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Abstract

For pretrained language models such as
Google’s BERT, recent research designs sev-
eral input-adaptive inference mechanisms to
improve the efficiency on cloud and edge de-
vices. In this paper, we reveal a new attack sur-
face on input-adaptive multi-exit BERT, where
the adversary imperceptibly modifies the in-
put texts to drastically increase the average in-
ference cost. Our proposed slow-down attack
called SlowBERT integrates a new rank-and-
substitute adversarial text generation algorithm
to efficiently search for the perturbation which
maximally delays the exiting time. With no
direct access to the model internals, we further
devise a time-based approximation algorithm
to infer the exit position as the loss oracle. Our
extensive evaluation on two popular instances
of multi-exit BERT for GLUE classification
tasks validates the effectiveness of SlowBERT.
In the worst case, SlowBERT increases the in-
ference cost by 4.57×, which would strongly
hurt the service quality of multi-exit BERT in
practice, e.g., increasing the real-time cloud
services’ response time for online users.

1 Introduction

In Natural Language Processing, pre-trained lan-
guage models such as BERT (Devlin et al., 2018),
GPT (Radford et al., 2018), XL-Net (Yang et al.,
2019) have brought significant improvements to
various down-stream applications. Despite the
success on the effective performances, the enor-
mous training and inference cost (i.e., processing
time and GPU consumption) severely hinders its
practice on real-time applications and hardware-
constrained edge devices.

To accelerate inference for BERT, recent works
from AI2 (Schwartz et al., 2020) and Microsoft
(Zhou et al., 2020) propose the design of multi-
exit BERT, which implements the general idea that
simple texts only requires simple models to make
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accurate predictions. Technically, multi-exit BERT
couples an internal classifier with each layer of
the feature extractor and dynamically stops infer-
ence when meeting certain early-exit criterion. As
shown in Fig.1, the early-exit criterions are divided
into confidence-based (Schwartz et al., 2020; Xin
et al., 2020; Liu et al., 2020) and patience-based
(Zhou et al., 2020) inferences.

Input-adaptive multi-exit BERT can be deployed
on real-time cloud services for fast inferences
(e.g., to process million of queries per second) and
hardware-constrained edge devices for low infer-
ence costs. Other than the common adversarial
threat (Zhang et al., 2020) against large language
models’ utility, we focus on the vulnerability of
the multi-exit BERT from the perspective of effi-
ciency, where the exit positions can be deliberately
changed by the imperceptible changes on texts. If
such an attack is possible, it will pose serious chal-
lenges to the practical deployments. For real-time
cloud services, it increases the inference response
time, which is not acceptable for online users. For
hardware-constrained edge devices, it increases the
average inference cost, where the resources (e.g.,
battery life) are limited and valuable to the edge
devices.

Despite the successful attempt against the effi-
ciency of the multi-exit mechanisms in the vision
domain (Hong et al., 2020), there are still chal-
lenges to directly apply this algorithm. Firstly, the
attack goal is optimized through gradients in the
continuous space, which is not suitable for the typi-
cal search-based adversarial attack (Jin et al., 2020)
in the discrete space. Secondly, the attack only
provide attack against confidence-based inference,
which limits it effectiveness on multi-exit BERT,
especially the patience-based inference. Lastly, the
attack can’t perform under the practical scenario
with cloud services that have no the direct access to
the model internals. The non-negligible challenges
call for a more careful design specifically targeted
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Figure 1: Early-exit criterions of the multi-exit BERT on sentiment binary classification task (IC as internal
classifier). (a) BERT exits when the confidence value is large than a threshold (i.e., 0.91>0.8). (b) BERT exits when
a certain number of consecutive ICs predict the same label (i.e., ’POS’ for 2 times).

at the multi-exit BERT.
In our work, we propose an effective and novel

slow-down attack against multi-exit BERT called
SlowBERT to address the mentioned challenges.
Our attack generates malicious text samples to
make the internal classifiers not aligned with
the early-exit criterions, which ultimately delays
the exit positions of the input-adaptive multi-exit
BERT. We propose a new rank-and-substitute al-
gorithm to generate malicious texts to slow down
the inference of multi-exit BERT. To achieve bet-
ter attack performance, we propose the exit status
containing the exit position information and its
corresponding output to guide the generation pro-
cess, which works for both early-exit criterions. To
solve the challenge where no model internals are
available, we propose a time-based approximation
algorithm to accurately infer the exit position us-
ing inference time, making our attack applicable to
various deployment scenarios.

The contributions of our paper can be summa-
rized as follows:

• We are the first work to systematically study
the vulnerability of the input-adaptive multi-
exit BERT from the perspective of efficiency.

• We proposed an effective attack, called Slow-
BERT, a new rank-and-substitute text gener-
ation algorithm to increase the average infer-
ence cost.

• We proposed a time-based approximation al-
gorithm to infer the exit information, which

enables the slow-down attack with limited
knowledge.

• We conduct extensive evaluations with two
typical multi-exit BERT on the GLUE bench-
mark. In the worst case, our attack can effec-
tively increase the inference cost by 4.57×.

