in Table 11.

C Additional Details of the Pilot
Experiments

Experimental settings. We run all experiments
three times and report both the average perfor-
mance and the standard variance. Following Chen
et al. (2022b), we employ a large unused validation
set for pilot exploration, which may not exist in
practice. We train PLMs on the main task for 5
epochs and use the trained PLMs to annotate the
validation set as the calibration training dataset.
Then we train PLMs on both the main task and the
calibration task for 8 epochs.

Summary. We summarize the empirical results
in the pilot experiments section as instructions for
our proposed algorithm: (1) Increasing the calibra-
tion training samples brings benefits to both ID and
OOD evaluation; (2) It’s essential to maintain the
balanced distribution of two classes in the calibra-
tion training set; (3) Both the original sample and
the model’s original prediction can provide useful
information for confidence estimation, while the
former accounts for the majority.

D Further Analysis of LM-TOAST

Ablation study. We quantify the contribution
of each part in LM-TOAST. Specifically, we con-
sider four variants of LM-TOAST: (1) w/o Cross-
annotation: We directly split the training dataset
into two subsets with a ratio of 9:1, and use the
smaller subset for calibration training data annota-
tion; (2) w/o Down-sampling: We retain all positive
cases in the calibration training set. (3) w/o Aug-
mentation: We remove the data augmentation on
negative cases in LM-TOAST; (4) w/o Decay α:
We remove the decay factor α in Eq. 4.
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Task Dataset #Class Average Length #Train #Dev #Test

Sentiment Analysis
Amazon 3 77.86 24000 78741 91606
SST-5 3 18.75 - - 1067
SemEval 3 19.61 - - 6000

Hate Speech Detection
Civil 2 52.86 48000 12000 60000
Hate Speech 2 21.55 - - 478
Implicit 2 17.34 - - 21479

Natural Language Inference
MNLI 3 19.36/10.06 373067 19635 9815
HANS 2 9.15/5.61 - - 30000
ANLI 3 54.40/10.34 - - 3200

Table 7: Dataset statistics.
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Figure 7: Further analysis of the dataset imbalance issue. The evaluation datasets are listed in Table 2.

Amazon

Dataset Amazon SST-5 SemEval

Method AUROC ∆Conf AUROC ∆Conf AUROC ∆Conf

LM-TOAST 87.44 (1.12) 42.46 (3.03) 79.32 (1.09) 26.37 (1.04) 73.17 (2.36) 20.21 (1.70)
w/o Cross-annotation 87.35 (0.43) 27.72 (1.28) 66.96 (0.58) 8.20 (1.84) 72.41 (1.27) 8.11 (1.84)
w/o Down-sampling 81.50 (3.32) 19.45 (2.67) 77.03 (1.36) 20.46 (1.32) 71.69 (0.13) 15.90 (0.70)
w/o Augmentation 84.37 (2.00) 37.88 (2.89) 74.14 (0.86) 19.73 (0.26) 74.09 (2.24) 17.76 (0.35)
w/o Decay α 80.56 (4.13) 17.57 (4.13) 77.92 (0.21) 29.34 (0.99) 75.18 (0.23) 22.10 (1.16)

Table 8: The ablation study of various components in
LM-TOAST.

The results are listed in Table 8. We find that
each component in LM-TOAST contributes to a
certain aspect of the calibration performance. The
down-sampling, augmentation, and decay factor α
guarantee the ID calibration performance, where
removing any of them will cause a significant drop
in performance. Cross-annotation ensures that the
amount of calibration training data is large enough,
which is important for the OOD calibration per-
formance. We also observe that removing the de-
cay factor α improves the OOD calibration perfor-
mance. However, it comes at a substantial cost to
the ID performance.

The influence of K. We also study the influence
of the hyper-parameter K in the cross-annotation
process. The results are shown in Figure 9. We
observe that increasing K brings a negative or min-

imal effect on the calibration performance. Also,
increasing K will also cause a significant increase
in computational cost. Thus, the results justify our
empirically chosen value K=2.

E Additional Results

The results of further analysis of the data imbalance
issue are shown in Figure 7. The results of selective
classification are listed in Table 9 and Figure 8.

F Evaluation Settings of Downstream
Applications

Selective classification. We consider two clas-
sic metrics following Kamath et al. (2020): (1)
AUROCrisk: We plot the risk versus coverage
curve by varying the confidence threshold, and mea-
suring the area under this curve. In fact, this can be
computed by subtracting the AUROC scores listed
in Table 4 from 1. Notably, smaller AUROCrisk

scores are better in selective classification, which
is different from other applications; (2) Cov: The
maximum possible coverage for the desired risk
level. We choose Acc=95% for most tasks while
choosing 85% and 60% for Semeval and HANS re-
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Figure 8: Results of selective classification. The -Acc and -Conv in the legend denote Accuracy and Coverage rate
respectively. LM-TOAST steadily increases performance when the confidence level keeps getting larger.
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Figure 9: The influence of K in the cross-annotation split
process. The evaluation datasets are listed in Table 2.

spectively due to PLMs’ low performance on these
two datasets. We leave out the results in ANLI due
to the same low-performance reason.

Adversarial defense. In our experiments, we fol-
low Chen et al. (2022a) to consider the security-
relevant task in evaluation, and use civil comments
as the evaluation dataset. We consider five at-
tack methods, including PWWS (Ren et al., 2019),
Textbugger (Li et al., 2019), BERT-Attack (Li
et al., 2020), Hotflip (Ebrahimi et al., 2018), and
ROCKET (Chen et al., 2022a). For each method,
we generate 1,000 successful adversarial samples
by attacking a well-trained T5 model.

We adopt two evaluation metrics: (1) AUROC:
We measure whether the confidence in ID samples
is higher than in adversarial samples; (2) ∆Conf:
The average confidence difference between ID sam-
ples and adversarial samples.

