
Findings of the Association for Computational Linguistics: ACL 2023, pages 9863–9879
July 9-14, 2023 ©2023 Association for Computational Linguistics

EmbedTextNet: Dimension Reduction with Weighted Reconstruction and
Correlation Losses for Efficient Text Embedding

Dae Yon Hwang1,2∗ Bilal Taha2,3 Yaroslav Nechaev1∗
1 Amazon Alexa AI 2 University of Toronto 3 Vector Institute
{daeyon.hwang, bilal.taha}@mail.utoronto.ca

{dyhwang, nechaey}@amazon.com

Abstract

The size of embeddings generated by large lan-
guage models can negatively affect system la-
tency and model size in certain downstream
practical applications (e.g. KNN search). In
this work, we propose EmbedTextNet, a light
add-on network that can be appended to an ar-
bitrary language model to generate a compact
embedding without requiring any changes in
its architecture or training procedure. Specif-
ically, we use a correlation penalty added to
the weighted reconstruction loss that better cap-
tures the informative features in the text em-
beddings, which improves the efficiency of
the language models. We evaluated Embed-
TextNet on three different downstream tasks:
text similarity, language modelling, and text re-
trieval. Empirical results on diverse benchmark
datasets demonstrate the effectiveness and supe-
riority of EmbedTextNet compared to state-of-
art methodologies in recent works, especially
in extremely low dimensional embedding sizes.
The developed code for reproducibility is in-
cluded in the supplementary material.1

1 Introduction

Significant advances in computational resources
along with the existence of the huge amount of
data rendered large language models (LLM) ubiq-
uitous in various fields, such as Natural Language
Understanding (NLU), and vision-language multi-
models Du et al. (2022). Even with their relative
success in diverse applications, the practical de-
ployment of such models remains challenging with
one of the main concerns being the text embed-
ding size (Ling et al., 2016). For example, loading
word embedding matrices with 2.5 million tokens
and 300 dimensions consumes 6 GB memory on
a 64-bit system Raunak et al. (2019). This may
breach memory or latency budget in certain highly-

∗Work was done outside of Amazon
1https://github.com/eoduself/EmbedTex

tNet

constrained practical settings, such as NLU on mo-
bile devices or KNN search in a large index.

Text embeddings, in general, are generated from
unlabeled text corpora and applied in several Nat-
ural Language Processing (NLP) and information
retrieval applications. Embeddings are often pre-
computed and used in downstream applications.
Many post-processing algorithms have been consid-
ered over the years to reduce the dimensionality of
the resulting vector space. One approach to reduce
embedding dimensionality is re-training the lan-
guage models with the desired dimensionality, this,
however, can be costly and reduce model perfor-
mance. Another approach is to use unsupervised al-
gorithms directly on the pre-computed text embed-
dings, without requiring any access to labels. Sev-
eral works exist in the literature including Principal
Component Analysis (PCA) Jolliffe and Cadima
(2016), Algo Raunak et al. (2019), and Uniform
Manifold Approximation and Projection (UMAP)
McInnes et al. (2018). While most unsupervised
approaches have made noticeable progress, they
still suffer from many disadvantages according to
our findings. First, they do not perform consistently
in different applications. For example, Algo works
well, compared to PCA, for Dimensionality Reduc-
tion (DR) in a word embedding. However, the roles
are switched in the case of a multilingual sentence
(m-sentence) embedding. Second, the absolute per-
formance of the baseline methods is significantly
lower when extreme reduction is employed (e.g.
16).

In this work, we propose a framework that effi-
ciently reduces the dimensionality of text embed-
ding. We show that the proposed EmbedTextNet,
which uses a Variational AutoEncoder (VAE) with
modified loss functions, can be used as an add-on
module that improves the quality of the text em-
bedding. We also demonstrate that EmbedTextNet
can efficiently reduce the size of a text embedding
considerably while preserving the quality of the

9863

https://github.com/eoduself/EmbedTextNet
https://github.com/eoduself/EmbedTextNet


embedding. Our extensive experiments on three
downstream applications depict that our method
surpasses the original embeddings and state-of-the-
art (SOTA).

2 Related Work

Model compression and DR of embedding are re-
ceiving more attention nowadays because of their
ability to speed the inference process and reduce
the model storage space. To compress a model,
one can use pruning approaches that aim to re-
peatedly eliminate the redundant parameters in a
model Molchanov et al. (2016). Quantization is
another common way that works by limiting the
number of bits used to represent the model weights
Hubara et al. (2017). Similarly, authors in Li et al.
(2017) compressed the input and output embedding
layers with a parameter-sharing method. Another
approach for model compression is knowledge dis-
tillation, where the objective is to make a small
model mimic a large pre-trained model by match-
ing the ground-truth and soft labels from the large
model Hinton et al. (2015). Recently, researchers
considered a block-wise low-rank approximation
Chen et al. (2018) which employs statistical fea-
tures of words to form matrix approximations for
embedding and softmax layers. The extension of it
was shown in Lee et al. (2021) which is based on
word weighting and the k-means clustering meth-
ods. Authors in Hrinchuk et al. (2019) consid-
ered parameterizing the embedding layers by ten-
sor train decomposition to compress a model with
a negligible drop in the result. All the aforemen-
tioned methods have the limitation of either requir-
ing re-training the model to accommodate for the
changes performed in the network or compromis-
ing the accuracy of the learning model. Further,
some of these techniques are not studied with pre-
trained LLM which limits the scalability.

Unsupervised methods for DR of embedding
have gained attention because of their label-free
approach that transforms a high-dimensional em-
bedding into a reduced one. The most common
starting point is to utilize linear transformation
approaches such as PCA or Independent Compo-
nent Analysis (ICA) Müller et al. (2018); Hyväri-
nen (2013). These methods aim to project the
original high-dimensional embedding into a lower-
dimensional one by either maximizing the variance
or the mutual information. Another route is to
employ nonlinear DR methods including Kernel

PCA (KPCA) Schölkopf et al. (1998), t-distributed
Stochastic Neighbor Embedding (t-SNE) Van der
Maaten and Hinton (2008), and UMAP McInnes
et al. (2018). The KPCA employs a kernel function
(e.g. Gaussian) to map the original embeddings
into a nonlinear space and performs PCA on the
projected embeddings. t-SNE performs a nonlin-
ear reduction method to capture the local structure
of the high-dimensional embeddings while main-
taining a global structure simultaneously. UMAP
embeds data points in a nonlinear fuzzy topological
representation by neighbor graphs and then, learns
a low-dimensional representation while preserving
maximum information of this space.

The use of pre-trained LLM is the backbone
for several NLP applications such as text retrieval,
question-answer, and semantic similarity between
pairs. Large pre-trained models such as BERT De-
vlin et al. (2019), RoBERTa Liu et al. (2019) and
XLNet Yang et al. (2019) have shown to provide
SOTA performance. However, when we necessitate
a smaller embedding size for resource-constrained
devices and prompt inference in downstream tasks
like text retrieval, it becomes crucial to retrain pre-
trained LLMs and fine-tune them to attain the same
level of performance as the original model. Us-
ing DR, we can circumvent this process while also
saving space that would otherwise be reserved for
storing retrieval models (i.e. index). One simple
approach to reduce the embedding size of these
large models is to re-train the model while chang-
ing the last hidden layer size. This is inefficient
since the re-training process will still, obviously,
require enormous resources. A more natural and
convenient mechanism is to work directly on the
pre-trained large embedding which will eliminate
the need for re-training Mu et al. (2017). Recently,
the authors in Raunak et al. (2019) combined PCA
with a post-processing Mu et al. (2017) to obtain
effective DR on word embeddings. However, exist-
ing methods fail to work in extreme cases such as
a 30-times reduction of the original size.