2 Related Works

Input-adaptive Inference. Input-adaptive infer-
ences achieve both high predictive quality and com-
putational efficiency in both vision and text do-
mains, which allow the network to choose differ-
ent computational paths given the input samples.
There are two types of input-adaptive inferences:
layer-skipping inference and multi-exit inference.
Layer-skipping inference (Wang et al., 2018b; Fig-
urnov et al., 2017) dynamically skips certain layers
of the network. Multi-exit inferences(Kaya et al.,
2019; Huang et al., 2017; Zhou et al., 2020) intro-
duces multiple internal classifiers to the network
and dynamically stops when meeting certain early-
exit criterion. In the text domain, multi-exit in-
ferences are widely applied on BERT, which can
be categorized into confidence-based and patience-
based inferences based on the early-exit criterion.
Confidence-based inferences (Xin et al., 2020; Liu
et al., 2020) exit when the predictions are confi-
dent enough. Patient-based inferences (Zhou et al.,
2020) exit when consecutive internal classifiers
make unanimous decisions.
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Security and Privacy of Multi-exit Mechanisms.
The privacy and security risks of multi-exit neural
networks have been mainly raised in vision domain.
Hu et al. (2020) implements multi-exit networks
to achieve accuracy, robustness and efficiency to-
gether. Li et al. (2022) analyzes the membership
leakage of the multi-exit neural networks. A se-
ries of attacks (Hong et al., 2020; Haque et al.,
2020, 2022) have targeted the networks’ average
inference costs and energy consumption. Different
from those attacks, our work (i) is the first work
to propose this new threat model to the multi-exit
architectures in text domain (i.e., BERT Devlin
et al., 2018), (ii) searches optimal imperceptible
modifications on texts in the discrete space rather
than directly optimizes in the continuous space and
(iii) proposes an internal information approxima-
tion algorithm and extends our attack to a more
realistic scenario with cloud services where the
model internals are inaccessible.

3 Settings

Threat Model. We consider the typical setting
with pre-trained language model BERT for down-
stream classification tasks. The model deployer
downloads the pre-trained BERT online, which con-
sists of K layers of the feature extractor. For the
purpose of inference efficiency, the deployer cou-
ples K internal classifiers with the corresponding
K layers and fine-tunes the multi-exit model using
dataset relevant to the down-stream task. Then the
model deployer will deploy the fine-tuned multi-
exit BERT to real-time cloud services (via predic-
tion APIs) to accelerate the inference process for
better user experiences or hardware-constrained
edge device (e.g., smart phones) through model par-
titioning (Coninck et al., 2015; Taylor et al., 2018)
for low inference costs and transmission latencies.

We consider an attacker who aims to deteriorate
the efficiency of multi-exit BERT. The attacker gen-
erates imperceptible modifications to the test-time
text samples, which delay the exit positions of the
multi-exit BERT and increase the average infer-
ence computations. This poses serious challenges
to the models’ deployments. For real-time cloud
services, the malicious text samples increase the
response time of the prediction results, which ruins
online user experiences. For hardware-constrained
edge devices, the malicious text samples consume
more valuable resources on the devices (e.g., bat-
tery life) and increase the transmission latencies as

more text samples are sent to remote services for
further processing.

Multi-exit BERT. A multi-exit BERT contains
K exit positions with corresponding internal clas-
sifiers. Given the input text samples, we denote the
prediction of the ith exit position as Fi(x). The
multi-exit BERT dynamically stops the inference
when meeting certain criterion at an exit position
and outputs as the final prediction F (x). The early-
exit criterions can be categorized into confidence-
based and patience-based. The confidence-based
early-exit criterion stops at the ith exit position
when the confidence is higher than the threshold
T :

∀j ∈ [1, i− 1], maxFj(x) ≤ T,

and maxFi(x) > T.
(1)

The patience-based early-exit criterion stops at the
ith exit position when C consecutive internal clas-
sifiers make the same predictions:

∀j ∈ [i− C, i− 1],

argmaxFj(x) == argmaxFj+1(x).
(2)

Considering the trade-off between multi-exit
BERT’s utility and efficiency, the threshold T and
the patience count C are set properly before de-
ployment.

Attacker Abilities. To comprehensively evaluate
the potential vulnerability of the multi-exit BERT,
we assume the attacker has either white-box ac-
cess or black-box access to the target multi-exit
BERT. For white-box access, the attacker has the
full knowledge of the model (i.e., model parame-
ters, early-exit criterion and the number of the inter-
nal classifiers) and the access to the exit positions
of the input samples and all internal classifiers’ out-
puts. It is a practical scenario where the multi-exit
BERT is deployed on a real-time local platform or
a hardware-constraint edge device. For black-box
access, the knowledge of the model (i.e., model pa-
rameters, early-exit criterion and the number of the
internal classifiers) is inaccessible to the attacker.
The attacker has no access to the exit positions and
only has the ability to query the target multi-exit
BERT to get the corresponding exit outputs of the
input text samples This is the scenario where the
multi-exit BERT is deployed on the cloud as API
for online services.
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4 Methodology

4.1 General Attack Goals
The general goal of the attacker is to deteriorate the
efficiency of the multi-exit BERT. Intuitively, the
attacker generates imperceptible modifications on
test-time text samples to delay the exit positions by
making the internal classifiers’ outputs not aligned
with the early-exit criterions. For confidence-based
early-exit criterion, the attacker aims to maximize
the following loss:

Lc
slow =

K−1∑

i=1

maxFi(x̃) ≤ T, (3)

which counts the number of confidence values
lower than the threshold T . The loss Lc

slow causes
the internal classifier to make no confident predic-
tions. For patience-based early-exit criterion, the
attacker aims to maximize the following loss:

Lp
slow =

K−1∑

i=1

[argmaxFi(x̃) ̸= argmaxFi+1(x̃)],

(4)
which counts the prediction disagreements among
the internal classifiers. The loss Lp

slow hinders the
internal classifiers from making same predictions.
Considering the stealthiness of the slow-down at-
tack, the generated malicious text samples should
be similar to the original text samples. Therefore,
we optimize our attack goals under such constraint:

argmax
x̃

Lslow s.t. Sim(x, x̃) ≥ ϵ, (5)

where Sim : X × X → (0, 1) is the similarity
function and ϵ is the similarity threshold.

4.2 White-box Scenario
Considering an attack against multi-exit BERT un-
der the white-box scenario, the attacker has access
to information of the exit position and its corre-
sponding output. Following the general idea of
constructing adversarial texts (Li et al., 2018; Jin
et al., 2020), we designed our SlowBERT of gener-
ating slow-down samples against multi-exit BERT
into the following steps, as shown in Algorithm1.