It is worth highlighting that our approach
can readily be extended to detect poisoned sam-
ples (Wallace et al., 2021; Li et al., 2023), as they

Amazon

Dataset Amazon SST-5 SemEval

Method AUROCrisk↓ Cov↑ AUROCrisk↓ Cov↑ AUROCrisk↓ Cov↑
Vanilla 14.20 89.82 20.86 21.37 28.32 18.40
TS 14.27 90.22 20.86 23.24 28.11 18.82
LS 18.07 89.28 23.19 2.81 29.48 13.35
LM-TOAST 12.56 91.27 20.68 23.52 26.83 24.25

Civil

Dataset Civil Hate Speech Implicit

Method AUROCrisk↓ Cov↑ AUROCrisk↓ Cov↑ AUROCrisk↓ Cov↑
Vanilla 9.67 84.71 37.20 10.46 34.01 0.04
TS 9.67 84.71 37.20 10.46 34.01 0.16
LS 8.85 85.17 37.83 1.05 36.08 0
LM-TOAST 7.99 88.03 34.45 18.83 34.01 0.16

MNLI

Dataset MNLI HANS ANLI

Method AUROCrisk↓ Cov↑ AUROCrisk↓ Cov↑ AUROCrisk↓ Cov↑
Vanilla 17.40 69.63 47.04 62.45 55.89 -
TS 17.40 69.75 47.04 0 55.89 -
LS 19.49 68.18 53.48 0 56.93 -
LM-TOAST 17.26 71.74 39.40 79.46 56.03 -

Table 9: Experimental results of selective classification.
↓: Lower is better. ↑: Higher is better. Results in ANLI
are left out due to PLMs’ low performance.

are generated by introducing synthetic noise to
benign samples, akin to adversarial samples (Cui
et al., 2022).

Model cascading. In our experiments, we use
a T5-small and a T5-base to constitute the model
pool. Following Varshney and Baral (2022b), we
measure the AUROC score in our experiments.
Specifically, we vary the confidence levels, cor-
responding to different computational costs of the
system. Then we plot the accuracy versus confi-
dence curve and measure the area under this curve
as the AUROC score.
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Task Dataset Template Verbalizer

Sentiment
Analysis

Amazon It was <mask>. {”placeholder”: ”text a”} [bad, good, neutral]

SST-5 It was <mask>. {”placeholder”: ”text a”} [bad, good, neutral]

SemEval It was <mask>. {”placeholder”: ”text a”} [bad, good, neutral]

Hate
Speech
Detection

Civil It was <mask>. {”placeholder”: ”text a”} [benign, toxic]

Hate Speech It was <mask>. {”placeholder”: ”text a”} [benign, toxic]

Implicit It was <mask>. {”placeholder”: ”text a”} [benign, toxic]

Natural
Language
Inference

MNLI

Given the two sentences:
(1) {”placeholder”: ”text a”}.
(2) {”placeholder”: ”text b”}.

Does the first sentence entails the second ? <mask>

[No, Yes, Maybe]

HANS

Given the two sentences:
(1) {”placeholder”: ”text a”}.
(2) {”placeholder”: ”text b”}.

Does the first sentence entails the second ? <mask>

[No, Yes, Maybe]

ANLI

Given the two sentences:
(1) {”placeholder”: ”text a”}.
(2) {”placeholder”: ”text b”}.

Does the first sentence entails the second ? <mask>

[No, Yes, Maybe]

Table 10: The manual templates and verbalizers adopted for the main task.

Task Dataset Template Verbalizer

Sentiment
Analysis

Amazon
Sentence: {”placeholder”: ”text a”} The predicted sentiment is {”placeholder”: ”text b”} .

Is the prediction True or False ? It’s {”mask”} .

[False, True]

SST-5
Sentence: {”placeholder”: ”text a”} The predicted sentiment is {”placeholder”: ”text b”} .

Is the prediction True or False ? It’s {”mask”} .

SemEval
Sentence: {”placeholder”: ”text a”} The predicted sentiment is {”placeholder”: ”text b”} .

Is the prediction True or False ? It’s {”mask”} .

Hate
Speech
Detection

Civil
Sentence: {”placeholder”: ”text a”} The predicted toxicity is {”placeholder”: ”text b”} .

Is the prediction True or False ? It’s {”mask”} .

Hate Speech
Sentence: {”placeholder”: ”text a”} The predicted toxicity is {”placeholder”: ”text b”} .

Is the prediction True or False ? It’s {”mask”} .

Implicit
Sentence: {”placeholder”: ”text a”} The predicted toxicity is {”placeholder”: ”text b”} .

Is the prediction True or False ? It’s {”mask”} .

Natural
Language
Inference

MNLI
Given the two sentences: {”placeholder”: ”text a”}

The predicted relationship between the two sentences is {”placeholder”: ”text b”}
Is the prediction True or False ? It’s {”mask”} .

HANS
Given the two sentences: {”placeholder”: ”text a”}

The predicted relationship between the two sentences is {”placeholder”: ”text b”}
Is the prediction True or False ? It’s {”mask”} .

ANLI
Given the two sentences: {”placeholder”: ”text a”}

The predicted relationship between the two sentences is {”placeholder”: ”text b”}
Is the prediction True or False ? It’s {”mask”} .

Table 11: The manual templates and verbalizers adopted for the calibration task.

9860



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

The final section

� A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B � Did you use or create scientific artifacts?
Not applicable. Left blank.

� B1. Did you cite the creators of artifacts you used?
No response.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
No response.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C �3 Did you run computational experiments?
5,6

� C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Not applicable. Left blank.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

9861

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
4

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
5,6

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Not applicable. Left blank.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

9862