Therefore, in this work, we propose an algorithm
that works directly on pre-computed embeddings to
reduce their size even in extreme cases. This is val-
idated on three different applications which are text
similarity, language modelling and text retrieval
to highlight the effectiveness of the proposed ap-
proach in different aspects such as similarity score,
inference time and model size.

9864



Figure 1: (a) Encoder, (b) Decoder, (c) Loss functions in EmbedTextNet. Conv: Convolutional, Conv-T:
Convolutional-transpose, BN: Batch normalization, LR: LeakyReLU, AP: Average Pooling layers respectively.

3 DR for Text Embedding

Ensuring a fast inference (either between devices or
user-device interaction) is critical, especially for ap-
plications related to NLU such as voice assistants.
DR has practical applications in two distinct tasks:
(1) Direct application using pre-computed embed-
dings like GloVe and (2) retrieval task with a built-
in index where we use pre-computed embeddings
to generate an index for searching. These embed-
dings can be either contextual or non-contextual,
depending on the specific application. To this end,
we first introduce EmbedTextNet with modified re-
construction and additional correlation losses. We
then show the three most common DR methods as
the baselines.

3.1 EmbedTextNet
We propose a VAE model, named EmbedTextNet,
with added correlation penalty, LCorr that quanti-
fies the strength of the linear relation between the
original embedding and the reconstructed one. The
correlation penalty is added to the original losses of
the VAE model to enhance the DR of pre-computed
embeddings. We mainly consider the latent space
of VAE for DR of embeddings. The overall model

and loss functions of EmbedTextNet are shown in
Figure 1 and detailed in the Appendix.

The input for our EmbedTextNet is the pre-
trained embedding. With that in mind, the gen-
eral loss function of a VAE consists of two parts:
Reconstruction and regularizer losses. The first
term, LRec, measures the distance between the orig-
inal and reconstructed pre-computed embedding.
The second term is the Kullback-Leibler (KL) di-
vergence loss, LKL, which acts as a regularizer
normalizing and smoothing the latent space to fol-
low a prior distribution (i.e. Gaussian distribution).
Originally, KL divergence drives the VAE as a gen-
erative model but there is also merit to using it for
DR according to the ablation study in Table 7. To
balance the two terms, the work in Higgins et al.
(2016) proposed a β-VAE which places greater em-
phasis on the LKL in order to enforce a comparable
latent distribution to the original distribution. This
weighting value contributes to the production of
high-quality synthetic data, indicating that β-VAE
is primarily intended for data generation purposes.
However, β-VAE is found to be less effective on ap-
plications related to DR for text embeddings where
significant performance degradation is expected

9865



Figure 2: Loss functions before (a) and after (b) weighted in Mean Square Error (MSE)-based reconstruction loss.
The graphs are based on DR on word embedding (i.e. GloVe-300D → 50D). The increase of epochs does not affect
the convergence of losses.

(seen in Table 8). Instead, we place more weight
on the reconstruction loss to highlight the similar-
ity between the reconstructed data and the original
data. This new weighting value ensures that the
latent space contains the critical features of the orig-
inal data, ensuring that EmbedTextNet is beneficial
for dimensionality reduction.

In Figure 2, we show the LRec and LKL of the
reduced word embedding while training VAE. The
original VAE losses in (a) are small, especially for
the KL loss which almost disappears and it causes
the reconstruction term to converge. This makes
the training of EmbedTextNet insufficient, result-
ing in a faulty reconstruction. In addition, the VAE
model is not trained properly with the original re-
construction loss since it is almost invariant during
the training process. However, weighted recon-
struction loss in (b) indicates adequate amounts of
loss with convergence at the end. This allows the
model to effectively find smaller embeddings by
enforcing a large penalty for incorrect decisions.
From the empirical result on text similarity in Table
7, we observe the improvement after weighting the
reconstruction loss. More experiments are found in
the Appendix.

The reconstruction loss is the proximity of two
embeddings to gauge their similarity. In the NLP
area, we also utilized directional metrics (e.g. co-
sine similarity) to gauge the similarity between
embeddings. Our conception stemmed from the
desire to incorporate the additional directional in-
formation between the original and reconstructed
data to devise a more effective DR approach. To
do this, we additionally consider the Pearson cor-
relation coefficient, LCorr, as an added penalty to
the VAE losses to measure the strengths and di-
rections of the linear relationship between original
and reconstructed embeddings. Specifically, it en-
ables the model to capitalize further on the train
set when the reconstruction and KL losses have

converged leading to better overall reconstruction
performance. From empirical results in Tables 8
and 9, we observe the improvement after including
the correlation loss (i.e. EmbedTextNet), compared
to other measurements (e.g. cosine-similarity).

Algorithm 1 EmbedTextNet Algorithm
Data: Embedding from train set Xtrain and test
set Xtest, Decreased dimension M , Correlation
loss threshold N , Max epochs K
Result: Decreased embedding for train set Ytrain
and test set Ytest
Parameters: Training epoch E, Reconstructed
train set Xre−train and test set Xre−test, Loss
functions of EmbedTextNet LAll, Reconstruction
LRec, KL divergence LKL, Correlation LCorr,
Weight for reconstruction loss W , Tuning value γ
1. Initialize Encoder and Decoder in Embed-
TextNet
2. Train Encoder and Decoder:
while E <= K do

Ytrain = Encoder(Xtrain)

Xre−train = Decoder(Ytrain)

Measure Loss with Ytrain, Xre−train

if E == 1 then

W =
LRec

LKL
· γ

γ = 10 if LRec < 0.1 else 0.3
else

if E < N then
LAll = W · LRec + LKL

else
LAll = W · LRec + LKL + LCorr

end
end

end
3. After training Encoder and Decoder:
Ytest = Encoder(Xtest)

Xre−test = Decoder(Ytest)

9866



A detailed description of the EmbedTextNet DR
procedure is presented in Algorithm 1. We first
generate embeddings from train and test sets of lan-
guage models without using any layer information
from them. During training, the latent and recon-
structed embeddings of the train set are used to
measure the loss functions of EmbedTextNet. In
the first epoch, we set the weight value (W ) for
the reconstruction loss (LRec) from the LRec and
KL divergence (LKL) with γ. This helps to com-
pensate for the randomness of parameters from the
initialization of the encoder and decoder. The value
of γ is determined by the first LRec value, where
we provide a high value if it is small and vice versa
for others. This value is crucial for making Embed-
TextNet useful in all applications, as each one has
a different distribution of embeddings. Equation 1
shows the details of each loss in Algorithm 1.

LRec = Ez [log pθ(O | z)]
LKL = −Ez [log q(z |O)− log pθ(z)]

LCorr =
∑n

i=1(Oi−Ō)(Ri−R̄)√∑n
i=1(Oi−Ō)2

√∑n
i=1(Ri−R̄)2

(1)

where θ is the weight value in EmbedTextNet and
LRec objective is to find θ that maximizes the like-
lihood of original embedding O given latent dimen-
sion z. q(z |O) is the distribution of latent dimen-
sion given original embedding. Oi, Ri are each
dimension of original, reconstructed embeddings
respectively and Ō, R̄ are the average values from
original, reconstructed embeddings separately.

3.2 Baselines
We compared EmbedTextNet to three conventional
and recent dimensionality reduction methods: PCA,
Algo, and UMAP. PCA is a classic technique for re-
ducing vector dimensionality by projecting it onto
a subspace with minimal information loss Jolliffe
and Cadima (2016). Algo aims to eliminate the
common mean vector and a few top dominating
directions from the text embeddings to make them
more distinguishable Raunak et al. (2019). UMAP
is a manifold learning approach based on Rieman-
nian geometry and algebraic topology that is simi-
lar to t-SNE in visualization quality and preserves
more of the global structure while improving run-
time McInnes et al. (2018).