Step1: Efficiency Relevance Ranking (line 1-6).
Given a text of n words X = (x1, x2, · · · , xn),
some words play the key role of influencing the
exit positions and thus the efficiency of the multi-
exit BERT. We proposed a ranking scheme to
choose the words that has the highest relevance

Algorithm 1 SlowBERT under White-box Setting
Input: Original text sample X = (x1, · · · , xn),
multi-exit BERT F (x) = (F1, · · · , FK)
Output: Malicious text samples X̃

1: Initialize: X̃ ← X
2: Initialize: Lmax ← H(X)
3: for word xi in X do
4: Xmask ← (x1, · · · , xi−1, xi+1, · · · , xn)
5: Compute H(Xmask)

6: Xsort ← Sort(X) according to H
7: for word xi in Xsort do
8: Substitution Set S ← SubSetGen()
9: sbest ← xi

10: for sub word sj in S do
11: Xsub ← (x̃1, · · · , x̃i−1, sj ,

x̃i+1, · · · , x̃n)
12: if H(Xsub) > Lmax then
13: sbest ← sj
14: Lmax ← H(Xsub)

15: X̃ ← (x̃1, · · · , x̃i−1, sbest, x̃i+1, · · · , x̃n)
16: if ExitPosition(X̃) = K then
17: Return: X̃
18: Return: X̃

to the exit positions. We calculate the efficiency
relevance score of each word xi by masking the
word xi and querying the model with Xmask =
(x1, · · · , xi−1, xi+1, · · · , xn).

We observe that a word is highly efficiency rel-
evant when the exit position is delayed after that
word is masked. Therefore, we get the efficiency
relevance score by calculating masked sentence’s
exit status H . The most straight-forward way is
to use the general attack goal in Eq.3 and Eq.4
as the exit status. However, it only provides the
coarse-grained measurement as it only returns inte-
ger values. We propose an exit status H consists of
both coarse-grained and fine-grained measurement.
It measures not only the exit position but also how
close are the exit internal classifier’s output to the
slow-down attack’s goal.

For both confidence-based and patience-based
criterions, the exit status H is measured as follows:

H = α · P − Lce(FP (x), ȳ), (6)

where x is the input text sample, P is the early exit
position of the input text sample, Lce is the cross
entropy loss, α is the hyper-parameter and ȳ is the
target confidence values for slow-down attack. We
set ȳ as the uniform distribution over all class labels.
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For examples, we set ȳ = (0.5, 0.5) for a binary
sentiment classification task. Given a text x, the
first term calculates the early exit position P using
the criterions described in Eq.1 and Eq.2. The
second term calculates the cross entropy between
the output of the exit internal classifier and the
target uniform distribution.

We set the hyper-parameter α as a large value
(i.e., 100), which lets the exit position play the
dominant role. Therefore, when the exit position
is deeper, the exit status H is undoubtedly higher
regardless of the effect from the second term. How-
ever, when the exit positions are the same, the
higher the exit status H , the lower the cross en-
tropy loss is, which reveals a larger possibility of
the delay on the exit position. Specifically, for
confidence-based criterion, it denotes that the out-
put is not confident enough to predict certain class.
For patience-based criterion, it denotes that the out-
put is similar to random guessing, thus leading to
inconsistent predictions.

Initially, we first calculate the exit status of the
original sentence (line 2), denotes as the global max
value Lmax. Once we get the efficiency relevance
score of each word within the sentence, we sort
these words in the reverse order according to the
relevance values.

Step2: Word Substitution (line 7-17). After
ranking the words of the sentence in step 1, we
propose a word substitution scheme. We iteratively
substitute each word with a carefully selected word
to not only maintain the visual and semantical sim-
ilarity, but also gradually increase the value of the
exit status H , which ultimately delays the exit po-
sition and slows the multi-exit inference.

For each word, we generate a substitution set S
that consists of several possible words. To maintain
the visual and semantical similarity, we consider
both character-level and word-level word genera-
tions proposed in Li et al. (2018). For character-
level word gerneration, we use: (1) Insert: Insert a
space into the word. (2) Delete: Delete a random
character in the word except the first and the last
character. (3) Swap: Swap random two adjacent
characters in the word but do not alter the first or
last characters. (4) Sub-C: Replace characters with
visually similar characters (e.g., replacing “o” with
“0”) or adjacent characters in the keyboard (e.g., re-
placing “m” with “n”). The character-level changes
simulate the mistakes made by users during typing.
For word-level word generation, we use: (5) Sub-
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Figure 2: Inference time on different exit positions. We
present the result on Multi-exit ALBERT of 12 internal
classifiers with a sentiment classification task SST-2.

W: Replace word with the nearest neighbour in a
pre-trained word embedding space (e.g., word2vec
Mikolov et al., 2013).

After getting the substituion set S, we need to
search for the best substitution word which induces
the worst effect on the efficiency of the multi-exit
BERT, where the effect is also measured by the exit
status H proposed in Eq.6. We select the word as
the best substitution word sbest when it has an exit
status H that is the largest among the substitution
set and larger than the global max value Lmax up-
dated in the previous substitutions. If no word in
the substitution set has exit status H larger than the
global max value Lmax, then then word remains un-
changed. We repeat the above steps to replace new
words until the text sample exit at the last internal
classifier.

Overall, the algorithm first uses Step 1 to rank
the words by their efficiency relevance scores, and
then repeats Step 2 to find substitutions for each
word in the sentence X until it reaches the last exit
position.

4.3 Black-box Scenario
Considering an attack against multi-exit BERT un-
der the black-box scenario, the attacker only has
the ability to query the model and get its corre-
sponding early-exit output. Compared with the
white-box scenario, we remove the assumption that
the attacker has the direct information of the exit
position and the number of the exits.

We extend our SlowBERT to black-box scenario
by proposing a simple yet effective time-based ap-
proximation algorithm to infer the exit position. As
shown in Fig.2, we observe that there is a strong
positive linear correlation between the inference
time and the depth of the exit positions. Therefore,
when given a text samples, we can infer its exit
position by measuring its inference time.

We first query the multi-exit BERT with large
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number of samples collected from public resources
and record the corresponding inference time. With-
out the knowledge of the number of exits, we then
perform an unsupervised clustering to infer the
number of exits. Considering the maximum hidden
layers’ size of BERT is 24, we perform K-means
clustering (Lloyd, 1982) with different preset clus-
ter sizes ranging from 2 to 24. Then, we select
the cluster size with the highest silhouette score
(Rousseeuw, 1987) as the number of exits and set
its cluster centers as the average inference time of
each exit. After clustering, we can accurately in-
fer the exit position by finding the closest cluster
center.

Overall, our attack algorithm under the black-
box scenario follows the same steps in Alogrithm.1.
But we approximate the exit position using time-
based approximation algorithm when calculating
the exit status H .

5 Evaluations

5.1 Evaluation Setting

Datasets and Architectures. We evaluate our
SlowBERT attack on 2 tasks of the GLUE Bench-
mark (Wang et al., 2018a). Specifically, we test on
the Stanford Sentiment Treebank (SST-2 Socher
et al., 2013) for sentiment classification and the Mi-
crosoft Research Paraphrase Corpus (MRPC Dolan
and Brockett, 2005) for news paraphrase similarity
matching. It is worth noticing that the SST-2 is a
single-sentence classification task while the MRPC
is a sentence-pair classification task. For the above
mentioned tasks, we choose ALBERT-base (Lan
et al., 2019) and BERT-base (Devlin et al., 2018)
architectures as the backbones of the multi-exit
BERT for input-adaptive inferences.

Metrics. We evaluate the efficiency of the multi-
exit BERT with two metrics. Average Exit Position
measures the average of the exit positions on the
validation set, which is positively linear correlated
with the number of the required floating-point oper-
ations. Early-exit Capacity was proposed in Hong
et al. (2020) to measure the efficiency of the early-
exit model. As shown in Fig. 7, it first calculates
the cumulative distribution curve that indicates the
fraction of the test samples that exit early at each
exit position. And early-exit capacity is reported as
the area size under the curve ranging from 0 to 1,
where higher value indicates better efficiency. By
comparing the two metrics between the original

and malicious text samples, we can evaluate the
effectiveness of our SlowBERT attack.

We also measure the Accuracy on the original
and malicious text samples to evaluate whether the
malicious text samples will damage the model’s
utility. Furthermore, we evaluate the similarity be-
tween the original and malicious text samples with
two metrics. Levenshtein Distance (Levenshtein
et al., 1966) counts the minimum number of op-
erations required to transform one sentence to the
other, which denotes the character-level similar-
ity. Semantic similarity applies Universal Sentence
Encoder (Cer et al., 2018) to measure the cosine
similarity between two embedding vectors. Finally,
we report the Query Number our attack made to
the multi-exit BERT, which denotes the efficiency
of our attack algorithm.

Detail Settings. We implement our multi-exit
BERT on the base of Hugging Face’s Transform-
ers (Wolf et al., 2020) and Datasets (Lhoest et al.,
2021). And our SlowBERT attack is implemented
on the base of OpenAttack (Zeng et al., 2021).

For training the multi-exit BERT, we download
the pre-trained BERT/ALBERT model with 12 hid-
den layers and add a linear output layer after each
hidden layer as the internal classifiers. We then
fine-tune the multi-exit BERT for 5 epochs on the
training dataset, where we set the batch size as
32 and the learning rate as 2e-5 with an Adam
optimizer. For input-adaptive inference, we eval-
uate the utility and efficiency with two types of
early-exit criterions. For confidence-based crite-
rion, we set the threshold T as 0.8,0.9 and 0.95.
For patience-based criterion, we set the patience
count C as 3,5 and 7. For sentence-pair classifica-
tion task MRPC (Dolan and Brockett, 2005), we
only maliciously modify the first sentence in the
text pair. We also filter out the commonly used
words (e.g., the, a and his) during word substitution
step. Other details are proveied in Appendix A.

Baseline. We integrates the optimization goal
proposed in Hong et al. (2020) as the baseline exit
status H with our rank-and-substitute algorithm. In
Appendix A, we provide an analysis on the reason
of its limited effectiveness on the multi-exit BERT,
especially for the patience-based criterion. The
evaluation of baseline can only be conducted under
the white-box scenario.
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Table 1: Attack performance under white-box (w.b.) and black-box (b.b.) scenarios, where AvgExit (↑) denotes the
average exit position and Ecc (↓) denotes the early-exit capacity.

Confidence-based criterion Patience-based criterion

T=0.85 T=0.9 T=0.95 C=3 C=5 C=7

AvgExit Ecc AvgExit Ecc AvgExit Ecc AvgExit Ecc AvgExit Ecc AvgExit Ecc

ALBERT + SST-2

Origin 1.490 0.891 1.890 0.865 2.320 0.836 4.318 0.682 6.350 0.513 8.259 0.345
Hong et al., 2020 4.110 0.691 6.849 0.469 8.908 0.299 5.450 0.588 8.160 0.362 10.340 0.180

Ours-w.b. 6.209 0.524 8.967 0.294 10.205 0.191 9.211 0.274 10.913 0.132 11.537 0.080
Ours-b.b. 6.080 0.534 8.758 0.312 10.127 0.198 8.485 0.335 10.474 0.169 11.280 0.102

ALBERT + MRPC

Origin 4.238 0.689 5.429 0.589 6.730 0.481 4.745 0.646 7.108 0.449 9.103 0.283
Hong et al., 2020 8.500 0.333 10.968 0.128 11.703 0.066 4.863 0.636 7.340 0.430 9.830 0.222