4 Results and Discussion

We showcase the DR usefulness of EmbedTextNet
on three different applications: Text similarity for

measuring the mimicry of reduced embedding with
regards to the original one, language modelling for
understanding the reproducibility of original data
from DR and text retrieval for finding the effective-
ness of DR in terms of frugality and performances.
We also conduct an ablation study for the hyperpa-
rameters and structure of EmbedTextNet. Finally,
the computational cost for EmbedTextNet is de-
tailed in Appendix A. In general, during training,
EmbedTextNet takes a longer time compared to
PCA and Algo, and comparable time to UMAP.
Yet, at inference, it has a similar inference time
with superior performance. This emphasizes the
capabilities and potential of EmbedTextNet for DR.

4.1 Datasets

We evaluated the proposed DR approach on various
datasets for each application.

Word Similarity: We consider diverse databases
of word pairs with similarity scores rated manually
by humans from Faruqui and Dyer (2014). We
evaluate similarity between word embeddings us-
ing cosine-similarity and measure the correlation
between the cosine-similarity scores and human
ranking using Spearman’s Rank Correlation (SRC,
ρ x 100). Sentence Similarity: We use several
datasets for similarity evaluation between sentence
pairs: the Semantic Textual Similarity (STS) tasks
from 2012-2016 Agirre et al. (2012, 2013, 2014,
2015, 2016), the STS Benchmark (STS-B) Cer
et al. (2017), and the SICK-Relatedness (SICK-
R) datasets Marelli et al. (2014) using SentEval. 2

M-Sentence Similarity: To measure multilingual
similarity, we use the recent extension of multilin-
gual STS 2017 database Cer et al. (2017); Reimers
and Gurevych (2020). It contains sentence pairs
with semantic similarity scores in different lan-
guages: AR-AR, EN-EN, and ES-ES for mono-
lingual pairs and AR-EN, ES-EN, EN-DE, EN-
TR, FR-EN, IT-EN, and NL-EN for cross-lingual
pairs.3 For both sentence and m-sentence evalu-
ations, we evaluate the SRC between the cosine-
similarity of sentence pairs and the ground truth
from measured semantic similarity. Language
Modelling: We use WikiText-2 dataset Merity et al.
(2016) for language modeling collected from veri-
fied good and featured articles on Wikipedia. Text
Retrieval: Lastly, we consider NYTimes Aumüller

2https://github.com/facebookresearch/
SentEval

3AR: Arabic, EN: English, ES: Spanish, DE: German, TR:
Turkish, FR: French, IT: Italian, NL: Dutch

9867

https://github.com/facebookresearch/SentEval
https://github.com/facebookresearch/SentEval


et al. (2018); NYT, a benchmark dataset for Ap-
proximate Nearest Neighbor (ANN) that is a bag
of words generated from NYTimes news articles.

4.2 Experimental Setting

In all downstream tasks, we used the training set
to train the DR models and the testing set solely
to evaluate their generalization performance. We
trained each model three times with different ran-
dom seeds to account for random initialization and
averaged the results. For the text similarity task, we
mainly used SRC (ρ x 100) to measure the strength
and direction of a relationship between two ranked
variables. For language modeling, we used perplex-
ity and for text retrieval, we measured the index
size, time for searching queries and recall at top-10
(Recall@10). To ensure fairness, we used the same
models and datasets for all baselines and DRs. We
also report the standard deviation (STD) with each
performance measurement as a statistical analysis.

Text Similarity Application: To generate word
embeddings, we considered the pre-trained GloVe
Pennington et al. (2014) trained on Wikipedia 2014,
Gigaword 5, and Twitter corpus. We employed
80% of the dictionary of GloVe for training DR to
investigate the generalizability of it for unseen data
(i.e. 20% of dictionary). For task evaluation, we
utilized the entire dictionary to extract the reduced
embeddings for each word to ensure all words were
included in the task. To produce sentence em-
beddings, we employed the pre-trained Sentence-
BERT (SBERT) Reimers and Gurevych (2019)
trained on Wikipedia and NLI datasets. There are
two scenarios for measuring sentence similarity
with DR. (1) No dedicated training set is provided
in STS 2012 - 2016 Agirre et al. (2012, 2013, 2014,
2015, 2016). Here, we employed a cross-dataset
evaluation protocol. For example, we used STS
2013 - 2016 as train set when measuring the result
on STS 2012. (2) Dedicated training and testing
sets are provided in STS-B Cer et al. (2017) and
SICK-R Marelli et al. (2014). In this case, we used
the offered train set for training DR models and
evaluated them on the provided test set. To generate
m-sentence embeddings, we used the pre-trained
multilingual Sentence-BERT (mSBERT) Reimers
and Gurevych (2020) trained on parallel data for
50+ languages Tiedemann (2012). For train set,
we used the offered monolingual pairs of AR-AR,
ES-ES and the translated sentences of ES-ES into
EN, DE, TR, FR, IT, NL using Google Translator

since we do not have monolingual pairs for them.
The provided EN-EN dataset was removed from
train set since most cross-lingual datasets were gen-
erated from translating one sentence of EN-EN
Reimers and Gurevych (2020). For test set, all the
cross-lingual pairs are considered.

Language Modelling Application: Using the
codebase in Pytorch examples,4 we employed 2-
layered LSTM model with 100 hidden units, 50%
dropout after the encoder and used the dedicated
train set in WikiText-2 for training a model. We
considered the embedding of the train set from the
encoder to train the DR approaches and then, im-
plemented them on the embeddings of the test set
from the encoder to get the reduced ones. Finally,
we did the inverse transform for the reduced em-
beddings using DR and provided it to the decoder
for performance evaluation. Compared to other
tasks, we focus on measuring the reproducibility of
original data from DR in this task.

Text Retrieval Application: Here, we employed
the Hierarchical Navigable Small Worlds (HNSW)
Malkov and Yashunin (2016) in Faiss library John-
son et al. (2019). The used hyperparameters in the
HNSW index are 12 as the number of neighbors
in the graph, 120 as the depth of exploration for
building the index, and 16 as the depth of explo-
ration of the search. To build the index, we used
a train set in the NYTimes dataset and considered
a test set as the queries for searching. Also, train
and test sets in this dataset are used for training and
testing in DR approaches. To this end, we used the
reduced embeddings for building the HNSW index
and searching the queries to understand the effec-
tiveness of DR to save resources and performance.

4.3 Word Similarity with DR

For word embeddings, we simulate two different
cases of DR on GloVe which are (1) GloVe-300D
→ 50D and (2) GloVe-50D → 10D (the left and
right sides represent the original and reduced em-
beddings dimension (D) after DR). The overall
performance for EmbedTextNet and the baseline
models are found in Table 1. For (1), we noticed
in general that PCA and UMAP methods perform
badly compared to Algo after reducing the embed-
ding dimension. In most cases, EmbedTextNet
outperforms other reduction approaches and shows
better results even compared to GloVe-50D (i.e.

4https://github.com/pytorch/examples/
tree/main/word_language_model

9868

https://github.com/pytorch/examples/tree/main/word_language_model
https://github.com/pytorch/examples/tree/main/word_language_model


Table 1: Word similarity (ρ x 100 (STD)) with dimensionalty reduction. Here, embedding is decreased from
GloVe-300D → 50D and GloVe-50D → 10D. Bold means the best result among dimensionality reductions.

Embeddings YP VERB SimLex 353-SIM TR-3K MTurK-771 353-ALL MTurk-287 RW RG-65 MC-30 353-REL Average
GloVe-300D 56.13 30.51 37.05 66.38 73.75 65.01 60.54 63.32 41.18 76.62 70.26 57.26 58.17 (0)
GloVe-50D 37.72 25.03 26.46 57.32 65.23 55.42 49.93 61.88 34.03 60.21 56.3 46.56 48.01 (0)
PCA-50D 24.34 24.92 16.28 31.36 41.74 30.70 24.91 43.98 17.43 52.97 51.24 23.12 31.92 (0.75)
Algo-50D 37.05 35.5 22.75 58.92 60.84 49.49 53.58 54.07 32.94 54.97 56.88 45.24 46.85 (1.64)

UMAP-50D 14.97 21.94 23.88 36.89 35.98 29.34 29.34 35.99 9.95 32.87 17.65 20.67 25.79 (1.7)
EmbedTextNet

-50 D
39.62 34 30.58 62.64 65.92 54.27 55.6 62 34.45 61 62.07 53.05 51.27 (0.46)

GloVe-25D 6.54 16.21 7.05 47.95 44.37 38.72 35.44 48.76 27.43 49.63 43.11 29.72 32.91 (0)
PCA-10D 21.84 17.22 9.58 24.21 32.13 22.94 16.16 35.61 14.51 38.44 28.09 15.47 23.02 (0.28)
Algo-10D 5.39 16.07 6.95 23.35 26.90 18.71 18.48 22.77 13.04 25.86 24.00 12.57 17.84 (2.13)

UMAP-10D 16.01 21.18 20.04 33.39 39.09 28.94 22.82 35.12 18.79 32.81 35.85 19.15 26.93 (2)
EmbedTextNet

-10D
16.47 26.72 20.5 48.2 51.94 38.09 38.88 54.13 24.52 49.7 44 33.01 37.18 (0.38)

Table 2: Comparison between GloVe and Embed-
TextNet in terms of resources and performances. Infer-
ence means the measurement time for word similarity
task and it is done using Intel(R) Xeon(R) CPU @ 2.20
GHz.

Embeddings Vocabulary
Size (MB)

Inference
(sec)

Avg. SRC
(ρ x 100 (STD))

GloVe-300D 1126 59.9 58.17 (0)
GloVe-200D 729 42.29 55.12 (0)
GloVe-50D 185 15.13 48.01 (0)

EmbedTextNet-100D 367 25.23 56.41 (0.42)
EmbedTextNet-50D 185 15.1 51.27 (0.46)

re-training the model to reduce dimension size).
This demonstrates the ability of EmbedTextNet to
effectively decrease the dimension of word embed-
ding without the need for re-training where it is
more obvious when the reduced dimension is get-
ting smaller. For (2), the performance gap between
EmbedTextNet and other DR methods is expanding
in most databases. In addition, EmbedTextNet is
the only model that reveals superiority compared
to GloVe-25D. In this task, we need a vocabulary
from pre-trained word embeddings during infer-
ence and thus, EmbedTextNet can be useful to re-
duce the memory and inference time with similar
or better performances. This is shown in Table 2,
especially when EmbedTextNet-100D outperforms
GloVe-200D. Thus, we confirm the usefulness of
EmbedTextNet for the word similarity task in terms
of resources and performance.

4.4 Sentence Similarity with DR

We tested two cases of dimensionality reductions
on sentence embeddings: (1) Reducing SBERT-
1024D to 128D and (2) reducing SBERT-1024D
to 16D. The overall performance can be found in
Table 3. PCA mostly performed better than other
methods in both cases, and EmbedTextNet had the
best overall performance. This is especially evi-

Table 3: Sentence similarity (ρ x 100 (STD)) with di-
mensionalty reduction when SBERT-1024D → 128D
and SBERT-1024D → 16D. Bold describes the best re-
sult among dimensionality reductions. The evaluations
of Avg. GloVe and BERT are done using SentEval.

Embeddings STS12-16 STS-B SICK-R
SBERT-1024D 73.32 (0) 75.35 (0) 80.33 (0)
SBERT-768D 70.9 (0) 73.63 (0) 79.27 (0)

PCA-128D 72.53 (0.05) 78.19 (0.33) 76.75 (0.35)
Algo-128D 73.74 (0.06) 77.74 (1.27) 73.63 (0.32)

UMAP-128D 40.33 (0.12) 49.25 (1.24) 46.39 (1.14)
EmbedTextNet-128D 75.46 (0.05) 79.39 (0.28) 77.05 (0.47)

PCA-16D 63.43 (0.09) 72.21 (0.05) 71.29 (0.62)
Algo-16D 60.58 (0.1) 71.4 (1.63) 66.65 (0.18)

UMAP-16D 40.67 (0.88) 49.23 (0.3) 54.41 (0.29)
EmbedTextNet-16D 66.56 (0.07) 73.8 (0.64) 72.55 (0.39)
Avg. GloVe-300D 55.35 (0) 62.96 (0) 71.83 (0)
Avg. BERT-768D 57.24 (0) 64.48 (0) 73.5 (0)

dent in the larger reduction (2). EmbedTextNet
also performed better than using the average of
word embeddings (i.e. Avg. GloVe-300D, BERT-
768D) with lower dimensional embeddings. These
results show that EmbedTextNet effectively gener-
ates lower dimensional word and sentence embed-
dings while maintaining good performance.

4.5 Multilingual Sentence Similarity with DR
We tested the proposed method in a multilingual
setting by considering two use cases: (1) Reducing
mSBERT-768D to 64D and (2) reducing mSBERT-
768D to 16D. The results can be found in Table 4.
In the first case (1), PCA had a small decrease in
performance compared to Algo and UMAP, while
EmbedTextNet had the best performance overall,
except for the case of AR-EN. However, in the ex-
treme reduction case (2), EmbedTextNet had the
best performance in all languages. This highlights
the effectiveness of EmbedTextNet in reducing the
size of embeddings, especially when a large reduc-
tion is needed. Therefore, EmbedTextNet can be
useful in reducing the dimension of embeddings in

9869



Table 4: M-sentence similarity (ρ x 100 (STD)) with dimensionalty reduction. Here, embedding is decreased from
mSBERT-768D → 64D and mSBERT-768D → 16D. Bold denotes the best result among dimensionality reductions.

Embeddings AR-EN ES-EN EN-DE EN-TR FR-EN IT-EN NL-EN Average
mSBERT-768D 80.85 86.11 83.28 74.9 81.17 84.24 82.51 81.87 (0)
mSBERT-384D 81.22 84.44 84.22 76.74 76.59 82.35 81.71 81.04 (0)

PCA-64D 77.47 83.22 79.57 71.08 78.65 81.14 79.55 78.67 (0.04)
Algo-64D 69.23 75.47 77.53 63.85 74.95 76.78 76.71 73.5 (0.09)

UMAP-64D 46.37 44.02 51.13 43.2 43.05 47.2 44.76 45.68 (1.23)
EmbedTextNet-64D 77.07 83.44 82.96 71.6 80.32 83.4 81.2 80 (0.33)

PCA-16D 71.08 74.85 70.15 67.7 69.55 71.55 69.39 70.61 (0.02)
Algo-16D 57.81 64.59 69.21 56.77 67.46 70.34 71.22 65.54 (0.28)

UMAP-16D 46.31 39.88 47.99 42.18 41.93 46.47 44.24 44.14 (0.42)
EmbedTextNet-16D 73.55 79.56 75.67 70.71 75.82 77.42 75.36 75.44 (0.4)

multilingual applications.