Ours-w.b. 9.777 0.227 11.255 0.104 11.710 0.066 9.044 0.288 11.199 0.108 11.755 0.062
Ours-b.b. 9.343 0.256 11.056 0.120 11.549 0.079 8.855 0.304 11.012 0.124 11.556 0.079

BERT + SST-2

Origin 2.150 0.852 2.792 0.806 3.466 0.752 4.511 0.666 6.788 0.476 8.766 0.311
Hong et al., 2020 6.549 0.495 9.053 0.287 10.55 0.162 5.313 0.599 8.107 0.366 10.519 0.165

Ours-w.b. 8.000 0.375 10.118 0.198 10.956 0.129 9.623 0.240 11.350 0.096 11.702 0.067
Ours-b.b. 7.631 0.405 9.864 0.220 10.881 0.135 9.217 0.274 10.928 0.129 11.579 0.076

BERT + MRPC

Origin 6.647 0.488 7.760 0.395 9.022 0.290 4.051 0.704 6.990 0.459 8.983 0.293
Hong et al., 2020 11.279 0.101 11.821 0.057 11.997 0.042 4.039 0.705 6.828 0.472 9.213 0.274

Ours-w.b. 11.392 0.092 11.831 0.056 12.000 0.041 7.103 0.450 11.426 0.089 11.973 0.043
Ours-b.b. 11.164 0.111 11.584 0.076 11.946 0.047 9.956 0.560 11.012 0.124 11.608 0.074

5.2 Evaluation Result

Effectiveness Under White-box Scenario. First,
we report the attack performance of the baseline
and our SlowBERT under the white-box scenario
in Tab. 1. We make the following observations: (1)
the baseline attack is not useful against patience-
based multi-exit BERT. (2) Our attack presents
promising results in both criterions, which de-
creases the early-exit capacity by 75% and in-
creases the average exit position by 86% at most,
comparing to the baseline. In the worst case,
SlowBERT increases the original inference cost by
4.57×. (3) When the early-exit condition is more
restricted, the attack is easier (e.g., when the pa-
tience count C is larger, the early-exit capacity after
attack is closer to 0). An example of the exit posi-
tions’ distribution comparison is shown in Fig. 3,
where the original texts exit in the early stage while
our attack generates slow-down samples that delay
most texts to exit at the last position. Furthermore,
we provide more exit distribution illustrations for
both scenarios in Appendix B.

Effectiveness Under Black-box Scenario. For
black-box scenario, we first evaluate the perfor-
mance of our time-based approximation algorithm.
As shown in Fig. 4(a), when conducting the K-
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Figure 3: The exit distribution comparison on
confidence-based multi-exit ALBERT with SST-2,
where threshold is set as 0.95.

means clustering with different cluster sizes, we
can always get the highest silhouette score when
K equals the number of internal classifiers (i.e.,
K = 12). Figure 4(b) also reports the exit position
inference accuracy, which is close to 1.0 at early
exit positions. Due to the time variance at later ex-
its shown in Fig. 2, the inference accuracy sightly
drops but remains higher than 0.85 , which shows
promising performance in terms of exit position
approximation. Then, we evaluate the attack per-
formance of our SlowBERT in Tab. 1. We report
that our black-box attack suffers almost no perfor-
mance drop comparing to our white-box attack,
which presents serious challenges to the multi-exit
BERT’s deployments on real-time cloud services.
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Table 2: Accuracy comparision between original and
malicious text samples on ALBERT under both white-
box (w.b.) and black-box (b.b.) scenarios.

Without Confidence-based criterion Patience-based criterion

Early-exit T=0.85 T=0.9 T=0.95 C=3 C=5 C=7

ALBERT + SST-2

Origin 0.906 0.874 0.897 0.906 0.904 0.915 0.918
Ours-w.b. - 0.650 0.644 0.647 0.635 0.635 0.646
Ours-b.b. - 0.643 0.635 0.631 0.681 0.674 0.701

ALBERT + MPRC

Origin 0.860 0.853 0.863 0.855 0.826 0.865 0.87
Ours-w.b. - 0.707 0.713 0.707 0.660 0.700 0.780
Ours-b.b. - 0.693 0.693 0.733 0.660 0.727 0.747
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Figure 4: The performance of the time-based approx-
imation algorithm on multi-exit ALBERT, where (a)
shows the scores of K-means and (b) shows the exit
position inference accuracy.

Influence on Model Utility. Further, we study
whether our SlowBERT will cause extra damages
to the model utility. As reported in Tab. 2, our at-
tack generate malicious texts not only increase the
inference costs but also degrade the classification
performances of the multi-exit BERT. Specifically,
the accuracy is decreased by 29% for SST-2 and
20% for MPRC on average, which calls for more
attentions on our proposed attack.
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Figure 5: The text similarity distribution on confidence-
based multi-exit ALBERT with SST-2, where threshold
is set as 0.95.

Text Similarity. For the text similarity between
the original texts and slow-down malicious texts,
we first evaluate the character-level similarity using
the levenshtein distance. As shown in Tab. 3, we
observe that most cases only require less than 10
operations on average. Table 3 also reports that
most cases generate malicious texts with high se-
mantic similarity (i.e., 0.65-0.9 on average). An

Table 3: The average query number and similarity be-
tween the original texts and the malicious text with
multi-exit ALBERT, where w.b. denotes white-box sce-
nario and b.b. denotes black-box scenario.

Metric
Confidence-based criterion Patience-based criterion

T=0.85 T=0.9 T=0.95 C=3 C=5 C=7

ALBERT + SST-2 - w.b.

Query Number 87.455 70.591 57.854 84.029 60.717 47.258
Levenshtein Distance 12.008 10.670 8.763 11.390 9.269 7.123
Semantic Similarity 0.627 0.662 0.703 0.657 0.695 0.757

ALBERT + MPRC - w.b.