4.6 Language Modelling with Reconstructed
Data from DR

Unlike other model compression works, DR can-
not directly reduce the size of model parameters
for language modelling since we do not access any
parameter or layer information. Instead, we can
reduce the dimension of embeddings but can also
reconstruct them to the original dimension by in-
verse transform in DR approaches. In this task, we
measure how close the perplexity is when starting
from the reduced-dimension vector where the re-
sults are covered in Table 5. In all reduced cases,
PCA always shows better perplexity than Algo and
UMAP approaches while EmbedTextNet outper-
forms all of them. Therefore, the reconstructed
data from EmbedTextNet has a high quality that
follows the original data very well.

Table 5: Perplexity in language modelling. UMAP
is only considered for the smallest case since authors
McInnes et al. (2018) did not recommend for reduced
dimension more than 8 because of low performance.

Embeddings Perplexity (STD)
Original-100D 159.02 (0)

PCA-30D → 100D 180.14 (2.02)
Algo-30D → 100D 212.53 (2.76)

EmbedTextNet-30D → 100D 163.47 (2.45)
PCA-10D → 100D 267.12 (2.21)
Algo-10D → 100D 354.38 (2.39)

EmbedTextNet-10D → 100D 180.81 (2.34)
PCA-5D → 100D 399.51 (2.24)
Algo-5D → 100D 476.38 (1.68)

UMAP-5D → 100D 1236.84 (6.25)
EmbedTextNet-5D → 100D 208.32 (2.06)

4.7 Text Retrieval with DR

For text retrieval, we need a space for saving the
embeddings (i.e. index size) and a search time for
queries which can be saved using DR approaches.
In Table 6, we reveal the results in text retrieval

Table 6: Retrieval task inNYTimes benchmark where
searching is done using Intel(R) Xeon(R) CPU @ 2.20
GHz. Encoder size of EmbedTextNet is up to 2 MB
(0.2M parameter).

Embeddings Index Size
(MB)

Search
(msec)

Recall@10 (%)
(STD)

Original-256D 315 0.158 54.85 (0)
PCA-64D

102

0.056 55.17 (0.66)
Algo-64D 0.061 54.22 (0.73)

UMAP-64D 0.021 34.27 (0.23)
EmbedTextNet-64D 0.045 57 (0.36)

PCA-32D

67

0.055 48.55 (1.59)
Algo-32D 0.06 45.36 (0.35)

UMAP-32D 0.017 34.61 (0.5)
EmbedTextNet-32D 0.035 50.5 (0.11)

task. First of all, we can see that PCA and Em-
bedTextNet in 64 dimension case enhance the re-
call values from the original one since they gener-
ate compact informative embeddings which help
to build a distinguishable index between different
keys. It is obvious that we can decrease the index
size and search time for each query significantly
after DR implementations where EmbedTextNet
shows the best results in terms of recall@10. In
real-world applications, only an encoder of Embed-
TextNet is needed to reduce query dimension and
it requires at most 2 MB of space, making it a ben-
eficial approach for text retrieval tasks to achieve
efficiency and similar or better performance.

4.8 Ablation Study

Since EmbedTextNet uses a modified reconstruc-
tion loss with a distance-based penalty, we inves-
tigated different distance metrics such as Huber,
Hinge, Mean Absolute Error (MAE) and MSE, to
find and verify the effectiveness of the selected one
for text embedding applications. The investigation
is shown in Table 16 in the Appendix which con-
firms that MSE is the most suitable selection for
dimensionality reduction cases.

We also tested different values of γ to find the

9870



Table 7: The effect of KL divergence (i.e. VAE) and
modified reconstruction loss (i.e. including W in Algo-
rithm 1) when GloVe-300D → 150D in ρ x 100.

Type Word
AE 56.05

AE with modified
reconstruction loss

56.86

VAE with modified
reconstruction loss

57.95

Table 8: Comparison (ρ x 100) between other methods
and EmbedTextNet when mSBERT-768D → 16D. Cor-
relation loss threshold N is shown in Algorithm 1.

Type M-sentence
β 20-VAE 3.67

Weighting manually more
(x10) on reconstruction loss

74.30

VAE with cosine-similarity 74.06
EmbedTextNet, N = 1 75.00
EmbedTextNet, N = 5 75.44
EmbedTextNet, N = 15 74.60

optimal one for each application. The results are
detailed in Table 13 - 15 in the Appendix. We
assigned larger γ for LRec < 0.1 as it means
that the reconstructed output is very similar to the
original one. This also indicates that the latent
space of EmbedTextNet follows the prior distribu-
tion well (i.e. small KL divergence) and a larger
γ is needed to prevent convergence without suffi-
cient learning in EmbedTextNet. The best values
(i.e. γ = 10 if LRec < 0.1 else 0.3) were used
throughout the evaluation process for different ap-
plications.

In Table 7, we compare the use of KL diver-
gence and modified reconstruction loss. As we can
see, using the modified reconstruction loss with
AE outperforms the naive AE and including the KL
divergence (i.e. VAE) shows further improvements.
In Table 8, we compare the selected EmbedTextNet
with other approaches in a multilingual sentence
similarity. We can see that placing more empha-
sis on KL divergence (i.e. β-VAE) is not suitable
for DR applications. Also, giving more emphasis
on reconstruction loss and using cosine-similarity
(i.e. Tables 8 and 9) are not helpful, unlike the
correlation loss (i.e. EmbedTextNet, N = 5). This
confirms that correlation loss has its own advan-
tage in achieving better DR. Lastly, we confirm that
the correlation loss should be included after a few
epochs (i.e. N = 5) to achieve better performance.
More details are included in the Appendix.

Table 9: Comparison (ρ x 100) between cosine similarity
and correlation penalty.

Type Cosine Similarity Correlation Penalty
GloVe-50D → 10D 35.08 37.18

SBERT-1024D → 16D 65.63 68.45
mSBERT-768D → 16D 74.06 75.44

5 Conclusions

We proposed EmbedTextNet, an efficient add-on
network that shows improved retrieval performance
compared to previous DR approaches. It is based
on a VAE with an improved reconstruction pro-
cess by using a weighted reconstruction loss with
a correlation-based penalty. EmbedTextNet can
be applied to any language model without alter-
ing its structure, making it suitable for practical
applications such as text retrieval. Our evaluations
on various applications consistently show superior
performance, particularly in cases where extreme
reduction is needed.

6 Limitations

There are three predictable limitations in the de-
veloped EmbedTextNet. First, while we have per-
formed a thorough evaluation of EmbedTextNet
on various downstream tasks, it is still a general-
purpose approach and its effectiveness on specific
tasks or in specific domains may vary. Thus, further
research is needed to fully understand its capabili-
ties and limitations in different contexts.

Second, as mentioned, EmbedTextNet is most
suitable for scenarios where the embedding is saved
during inference, such as text retrieval or similarity
measurement when the fixed embedding is saved
with a vocabulary (e.g. GloVe). However, it may
not be as effective in scenarios where the embed-
ding needs to be decoded back to its original form,
such as text generation.

Third, the effectiveness of EmbedTextNet is evi-
dent on a large embedding dimension, and it may
decrease when working with a small embedding di-
mension even if it was still better than other SOTA
in our experiments (e.g. GloVe-50D → 10D in
Table 1). This limitation is due to the fact that Em-
bedTextNet is based on a VAE architecture, which
is known to perform better on high-dimensional
data. Therefore, it is better to compare the perfor-
mances of EmbedTextNet with other SOTA and
choose the right one according to the researchers’
usage.