Query Number 110.274 79.142 66.568 138.053 94.818 75.716
Levenshtein Distance 9.800 8.141 6.568 11.104 7.913 6.401
Semantic Similarity 0.781 0.831 0.860 0.753 0.807 0.856

ALBERT + SST-2 - b.b.

Query Number 88.769 71.960 58.935 87.345 66.311 53.981
Levenshtein Distance 11.193 9.772 8.451 9.843 8.201 7.151
Semantic Similarity 0.649 0.677 0.711 0.699 0.737 0.758

ALBERT + MPRC - b.b.

Query Number 72.083 38.833 27.774 96.642 55.495 37.421
Levenshtein Distance 10.901 8.659 6.889 12.806 9.620 7.000
Semantic Similarity 0.804 0.834 0.865 0.791 0.834 0.880

example of the similarity distribution are shown
in Fig. 5, where 93% texts require less than 20
operations and 85% malicious texts have semantic
similarity higher than 0.5 with the original texts.
The above results indicate that our SlowBERT gen-
erates high quality slow-down samples to attack
the multi-exit BERT. The examples of original and
malicious sentences and more text similarity results
can be found in Appendix B.

Attack Efficiency. We also study the attack effi-
ciency by measuring the average query number our
attack made to the multi-exit BERT. As reported
in Tab. 3, most cases only require less than 100
queries on average to achieve the slow-down target,
which is considered to be highly efficient compar-
ing to existing text adversarial attack (Jin et al.,
2020). Finally, from Tab. 3, we observe that the
text similarity and the attack efficiency is higher
when the early-exit condition is more restricted,
since the attack is easier.

6 Conclusion

In our work, we systematically study the potential
vulnerability of the input-adaptive BERT from the
perspective of large language model efficiency. We
propose SlowBERT, which drastically increases the
average inference cost of the multi-exit BERT. This
new attack surface poses serious challenges to the
deployments of the multi-exit BERT on real-time
cloud services or local hardware-constrained edge
devices. As a security problem of the large lan-
guage model, our work welcomes future research
to devise strong defense against our attacks.
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Limitations

Apart from the effective attack performance against
multi-exit BERT, we acknowledge that our work
has several limitations. Firstly, we only evaluate
our SlowBERT on the GLUE Benchmark (Wang
et al., 2018a), which demonstrate the effectiveness
on alphabetic languages such as English. How-
ever, for logograms (e.g., Chinese), it requires to
design language-specific method to generate the
corresponding substitution set to achieve the attack
goal. Secondly, despite we present a new security
threat against multi-exit BERT, potential defenses
should be analyzed such as adversarial training
(Geng et al., 2021). For the above mentioned limi-
tations, we leave them as the future works of our
proposed SlowBERT.
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and Tudor Dumitraş. 2020. A panda? no, it’s a sloth:
Slowdown attacks on adaptive multi-exit neural net-
work inference. arXiv preprint arXiv:2010.02432.

Ting-Kuei Hu, Tianlong Chen, Haotao Wang, and
Zhangyang Wang. 2020. Triple wins: Boosting
accuracy, robustness and efficiency together by en-
abling input-adaptive inference. arXiv preprint
arXiv:2002.10025.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Lau-
rens Van Der Maaten, and Kilian Q Weinberger. 2017.
Multi-scale dense networks for resource efficient im-
age classification. arXiv preprint arXiv:1703.09844.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is bert really robust? a strong base-
line for natural language attack on text classification
and entailment. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 34, pages
8018–8025.

Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras.
2019. Shallow-deep networks: Understanding and
mitigating network overthinking. In International
conference on machine learning, pages 3301–3310.
PMLR.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

10000



Vladimir I Levenshtein et al. 1966. Binary codes capa-
ble of correcting deletions, insertions, and reversals.
In Soviet physics doklady, volume 10, pages 707–710.
Soviet Union.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. 2018. Textbugger: Generating adversarial
text against real-world applications. arXiv preprint
arXiv:1812.05271.

Zheng Li, Yiyong Liu, Xinlei He, Ning Yu, Michael
Backes, and Yang Zhang. 2022. Auditing member-
ship leakages of multi-exit networks. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pages 1917–1931.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang,
Haotang Deng, and Qi Ju. 2020. Fastbert: a self-
distilling bert with adaptive inference time. arXiv
preprint arXiv:2004.02178.

Stuart Lloyd. 1982. Least squares quantization in pcm.
IEEE transactions on information theory, 28(2):129–
137.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Peter J Rousseeuw. 1987. Silhouettes: a graphical aid
to the interpretation and validation of cluster analysis.
Journal of computational and applied mathematics,
20:53–65.

Roy Schwartz, Gabriel Stanovsky, Swabha
Swayamdipta, Jesse Dodge, and Noah A Smith.
2020. The right tool for the job: Matching
model and instance complexities. arXiv preprint
arXiv:2004.07453.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for

semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Ben Taylor, Vicent Sanz Marco, Willy Wolff, Yehia
Elkhatib, and Zheng Wang. 2018. Adaptive deep
learning model selection on embedded systems.
ACM SIGPLAN Notices, 53(6):31–43.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018a.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and
Joseph E Gonzalez. 2018b. Skipnet: Learning dy-
namic routing in convolutional networks. In Proceed-
ings of the European Conference on Computer Vision
(ECCV), pages 409–424.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, Online. Association for Computa-
tional Linguistics.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. Deebert: Dynamic early exit-
ing for accelerating bert inference. arXiv preprint
arXiv:2004.12993.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. Advances in neural informa-
tion processing systems, 32.

Guoyang Zeng, Fanchao Qi, Qianrui Zhou, Tingji
Zhang, Bairu Hou, Yuan Zang, Zhiyuan Liu, and
Maosong Sun. 2021. Openattack: An open-source
textual adversarial attack toolkit. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing:
System Demonstrations, pages 363–371.

Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi, and
Chenliang Li. 2020. Adversarial attacks on deep-
learning models in natural language processing: A
survey. ACM Transactions on Intelligent Systems
and Technology (TIST), 11(3):1–41.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian
McAuley, Ke Xu, and Furu Wei. 2020. Bert loses
patience: Fast and robust inference with early exit.
Advances in Neural Information Processing Systems,
33:18330–18341.

10001



A Evaluation Setting

Fisrt, we give more detailed description to the eval-
uation setting.

Detial of Early-exit Capacity. Early-exit capac-
ity is a metric propose to specifically measure the
efficiency performance of the input-adaptive multi-
exit mechanisms. The calculate of early-exit capac-
ity mainly consist of 3 steps. Firstly, given an exit
distribution shown in Fig. 7(a), the metric gets the
portion of texts that early exit at each exit position.
Secondly, given the density distribution, the metric
calculates the cumulative distribution curve in Fig.
7(b). Lastly, the metric calculates the size under
the curve to denote the efficiency.

(b) Patience-based (C=2)

IC-3IC-2IC-1

(a) Confidence-based (T=0.8)

patience
count=0

IC-3IC-2IC-1

0.85>T 0.60<T0.55<T

POS: 0.85
NEG: 0.15

POS: 0.60
NEG: 0.40

POS: 0.55
NEG: 0.45

“a fast,  funny, highly 
enjoyable movie.”

“a fast,  funny, highly 
enjoyable film.”

IC-3IC-2IC-1 IC-3IC-2IC-1

POS: 0.60
NEG: 0.40

POS: 0.81
NEG: 0.19

POS: 0.53
NEG: 0.47

“a fast,  funny, highly 
enjoyable movie.”

“a fast,  funny, highly 
enjoyable film.”

POS: 0.65
NEG: 0.35

POS: 0.91
NEG: 0.09

POS: 0.55
NEG: 0.45

Loss: 0.407
Exit Position: 2

Loss: 0.448
Exit Position: 3

patience
count=1

patience
count=2

patience
count=0

patience
count=1

patience
count=2

Loss: 0.391
Exit Position: 3

Loss: 0.448
Exit Position: 3

0.65<T 0.91>T0.55<T

POS: 0.65
NEG: 0.35

POS: 0.91
NEG: 0.09

POS: 0.55
NEG: 0.45

Figure 6: Baseline case study of its limited effect on
multi-exit BERT with a binary classification task, where
(a) denotes the undesirable case in confidence-based in-
ference, and (b) denotes the undesirable case in patience-
based inference.

Detail Setting. First, we report the parameter size
of our multi-exit ALBERT is 12M, and the param-
eter size of our multi-exit BERT is 108M.

All our experiments are conducted on a Linux
server running Ubuntu 16.04, one AMD Ryzen
Threadripper 2990WX 32-core processor and one
NVIDIA GTX RTX2080 GPU. The training of
multi-exit BERT is conducted on random seed 47
and the construction of slow-down samples is con-
ducted on random seed 2022.

For attacking the multi-exit BERT, under
the black-box scenario, we reshape the one-
dimensional time value to two-dimension for ac-
curate clustering and use the euclidean metric in
silhouette score to choose the appropriate cluster.
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Figure 7: The detail of the early-exit capacity metirc.
(a) The exit distribution. (b) The cumulative distribution
curve, where we calculate the area size as the metirc
score.

Baseline Analysis. Hong et al. (2020) proposed
a slow-down attack against multi-exit neural net-
works (e.g., ResNet He et al., 2016) in vision do-
main. The attack specifically targets the confidence-
based multi-exit networks by setting the attack goal
as following:

Lbaseline =

K∑

i=1

Lce(Fi(x), ȳ), (7)

where ȳ is the uniform distribution over all class
labels. The goal calculates the distance between the
output of each internal classifier and the uniform
distribution. By directly optimizing the images
through gradient ∇xLbaseline, the attack generates
malicious slow-down image samples, which ulti-
mately minimize the value of Lbaseline to 0.

Considering the typical search-based adversar-
ial text generation algorithm (Jin et al., 2020; Li
et al., 2018), we integrates the baseline’s attack
goal with our rank-and-substitute algorithm, where
the rank-and-substitute algorithm aims to search for
the appropriate word in the direction of decreasing
the value of Eq. 7. However, we provide several
cases in Fig. 6 to show that the baseline’s attack
goal is not suitable for the slow-down attack against
multi-exit BERT. For confidence-based criterion,
as shown in Fig. 6(a), since the loss is calculated
by averaging the result of each internal classifier,
the generated text may exit earlier than the previ-
ous ones even with lower loss. For patience-based
criterion, as shown in Fig. 6(b), the dropping of
the loss may only cause the output of the internal
classifiers closer to the uniform distribution, but
the prediction labels remains unchanged.

Compared with our attack goal in Eq. 6, we
directly incorporate the exit position into the tar-
get goal, which gives a clearer goal in the search
process. Since the typical search-based algorithm
can’t directly optimize text sample in the continu-
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Table 4: Accuracy comparision between original and
malicious text samples on BERT under both white-box
(w.b.) and black-box (b.b.) scenarios.

Without Confidence-based criterion Patience-based criterion

Early-exit T=0.85 T=0.9 T=0.95 C=3 C=5 C=7

BERT + SST-2

Origin 0.915 0853 0.880 0.896 0.884 0904 0.912
Ours-w.b. - 0.689 0.687 0.671 0.683 0.674 0.685
Ours-b.b. - 0.695 0.710 0.704 0.712 0.702 0.714

BERT + MRPC

Origin 0.828 0.814 0.824 0.828 0.701 0.806 0.816
Ours-w.b. - 0.586 0.593 0.673 0.353 0.533 0.533
Ours-b.b. - 0.560 0.613 0.660 0.387 0.593 0.620
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Figure 8: The semantic similarity on multi-exit AL-
BERT with SST-2, where (a)-(b) shows the similarity
under the white-box scenario and (c)-(d) shows the sim-
ilarity under the black-box scenario.

ous space, we argue that our proposed SlowBERT
attack is more suitable and effective.

B Evaluation Result

In this section, we provide more evaluation results
to demonstrate the effectiveness of our SlowBERT.

Exit Distribution. We first report the exit dis-
tributions of the multi-exit ALBERT with SST-
2 under different multi-exit settings. As we can
see from Fig. 10, our attack can generate mali-
cious texts that successfully delay the exit positions
across every cases, which ultimately leads to the
increase of the inference cost. We can also observe
that more malicious texts will exit at the last inter-
nal classifier as exit condition is gradually more
restricted (i.e., the increase of the threshold T and
the patience count C).

Influence on Model Utility. We presents more
results related to the influence of the malicious texts
on the model utility of the multi-exit BERT. As re-

Table 5: The average query number and similarity be-
tween the original texts and the malicious text with
multi-exit BERT, where w.b. denotes white-box sce-
nario and b.b. denotes black-box scenario.

Metric
Confidence-based criterion Patience-based criterion

T=0.85 T=0.9 T=0.95 C=3 C=5 C=7

BERT + SST-2 - w.b.

Query Number 66.344 48.330 35.401 65.670 35.429 23.291
Levenshtein Distance 11.062 9.688 8.390 10.850 8.178 6.259
Semantic Similarity 0.637 0.681 0.717 0.662 0.724 0.782

BERT + MRPC - w.b.

Query Number 77.833 64.951 55.701 145.804 105.319 59.833
Levenshtein Distance 8.282 6.867 5.381 18.743 9.780 6.052
Semantic Similarity 0.845 0.871 0.892 0.518 0.826 0.875

BERT + SST-2 - b.b.

Query Number 67.782 49.142 34.589 66.544 39.544 25.775
Levenshtein Distance 10.103 9.221 7.261 9.413 7.107 5.847
Semantic Similarity 0.660 0.694 0.740 0.685 0.750 0.795

BERT + MRPC - b.b.

Query Number 40.495 28.113 16.054 102.480 66.363 27.025
Levenshtein Distance 7.376 6.193 5.468 14.457 8.002 5.574
Semantic Similarity 0.860 0.880 0.888 0.629 0.842 0.889
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Figure 9: The levenshtein distance on multi-exit AL-
BERT with SST-2, where (a)-(b) shows the distance
under the white-box scenario and (c)-(d) shows the dis-
tance under the black-box scenario.

ported in Tab. 4, the malicious texts targeted the
efficiency of the multi-exit BERT also degrade the
classification accuracy on both datasets. Specifi-
cally, the accuracy drop by 25% and 30% for SST-2
and MRPC on average.

Text Similarity. As to the text similarity, Table 5
first report the results on multi-exit BERT. We make
the following finding similar to the ones made on
multi-exit ALBERT. Most cases only requires less
than 10 operations on average to modified the orig-
inal texts to the malicious text. And for semantic
similarity, most cases have similarity higher than
0.6 except for one case with 0.518.

To give a comprehensive view of the text simi-
larity, we plot the distribution of the levenshitein
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Figure 10: The exit distribution on multi-exit ALBERT with SST-2, , where (a)-(f) shows the distributions of
confidence-based multi-exit criterion and (g)-(l) shows the distributions of patience-based multi-exit criterion.

Table 6: Examples of original and slow-down sentences from SST-2 and MRPC on multi-exit ALBERT.

SST-2+ALBERT

Origin Exit: 3
although laced with humor and a few fanciful touches ,
the film is a refreshingly serious look at young women

Malicious Exit: 12
although laecd with humod and a few fanciful touches ,

the f ilm is a refrshingly serious expression at young wonen.

Origin Exit: 4
for the most part, director anne-sophie birot’s first feature is a

sensitive, extraordinarily well-acted drama.

Malicious Exit: 12
for the most part, director anne-sophie birot’s first feature is a

sesitive, extraordinarily dell-acted drama .

MRPC+ALBERT

Origin Exit: 4
"Jeremy ’s a good guy, "Barber said, adding:

"Jeremy is living the dream life of the New York athlete.

Malicious Exit: 12
"Jreemy ’ s a good guy, "Barber aforesaid , adding :

"Jeremy is livng the dream life of the New York jock.

Origin Exit: 4
University of Michigan President Mary Sue Coleman said in a statement on

the university ’s Web site , " Our fundamental values haven’t changed.

Malicious Exit: 11
University of Michigan President Mary Sue Coleman said in a statement on

the university ’s Web site , " Our fundamental valus haven’t cahnged.

distance and the semantic similarity respectively
obn multi-exit ALBERT with SST-2 in Fig. 9 and
Fig. 8. We demonstrate the text similarity for dif-
ferent multi-exit settings under both white-box and
black-box scenarios. The findings are consistent
with those in Sec. 5.

We can observe that most malicious texts require
less than 20 operations during the attack. And most
malicious texts are highly semantic similar to the
original texts. In terms of the influence of different
exit conditions, we find that harder exit conditions
tend to make our attack generate malicious texts
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with higher text similarity (i.e. lower levenshtein
distance and higher semantic similarity).

Query Number. Furthermore, We report the at-
tack efficiency on multi-exit BERT from the per-
spective of the query number. As we can see from
Tab. 5, most cases require less than 80 times of
queries to achieve the attack goal. From Tab. 5,
we can also conclude that the query number is neg-
atively linear correlated with the strictness of the
exit condition.

Example of the texts. Finally, the examples of
the original and malicious texts are presented in
Tab. 6. This shows that the malicious texts only
require limited modifications and remain semantic
similar to the original ones.
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