9871



References
Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer,

Mona Diab, Aitor Gonzalez-Agirre, Weiwei Guo,
Inigo Lopez-Gazpio, Montse Maritxalar, Rada Mi-
halcea, et al. 2015. Semeval-2015 task 2: Semantic
textual similarity, english, spanish and pilot on inter-
pretability. In Proceedings of the 9th international
workshop on semantic evaluation (SemEval 2015),
pages 252–263.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel M
Cer, Mona T Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce
Wiebe. 2014. Semeval-2014 task 10: Multilingual
semantic textual similarity. In SemEval@ COLING,
pages 81–91.

Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab,
Aitor Gonzalez Agirre, Rada Mihalcea, German
Rigau Claramunt, and Janyce Wiebe. 2016. Semeval-
2016 task 1: Semantic textual similarity, monolin-
gual and cross-lingual evaluation. In SemEval-2016.
10th International Workshop on Semantic Evalua-
tion; 2016 Jun 16-17; San Diego, CA. Stroudsburg
(PA): ACL; 2016. p. 497-511. ACL (Association for
Computational Linguistics).

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor
Gonzalez-Agirre. 2012. Semeval-2012 task 6: A
pilot on semantic textual similarity. In * SEM 2012:
The First Joint Conference on Lexical and Compu-
tational Semantics–Volume 1: Proceedings of the
main conference and the shared task, and Volume
2: Proceedings of the Sixth International Workshop
on Semantic Evaluation (SemEval 2012), pages 385–
393.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. * sem 2013 shared
task: Semantic textual similarity. In Second joint
conference on lexical and computational semantics
(* SEM), volume 1: proceedings of the Main confer-
ence and the shared task: semantic textual similarity,
pages 32–43.

Martin Aumüller, Erik Bernhardsson, and Alexander
Faithfull. 2018. Ann-benchmarks: A benchmarking
tool for approximate nearest neighbor algorithms.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055.

Patrick Chen, Si Si, Yang Li, Ciprian Chelba, and Cho-
Jui Hsieh. 2018. Groupreduce: Block-wise low-rank
approximation for neural language model shrinking.
In Advances in Neural Information Processing Sys-
tems, volume 31. Curran Associates, Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of

the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Yifan Du, Zikang Liu, Junyi Li, and Wayne Xin Zhao.
2022. A survey of vision-language pre-trained mod-
els. arXiv preprint arXiv:2202.10936.

Manaal Faruqui and Chris Dyer. 2014. Improving vec-
tor space word representations using multilingual
correlation. In Proceedings of the 14th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 462–471.

Irina Higgins, Loic Matthey, Arka Pal, Christopher
Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, and Alexander Lerchner. 2016. beta-vae:
Learning basic visual concepts with a constrained
variational framework.

Geoffrey Hinton. Neural networks for machine learn-
ing.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7).

Oleksii Hrinchuk, Valentin Khrulkov, Leyla Mir-
vakhabova, Elena Orlova, and Ivan Oseledets. 2019.
Tensorized embedding layers for efficient model com-
pression.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran
El-Yaniv, and Yoshua Bengio. 2017. Quantized neu-
ral networks: Training neural networks with low
precision weights and activations. The Journal of
Machine Learning Research, 18(1):6869–6898.

Aapo Hyvärinen. 2013. Independent component anal-
ysis: recent advances. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 371(1984):20110534.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Ian T Jolliffe and Jorge Cadima. 2016. Principal com-
ponent analysis: a review and recent developments.
Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences,
374(2065):20150202.

Jong-Ryul Lee, Yong-Ju Lee, and Yong-Hyuk Moon.
2021. Block-wise word embedding compression re-
visited: Better weighting and structuring. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 4379–4388, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Zhongliang Li, Raymond Kulhanek, Shaojun Wang,
Yunxin Zhao, and Shuang Wu. 2017. Slim embed-
ding layers for recurrent neural language models.

9872

https://doi.org/10.48550/ARXIV.1807.05614
https://doi.org/10.48550/ARXIV.1807.05614
https://proceedings.neurips.cc/paper/2018/file/a2b8a85a29b2d64ad6f47275bf1360c6-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/a2b8a85a29b2d64ad6f47275bf1360c6-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://doi.org/10.48550/ARXIV.1901.10787
https://doi.org/10.48550/ARXIV.1901.10787
https://doi.org/10.18653/v1/2021.findings-emnlp.372
https://doi.org/10.18653/v1/2021.findings-emnlp.372
https://doi.org/10.48550/ARXIV.1711.09873
https://doi.org/10.48550/ARXIV.1711.09873


Shaoshi Ling, Yangqiu Song, and Dan Roth. 2016.
Word embeddings with limited memory. In Proceed-
ings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 387–392.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Yu Malkov and Dmitry Yashunin. 2016. Efficient and
robust approximate nearest neighbor search using
hierarchical navigable small world graphs. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, PP.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zampar-
elli. 2014. A sick cure for the evaluation of composi-
tional distributional semantic models. In Proceedings
of the Ninth International Conference on Language
Resources and Evaluation (LREC’14), pages 216–
223.

Leland McInnes, John Healy, and James Melville. 2018.
Umap: Uniform manifold approximation and pro-
jection for dimension reduction. arXiv preprint
arXiv:1802.03426.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo
Aila, and Jan Kautz. 2016. Pruning convolutional
neural networks for resource efficient inference.
arXiv preprint arXiv:1611.06440.

Jiaqi Mu, Suma Bhat, and Pramod Viswanath. 2017.
All-but-the-top: Simple and effective postprocess-
ing for word representations. arXiv preprint
arXiv:1702.01417.

Klaus-Robert Müller, Sebastian Mika, Koji Tsuda, and
Koji Schölkopf. 2018. An introduction to kernel-
based learning algorithms. In Handbook of Neural
Network Signal Processing, pages 4–1. CRC Press.

UCI Machine Learning Repository: Bag of words NYT.
Nytimes dataset.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532–1543.

Vikas Raunak, Vivek Gupta, and Florian Metze. 2019.
Effective dimensionality reduction for word embed-
dings. In Proceedings of the 4th Workshop on Rep-
resentation Learning for NLP (RepL4NLP-2019),
pages 235–243.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Nils Reimers and Iryna Gurevych. 2020. Mak-
ing monolingual sentence embeddings multilin-
gual using knowledge distillation. arXiv preprint
arXiv:2004.09813.

Bernhard Schölkopf, Alexander Smola, and Klaus-
Robert Müller. 1998. Nonlinear component analysis
as a kernel eigenvalue problem. Neural computation,
10(5):1299–1319.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in opus. In Lrec, volume 2012, pages 2214–
2218. Citeseer.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. Advances in neural informa-
tion processing systems, 32.

9873

https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.48550/ARXIV.1609.07843
https://doi.org/10.48550/ARXIV.1609.07843
https://archive.ics.uci.edu/ml/datasets/bag+of+words


Table 10: EmbedTextNet structure consisting of (a) En-
coder and (b) Decoder. BN, LeakyReLu and Average
(Avg) Pooling are applied after each operation. Here,
word means the text similarity and retrieval with GloVe
and Faiss respectively.

(a)
Layer Operation Kernel Size

(W x H x D) Stride BN, LeakyReLu,
Avg Pooling

1 Conv #1 5 x 1 x 32
1

Yes
2 Conv #2 5 x 1 x 64
3 Conv #3 5 x 1 x 128 Yes, except pooling
4 Dense - - No

(b)
Layer Operation Kernel Size

(W x H x D) Stride BN, LeakyReLu

1 Dense - - No
2 Conv-T #1 5 x 1 x 128

word: 1
others: 2

Yes
3 Conv-T #2 5 x 1 x 64
4 Conv-T #3 5 x 1 x 32

No
5 Conv-T #4 5 x 1 x 1 1

A Notes on Reproducibility

A.1 Total Computational Budget and
Infrastructure used

To train the baselines, we employed the Intel(R)
Xeon(R) CPU @ 2.20 GHz and to train the Em-
bedTextNet, we used the Tesla P100-PCIE for text
similarity tasks and Tesla T4 for language mod-
elling and text retrieval tasks. All of them used
RAM 25 GB and we trained three times with dif-
ferent seeds for getting the averaged results. For
training EmbedTextNet in text similarity applica-
tions, it took up to 54 minutes for GloVe, 94 min-
utes for all cross-validations in STS12-16, 12 min-
utes for STS-B, 12 minutes for SICK-R, 8 minutes
for 8 multilingual languages. For training Embed-
TextNet in other applications, it required up to 53
minutes for language modelling and 61 minutes for
text retrieval. The time consumption for measuring
text similarity in all applications is very small to be
negligible while building the language modelling
model (i.e. 2 layers of LSTM) and Faiss index took
up to 39 minutes and 9 minutes respectively.

A.2 Details of EmbedTextNet Structure

In Table 10, we explain the structure of encoder
and decoder in EmbedTextNet. Furthermore, we
used RMSprop optimizer (Hinton) with lr = 2e−3

while training our models.

A.3 Hyperparameters and Size Estimation in
Dimensionality Reductions

In Table 11, we cover all the hyperparameters in
dimensionality reductions which are based on the

Table 11: Hyperparameters in dimensionality reduc-
tions.

Method Parameter Setting

PCA
svd_solver auto

iterated_power auto
whiten false

Algo

n_removed_
top_components

7

svd_solver auto
iterated_power auto

whiten false

UMAP

n_neighbors 15
metric euclidean

n_epochs auto
learning_rate 1

min_dist 0.1

Embed
TextNet

learning_rate 2e-3

n_epochs
text similarity: 30

others: 40
corr_thres

(N in Algorithm 1)
5

batch_size
SBERT: 32, mSBERT: 16

others: 256

Table 12: Details of datasets used. Here, train and test
sets are divided according to the usage in this paper.

Datasets Division Size Downstream

Word Similarity
Train -

Text
Similarity

Test 8K

STS 2012 - 2016
Train -
Test 26K

STS-B
Train 5K
Test 1K

SICK-R
Train 4K
Test 4K

Extension of
Multilingual STS 2017

Train 2K
Test 1K

WikiText-2
Train 2M Language

ModellingTest 245K

NYTimes
Train 290K Text

RetrievalTest 10K

empirical results. The number of parameters used
by EmbedTextNet is up to 4M for GloVe, 3M for
SBERT, 1M for mSBERT in text similarity task,
7.6M in language modelling and 2.5M in text re-
trieval.

B Loss Functions in EmbedTextNet

In Figure 3, we show the loss graphs of Embed-
TextNet in the sentence similarity task. All the
losses are converged well even if weight value is
applied on reconstruction loss and correlation loss
is added in VAE model.

C Databases

In Table 12, we show the summary of each dataset
with its downstream task.

9874



Figure 3: Loss functions in EmbedTextNet. The graphs are based on dimensionality reduction on sentence
embedding (i.e. SBERT-1024D → 128D). Even if we increase the epochs, the losses are converged as this figure.

D Detailed Results about Ablation Study

Tables 13 - 18 showcase the detail experimental
results of ablation study in each database reported
in the paper.

E Additional Results for Text Similarity

Tables 19 and 20 cover the additional experimental
results for text similarity tasks.

F Links for considered Datasets and
Models

• Word Similarity Dataset: https://gith
ub.com/mfaruqui/eval-word-vec
tors. MIT License.

• Sentence Similarity Dataset: https://ix
a2.si.ehu.eus/stswiki/index.ph
p/Main_Page.

• M-Sentence Similarity Dataset: https://
alt.qcri.org/semeval2017/task1
/, https://www.sbert.net/exampl
es/training/multilingual/READM
E.html.

• Language Modelling Dataset: https://bl
og.salesforceairesearch.com/th
e-wikitext-long-term-depende
ncy-language-modeling-dataset
/. Creative Commons Attribution-ShareAlike
License.

• Text Retrieval Dataset: https://archiv
e.ics.uci.edu/ml/datasets/ba
g+of+words, https://github.com
/erikbern/ann-benchmarks/. MIT
License.

• PCA: https://scikit-learn.org
/stable/modules/generated/sk

learn.decomposition.PCA.html.
BSD-3-Clause License.

• Algo: https://github.com/vyraun/
Half-Size.

• UMAP: https://umap-learn.readt
hedocs.io/en/latest/index.ht
ml. BSD-3-Clause License.

• GloVe: https://nlp.stanford.e
du/projects/glove/. Apache-2.0 Li-
cense.

• SBERT, mSBERT: https://www.sbert.
net. Apache-2.0 License.

• LSTM for Language Modelling: https://
github.com/pytorch/examples/
tree/main/word_language_model.
BSD-3-Clause License.

• Faiss: https://github.com/faceb
ookresearch/faiss. MIT License.

9875

https://github.com/mfaruqui/eval-word-vectors
https://github.com/mfaruqui/eval-word-vectors
https://github.com/mfaruqui/eval-word-vectors
https://ixa2.si.ehu.eus/stswiki/index.php/Main_Page
https://ixa2.si.ehu.eus/stswiki/index.php/Main_Page
https://ixa2.si.ehu.eus/stswiki/index.php/Main_Page
https://alt.qcri.org/semeval2017/task1/
https://alt.qcri.org/semeval2017/task1/
https://alt.qcri.org/semeval2017/task1/
https://www.sbert.net/examples/training/multilingual/README.html
https://www.sbert.net/examples/training/multilingual/README.html
https://www.sbert.net/examples/training/multilingual/README.html
https://blog.salesforceairesearch.com/the-wikitext-long-term-dependency-language-modeling-dataset/
https://blog.salesforceairesearch.com/the-wikitext-long-term-dependency-language-modeling-dataset/
https://blog.salesforceairesearch.com/the-wikitext-long-term-dependency-language-modeling-dataset/
https://blog.salesforceairesearch.com/the-wikitext-long-term-dependency-language-modeling-dataset/
https://blog.salesforceairesearch.com/the-wikitext-long-term-dependency-language-modeling-dataset/
https://archive.ics.uci.edu/ml/datasets/bag+of+words
https://archive.ics.uci.edu/ml/datasets/bag+of+words
https://archive.ics.uci.edu/ml/datasets/bag+of+words
https://github.com/erikbern/ann-benchmarks/
https://github.com/erikbern/ann-benchmarks/
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://github.com/vyraun/Half-Size
https://github.com/vyraun/Half-Size
https://umap-learn.readthedocs.io/en/latest/index.html
https://umap-learn.readthedocs.io/en/latest/index.html
https://umap-learn.readthedocs.io/en/latest/index.html
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://www.sbert.net
https://www.sbert.net
https://github.com/pytorch/examples/tree/main/word_language_model
https://github.com/pytorch/examples/tree/main/word_language_model
https://github.com/pytorch/examples/tree/main/word_language_model
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss


Table 13: SRC (ρ x 100) according to the different γ in reconstruction loss when GloVe-50D → 10D.

γ YP VERB SimLex 353-SIM TR-3K MTurK-771 353-ALL MTurk-287 RW RG-65 MC-30 353-REL Average
0.3 16.47 26.72 20.5 48.2 51.94 38.09 38.88 54.13 24.52 49.7 44 33.01 37.18
0.5 12.53 30.88 20.06 45.86 51.02 37.06 38.25 57.74 24.19 45.42 36.65 30.51 35.85
1 9.79 24.56 18.5 46.15 48.61 36.52 36.85 51.07 24.67 45.57 43.73 31.17 34.77

Table 14: SRC (ρ x 100) according to the different γ in reconstruction loss when SBERT-1024D → 16D.

γ STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Average
0.3 59.03 66.58 67.35 71.16 68.70 73.80 72.55 68.45
0.5 58.8 65.5 67.2 71.2 67.9 74.22 72.3 68.16
1 59.01 66.47 67.45 70.99 68.27 72.97 72.03 68.17

Table 15: SRC (ρ x 100) according to the different γ in reconstruction loss when mSBERT-768D → 16D.

γ AR-EN ES-EN EN-DE EN-TR FR-EN IT-EN NL-EN Average
3 60.42 65.09 67.24 53.19 62.43 64.31 66.15 62.69
5 70.66 71.64 68.43 65.52 66.23 69.89 70.29 68.95

10 73.55 79.56 75.67 70.71 75.82 77.42 75.36 75.44

Table 16: SRC (ρ x 100) in word similarity according to the different weighted reconstruction loss. Word embedding
is decreased from GloVe-300D → 150D. S. Hinge and MAE mean squared hinge and mean absolute error.

Loss YP VERB SimLex 353-SIM TR-3K MTurK-771 353-ALL MTurk-287 RW RG-65 MC-30 353-REL Average
MSE 52.82 34.05 38.59 73.26 75.47 65.56 65.52 65.51 41.2 79.49 78.91 59.98 60.86
Huber 48.38 30.33 35.47 67.93 73.4 63.29 59.77 64.27 37.29 80.06 78.18 52.92 57.61

S.Hinge 55.76 33.16 37.12 65.99 72.38 61.09 60.04 60.67 37.73 78.82 78.89 55.35 58.08
MAE 56.73 35.08 37.49 63.67 72.89 64.16 58.93 63.09 39.42 76.82 70.37 57.36 58.00

Table 17: Detailed results (ρ x 100) about the effect of KL divergence (i.e. VAE) and modified reconstruction
loss when GloVe-300D → 150D. Here, modified reconstruction loss means the including weighting value, W ,
introduced in Algorithm 1.

Type YP VERB SimLex 353-SIM TR-3K MTurK-771 353-ALL MTurk-287 RW RG-65 MC-30 353-REL Average
AE 51.29 29.01 35.28 64.22 72.03 61.04 56.26 60.1 39.1 79.7 74.55 50 56.05

AE with modified
reconstruction loss

51.53 32.17 34.83 64.76 72.36 61.12 57.71 60.47 40.16 79.48 74.17 53.56 56.86

VAE with modified
reconstruction loss

48.79 34.93 35.66 68.79 74.47 62.92 60.68 63.78 38.57 77.4 73.53 55.89 57.95

Table 18: Detailed results (ρ x 100) about other approaches and selected EmbedTextNet when mSBERT-768D →
16D. Correlation loss threshold N is explained in Algorithm 1.

Type AR-EN ES-EN EN-DE EN-TR FR-EN IT-EN NL-EN Average
β 5-VAE -0.58 3.48 -2.17 1.38 -4.92 2.58 5.17 0.71
β 20-VAE 6.30 0.60 4.09 6.93 3.08 2.85 1.84 3.67
β 100-VAE 1.80 -0.91 3.36 -2.92 -0.05 6.37 2.07 1.39

Weighting manually more
(x5) on reconstruction loss

70.93 76.35 75.06 69.98 75.08 77.02 76.10 74.36

Weighting manually more
(x10) on reconstruction loss

72.51 77.10 75.00 70.62 73.71 75.40 75.80 74.30

VAE with cosine-similarity 71.36 77.09 74.60 69.82 74.11 76.05 75.43 74.06
EmbedTextNet, N = 1 71.7 77.71 76.5 69.54 76.01 77.48 76.08 75.00
EmbedTextNet, N = 5 73.55 79.56 75.67 70.71 75.82 77.42 75.36 75.44
EmbedTextNet, N = 15 72.29 77.33 74.49 70.24 75.15 77.45 75.28 74.60
EmbedTextNet, N = 25 72.00 77.24 74.14 70.05 74.85 77.25 75.63 74.45

Table 19: Additional results for word similarity (ρ x 100 (STD)) where embedding is decreased from GloVe-300D
→ 100D. Bold means the best result among dimensionality reductions.

Embeddings YP VERB SimLex 353-SIM TR-3K MTurK-771 353-ALL MTurk-287 RW RG-65 MC-30 353-REL Average
GloVe-300D 56.13 30.51 37.05 66.38 73.75 65.01 60.54 63.32 41.18 76.62 70.26 57.26 58.17 (0)
GloVe-200D 52.21 28.45 34.03 62.91 71.01 62.12 57.42 61.99 38.95 71.26 66.56 54.48 55.12 (0)
PCA-100D 36.40 29.28 25.15 48.92 60.00 48.35 42.08 53.48 25.28 62.48 59.96 36.35 43.98 (1.16)
Algo-100D 46.97 31.94 33.65 68.99 70.8 59.4 63.36 56.49 38.93 69.82 65.6 56.6 55.21 (0.54)

UMAP-100D 17.17 23.06 24.69 36.66 35.26 29.52 30.24 33.94 9.61 40.51 27.93 23.36 27.66 (2)
EmbedTextNet

-100D
47.1 32.88 34.87 66.7 71.15 60.36 60.78 62.45 37.13 76.06 70.56 56.9 56.41 (0.42)

9876



Table 20: Detailed performances for sentence similarity (ρ x 100 (STD)) where embedding is decreased from
SBERT-1024D → 128D and SBERT-1024D → 16D. Bold describes the best result among dimensionality reductions.
The measurements of Avg. GloVe and BERT are done using SentEval.

Embeddings STS12 STS13 STS14 STS15 STS16 Average
SBERT-1024D 66.83 71.46 74.31 78.26 75.72 73.32 (0)
SBERT-768D 63.79 69.34 72.94 75.16 73.27 70.9 (0)

PCA-128D 64.76 71.32 73.56 78.15 74.87 72.53 (0.05)
Algo-128D 67.45 71.74 75.1 78.22 76.17 73.74 (0.06)

UMAP-128D 36.02 46.89 39.83 41.16 37.74 40.33 (0.12)
EmbedTextNet-128D 67.75 75.12 76.11 81.15 77.15 75.46 (0.05)

PCA-16D 57.64 60.33 64.75 68.47 65.95 63.43 (0.09)
Algo-16D 57.73 54.71 64.15 61.99 64.32 60.58 (0.1)

UMAP-16D 36 45.74 39.34 42.08 40.18 40.67 (0.88)
EmbedTextNet-16D 59.03 66.58 67.35 71.16 68.70 66.56 (0.07)
Avg. GloVe-300D 53.28 50.76 55.63 59.22 57.88 55.35 (0)
Avg. BERT-768D 50.05 52.91 54.91 63.37 64.94 57.24 (0)

9877



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Section 6

�3 A2. Did you discuss any potential risks of your work?
Section 6

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Section 1

�7 A4. Have you used AI writing assistants when working on this paper?
We do not use the AI writing assistants.

B �3 Did you use or create scientific artifacts?
Section 3, 4 and Appendix A, C, F

�3 B1. Did you cite the creators of artifacts you used?
Section 3, 4 and Appendix F

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Appendix F

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Appendix A, F

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Section 4 and Appendix C

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 4 and Appendix C

C �3 Did you run computational experiments?
Section 4 and Appendix D, E

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Appendix A

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

9878

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4 and Appendix A

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 4 and Appendix D, E

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 4 and Appendix A

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

9879


